Role of microRNAs in mammalian spermatogenesis and testicular germ cell tumors

in Reproduction

microRNAs (miRNAs) are a class of small endogenous RNAs, 19–25 nucleotides in size, which play a role in the regulation of gene expression at transcriptional and post-transcriptional levels. Spermatogenesis is a complex process through which spermatogonial stem cells (SSCs) proliferate and differentiate into mature spermatozoa. A large number of miRNAs are abundantly expressed in spermatogenic cells. Growing evidence supports the essential role of miRNA regulation in normal spermatogenesis and male fertility and cumulative research has shown that this form of regulation contributes to the etiology of testicular germ cell tumors (TGCTs). In this review, we addressed recent advancements of miRNA expression profiles in testis and focused on the regulatory functions of miRNA in the process of SSC renewal, spermatogonial mitosis, spermatocyte meiosis, spermiogenesis, and the occurrence of TGCTs.

Abstract

microRNAs (miRNAs) are a class of small endogenous RNAs, 19–25 nucleotides in size, which play a role in the regulation of gene expression at transcriptional and post-transcriptional levels. Spermatogenesis is a complex process through which spermatogonial stem cells (SSCs) proliferate and differentiate into mature spermatozoa. A large number of miRNAs are abundantly expressed in spermatogenic cells. Growing evidence supports the essential role of miRNA regulation in normal spermatogenesis and male fertility and cumulative research has shown that this form of regulation contributes to the etiology of testicular germ cell tumors (TGCTs). In this review, we addressed recent advancements of miRNA expression profiles in testis and focused on the regulatory functions of miRNA in the process of SSC renewal, spermatogonial mitosis, spermatocyte meiosis, spermiogenesis, and the occurrence of TGCTs.

microRNA overview

microRNAs (miRNAs), small non-coding RNAs, play regulatory roles by repressing translation or cleaving RNA transcripts (He et al. 2009, McIver et al. 2012a,b). The first miRNA gene, lin4, was discovered in 1993 and is involved in the normal temporal control of diverse postembryonic developmental events in Caenorhabditis elegans (Lee et al. 1993, Wightman et al. 1993). Subsequently, several hundred miRNAs have been identified in animals and plants. Most of our knowledge of miRNAs comes from the study of canonical miRNAs. In brief, miRNAs are transcribed as longer stem-loop precursors, termed pri-miRNAs, which are further recognized and cleaved by two endonucleases, Drosha/DGCR8 and Dicer, to yield a double-stranded RNA of 21–22 nucleotides (Hutvagner et al. 2001, Carmell & Hannon 2004, Kim et al. 2009). Subsequently, one strand of the duplex is incorporated into the RNA-induced silencing complex, which contains argonaute proteins, and is guided to target sequences by basepairing (Liu et al. 2004), resulting in degradation of target mRNAs or repression of their translation (Lai 2002, Carrington & Ambros 2003, Kim et al. 2009). The nuclear biogenesis of non-canonical microRNAs appears to bypass Drosha cleavage; rather, upstream processing is performed by splicing machinery and the lariat-de-branching enzyme, which yields pre-miRNA-like hairpins that are directly suitable for Dicer cleavage without further processing (Fig. 1; Okamura et al. 2007, Babiarz et al. 2008, Rosa & Brivanlou 2011, Havens et al. 2012). Increasing evidence has revealed that miRNAs are involved in various biological processes including embryonic development (Yi et al. 2008, Foshay & Gallicano 2009), cell proliferation (Brennecke et al. 2003, Lee et al. 2005), cell differentiation (Chen et al. 2004, Foshay & Gallicano 2009), apoptosis (Ambros 2003, Xu et al. 2003), fat metabolism (Xu et al. 2003), and oncogenesis (Calin et al. 2002, 2004, Esquela-Kerscher & Slack 2006, Blakaj & Lin 2008, Manikandan et al. 2008).

Figure 1
Figure 1

Biogenesis of canonical miRNAs and non-canonical miRNAs.

Citation: REPRODUCTION 149, 3; 10.1530/REP-14-0239

Introduction to spermatogenesis

Mammalian spermatogenesis starts from the self-renewal and differentiation of spermatogonial stem cells (SSCs). SSCs can divide into either new stem cells (As) or Apaired (Apr) spermatogonia that are committed to differentiation. Apr spermatogonia produce Aaligned (Aal) spermatogonia mitotically, which then give rise to several generations of spermatogonia, including A1–A4, intermediate, and type B spermatogonia (He et al. 2009). Type B spermatogonia divide by mitosis to form preleptotene spermatocytes, which initiate the long-lasting meiosis I, in which homologous recombination between sister chromatids occurs before they separate. In meiosis II, spermatocytes undergo a reduction division to split the sister chromosomes into two cells to generate secondary spermatocytes, which divide without replicating their DNA to form haploid round spermatids. The round spermatids commence the differentiation phase (spermiogenesis) to develop into mature spermatozoa (Kotaja 2014). Throughout spermatogenesis, germ cells maintain cytoplasmic bridges to facilitate synchronized cell division and differentiation (McIver et al. 2012a). Besides, spermatogenesis is regulated by hypothalamic–pituitary–gonadal axis. Gonadotropin-releasing hormone from the hypothalamus regulates the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the anterior pituitary gland. Then FSH and LH stimulate the Leydig cells to release testosterone (Kotaja 2014).

miRNAs and spermatogenesis

Spermatogenesis is a complex and highly regulated process that supports the daily production of millions of sperm, which takes place within the seminiferous tubules of the testis of the sexually mature male. This developmental process requires the coordination of both somatic and germ cells through the phases of proliferation, meiosis, and differentiation to generate mature spermatozoa that are responsible for delivery of the paternal genome (Grimaldi et al. 2013, Fok et al. 2014, Goudarzi et al. 2014).

Emerging evidence has shown that miRNAs are essential for spermatogenesis and may play an important role during mitotic, meiotic, and post-meiotic stages of spermatogenesis by regulating the expression of the target gene (Tang et al. 2007, Hayashi et al. 2008, Bouhallier et al. 2010). Dicer, an RNAse III endonuclease, is essential for the biogenesis of miRNAs. Several studies have shown that testes were reduced in size and the process of spermatogenesis was disrupted after ablation of Dicer (Romero et al. 2011). In addition, these studies demonstrated that removal of Dicer1 at the early onset of male germ cell development led to infertility, due to multiple cumulative defects in the meiotic and post-meiotic stages (Wu et al. 2012). Specifically, the progression of spermatocyte meiosis and spermiogenesis was delayed, the number of haploid cells decreased, the number of apoptotic spermatocytes increased, and the low number of mature sperm in epididymides exhibited abnormal morphology and motility. In addition, sperm lacking Dicer1 were rarely able to fertilize WT eggs to generate viable offspring (Maatouk et al. 2008, Korhonen et al. 2011, Romero et al. 2011).

Expression profile of miRNA in the testis

Over the past several decades, a number of expression profile studies using miRNA microarrays, RT-PCR, or small RNA sequencing have demonstrated that numerous miRNAs are exclusively or preferentially expressed in the testis or germ cells of humans and mice (Barad et al. 2004, Ro et al. 2007, Yan et al. 2007, Buchold et al. 2010, Smorag et al. 2012). A total of 770 known and five novel human miRNAs were detected in normal human testes by Solexa sequencing technology (Yang et al. 2013b).

The global miRNA expression in cell populations from different stages of spermatogenesis, such as spermatogonia, spermatocytes, and spermatids, was conducted by microarray analysis. The results showed that most miRNAs are preferentially expressed in meiotic germ cells (Ro et al. 2007, Marcon et al. 2008). Some studies have demonstrated that miRNA expression patterns differ between immature and mature testes in human. For example, Yan et al. (2007) found 14 up-regulated and five down-regulated miRNAs in immature testes compared with adult testes. Subsequently, the differences in miRNA expression between immature and mature rhesus monkey (Yan et al. 2009) and porcine testes (Luo et al. 2010) were found. The expression profile of miRNAs in testes is given in Table 1.

Table 1

Expression profile of miRNAs in testes.

OriginExpressionReferences
Mouse testis141 miRNAs from the mouse testis were detected, of which 29 were novelRo et al. (2007)
Human testis770 known and five novel human miRNAs were detected by Solexa sequencing technologyYang et al. (2013a)
Saanen dairy goat testis91 novel paired miRNAs were foundWu et al. (2014b)
Immature and mature testes (mouse)14 up-regulated and five down-regulated miRNAs were found in the immature testis compared with the adult testisYan et al. (2007)
Immature and mature testes (pig)51 miRNAs were significantly up-regulated and 78 miRNAs were down-regulated in mature testesLuo et al. (2010)
Testis tissue from the immature rhesus monkey, mature rhesus monkey, and mature human26 miRNAs were shared by the IR and MR, and the IR and MH, although miRNA levels in each pair of samples differed by more than threefoldYan et al. (2009)
Mouse spermatogoniaThe miR17–92 and miR290–295 clusters are enriched in the spermatogonia of neonatal miceHayashi et al. (2008)
Human spermatozoa68 small RNAs have been identified in human spermatozoaOstermeier et al. (2005)
Spermatozoa of patients with varicocelemiR15a was significantly decreased in patients with varicocele compared with the controlJi et al. (2014)
Testes of patients with NOA and normal human testes154 differentially down-regulated and 19 up-regulated miRNAs were found in testes from NOA patientsLian et al. (2009)
Human spermatozoa in patients with different spermatogenic impairments50 up-regulated and 27 down-regulated miRNAs were found in asthenozoospermic males. 42 up-regulated and 44 down-regulated miRNAs were found in oligoasthenozoospermic males compared with normozoospermic malesAbu-Halima et al. (2013)
Cryptorchid and normal testesmiR135a was expressed at a lower level in cryptorchid testes, which contributes to the maintenance of spermatogonial stem cells by regulating Foxo1Moritoki et al. (2014)
Human testicular tissues of infertile men with different histopathological patternsA total of 197, 68, and 46 miRNAs were found to be differentially expressed when comparing the samples from Sertoli cell only, mixed atrophy, and germ cell arrest groups, respectively, with normal spermatogenesisAbu-Halima et al. (2014)

NOA, non-obstructive azoospermia.

miRNA and spermatogonial stem cell renewal

Within the testis, the SSCs reside in a unique microenvironment, or ‘niche’, which includes the surrounding somatic cells. Spermatogenesis originates from SSCs, which have the dual property of continually renewing and undergoing differentiation into a spermatogonial progenitor that expands and further differentiates (Hess et al. 2006, Ventela et al. 2012, Dovere et al. 2013, Silvan et al. 2013, van den Driesche et al. 2014, Guo et al. 2014). In the rodent testis, SSCs are among undifferentiated spermatogonia that include Asingle (As), Apaired (Apr), and Aaligned (Aal) spermatogonia (Dym 1994). The regulation of the balance between self-renewal and differentiation of SSCs determines the lifelong supply of spermatozoa by maintaining a population of undifferentiated spermatogonial stem cells and ensuring that adequate numbers of spermatogonia undergo spermatogenesis (van den Driesche et al. 2014). miRNAs, as critical endogenous regulators in mammalian cells, play important roles in the regulation of the fate of SSCs. A large number of miRNAs, such as the miR17–92 cluster (Tong et al. 2012), miR290–295 cluster (McIver et al. 2012a,b), miR146 (Huszar & Payne 2013), miR20 (He et al. 2013), miR21 (Niu et al. 2011), miR106a (He et al. 2013), miR221, and miR222 (Yang et al. 2013b), are highly expressed in THY1-enriched undifferentiated spermatogonia. These miRNAs are largely down-regulated during retinoic acid-induced spermatogonial differentiation both in vitro and in vivo, suggesting that they are potentially involved in the regulation of proliferation and differentiation of SSCs during spermatogenesis (Kotaja 2014). For example, miR20 and miR106a promote renewal of SSCs at the post-transcriptional level via targeting Stat3 and Ccnd1 (He et al. 2013). miR135a contributes to SSC maintenance through modulation of Foxo1 activity (Moritoki et al. 2014), and miR21, which is present in SSC-enriched germ cells and is regulated by the transcription factor ETV5, is important in maintaining the SSC population (Niu et al. 2011). The list of miRNAs implicated in maintenance of pluripotency in germ cells is given in Table 2.

Table 2

miRNAs implicated in maintenance of pluripotency in germ cells.

Name of miRNAExpressionTargets (predicted and confirmed)References
miR17–92 clusterTHY1+-enriched undifferentiated spermatogoniaBcl2l11, Kit, Socs3, and Stat3Tong et al. (2012)
miR106b-25THY1+-enriched undifferentiated spermatogoniaBcl2l11, Kit, Socs3, and Stat3Tong et al. (2012)
miR290–295 clusterHighly enriched in the germ cell population of the 6-day-old testis, multipotent adult germ cells, and embryonic stem cellStat3 and Ccnd1Zovoilis et al. (2008, 2010) and McIver et al. (2012a,b)
miR146Highly expressed in undifferentiated spermatogoniaMed1Huszar & Payne 2013)
miR221 and miR222THY1+-enriched undifferentiated spermatogoniaYang et al. (2013b)
miR20 and miR106aSSCsHe et al. (2013)
miR21THY1+-enriched undifferentiated spermatogoniaP12Niu et al. (2011) and Zheng et al. (2011)
miR135aSSCsFoxo1Moritoki et al. (2014)
miR302-367 clusterPrimordial germ cells, ES cellsNR2F2 Hayashi et al. (2008), Dyce et al. (2010) and Rosa & Brivanlou (2011)
miR376aDown-regulated in mature mouse testesCDK2 and AGO2Wang et al. (2011)
miR302 clusterOverexpressed in adult (undifferentiated) and pediatric germ cell tumorsNR2F2Lian et al. (2009), Murray et al. (2010), Palmer et al. (2010) and Rosa & Brivanlou (2011)
miR335Down-regulated in mature mouse testesCCNT2, CCD2, RSBN1, and RUNX2Yan et al. (2007) and Tome et al. (2011)
miR367Embryonal carcinoma, ES cellsLATS2, KLF4, RUNX1, SYNJ1, and SMAD6Li et al. (2009)

SSCs, spermatogonial stem cells.

The role of miRNAs in spermatocyte meiosis and spermiogenesis

Spermatocyte meiosis and spermiogenesis are unique cellular processes to germ cells in the male. The meiotic phase (chromosomal replication, recombination, and two consecutive meiotic cell divisions of spermatocytes) and haploid phase (also called spermiogenesis, differentiation of spermatids into spermatozoa) of spermatogenesis are characterized by high transcriptional activity but suppressed translational activity. Post-transcriptional control of gene expression in these phases is a significant feature of mammalian spermatogenesis (Kotaja 2014). A large number of miRNAs are preferentially expressed in spermatocytes and spermatids and are involved in the regulation of meiotic and post-meiotic gene expression (Kotaja 2014). Expression of the miR449 cluster is drastically up-regulated upon meiotic initiation during testicular development and in adult spermatogenesis, both of which are regulated by testes-specific transcription factors, CREMτ and SOX5, through binding to two highly conserved cis-elements of the Cdc20b/miR449 cluster (Bao et al. 2012). miR34c is highly expressed in isolated pachytene spermatocytes and round spermatids (Zhang et al. 2012, Li et al. 2013), and Tgif2 and Notch2 (important in spermatogenesis) are the direct targets of miR34c (Bouhallier et al. 2010). Tgfb signaling inhibits the second meiotic division in spermatogenesis (Damestoy et al. 2005), whereas notch signaling promotes spermatogonia differentiation (Kostereva & Hofmann 2008). miR449 and miR34b/miR34c regulate germ cell differentiation and survival by targeting NOTCH1 and DAZL, as well as germ cell apoptosis by targeting BCL2 and ATF1 (Yan et al. 2009, Luo et al. 2010, Liang et al. 2012). miR214 is preferentially expressed in pachytene spermatocytes and plays a key role in meiosis by targeting heat shock proteins (Marcon et al. 2008, Dai et al. 2011). miR320, which is expressed in all germ cells, is predicted to target protocadherins that is important in cell adhesion (Marcon et al. 2008, Dai et al. 2011). Transition protein 2 (TNP2) and protamine 2 (PRM2) are key chromatin remodelers that facilitate the compaction and condensation of chromatin during spermiogenesis. miR122a reduces the expression of TNP2 to regulate chromatin remodeling during mouse spermatogenesis (Yu et al. 2005, Yu & Hecht 2008, Liu et al. 2013b). miR469 represses TNP2 and PRM2 protein expression at the translation level through binding to the coding regions of TNP2 and Prm2 mRNAs and then affects normal sperm production (Dai et al. 2011). miR355, miR181b, and miR181c are all up-regulated in the adult testis and are involved in transcriptional regulation in haploid germ cells by targeting Rsbn1 (Yan et al. 2007, McIver et al. 2012a). miR184 may be involved in the post-transcriptional regulation of mRNAs, such as Ncor2, in mammalian spermatogenesis (Wu et al. 2011). One miRNA can target various mRNAs and one mRNA can be targeted by multiple miRNAs (Peter 2010). Ablation of a single miRNA or miRNA cluster rarely leads to a discernable phenotype in mice under non-stress conditions, in some cases because of compensatory effects by other functionally related miRNAs (Wu et al. 2014a). For example, although no discernible phenotype has been observed in miR449 cluster-knockout mice, studies have suggested that miR34b/miR34c may compensate for the absence of miR449, as both miRNA families function redundantly by targeting the E2F–pRb pathway (Bao et al. 2012). Wu et al. (2014a) constructed the Mir34b/Mir34c and Mir449 double knockout (dKO) mice and demonstrated again that these two miRNAs were functionally redundant. The dKO mice were found with severely disrupted spermatogenesis and sterility. The miRNAs that play a regulatory role in spermatocyte meiosis and spermiogenesis can be found in Table 3.

Table 3

miRNAs that play a regulatory role in spermatocyte meiosis and spermiogenesis.

Name of MiRNAExpressionTargets (predicted and confirmed)FunctionsReferences
miR449Up-regulated in mature rhesus monkey and mouse testis, preferentially expressed in mouse testes and localized to spermatocytes and spermatidsMECP2, ASB1, BCL2, NOTCH1, CASP2, KITLG, VCL, FOXJ2, INHBB, SOX11, CCNE2, GMFB, and DLL1Represses the proliferation of a germ cell line, GC-1spgBao et al. (2012)
miR34aUp-regulated in mature mouse testis, up-regulated from day 7 to day 14 in mouse testisCCND2, BLC2, GMFB, and SIRT1Represses proliferation, promotes apoptosisYan et al. (2007), Buchold et al. (2010) and Ito et al. (2010)
miR34bUp-regulated in mature rhesus monkey testis, up-regulated from day 7 to day 14 in mouse testisNOTCH1, LGR4, VEZT, MAN2A2, and FOXJ2Regulates the germ cell proliferation and survivalYan et al. (2009), Buchold et al. (2010) and Vogt et al. (2011)
miR34cHighly expressed in isolated pachytene spermatocytes and round spermatidsCCND3, CCNG1, CCNB1, CCNC, CCNE1, CDK4, CDK6, E2F5, FOS, CDC2, TGIF2, NOTCH2, STRBP LGR4 KLF4, NOTCH1 PPP1CC, GALT, KITLG, SPAG4, CCNL, ZFP148, and GMFBCycle regulator, promoted mGSC apoptosis, SSC differentiation, enhances the germinal phenotype of cells already committed to this lineage Yan et al. (2009), Buchold et al. (2010), Li et al. (2013) and Yu et al. (2014)
miR184Localized to the germ cells of mouse testisNcor2Promotes the proliferation of a germ cell line, GC-1spgMarcon et al. (2008) and Wu et al. (2011)
miR24Pachytene spermatocytesMBD6 and H2AXPotential role in meiosisMarcon et al. (2008)
miR214Mainly expressed in pachytene spermatocytesWDTC1, heat shock proteinsPotential role in meiosisMarcon et al. (2008) and Dai et al. (2011)
miR320Expressed in all germ cellsProtocadherinsCell adhesionsMarcon et al. (2008) and Dai et al. (2011)
miR18Highly expressed in spermatocytesHSF2Male germ cell maturationBjork et al. (2010)
miR122aEnriched in late-stage male germ cellsTNP2Regulates the chromatin remodeling, plays a role in spermiogenesisYu et al. (2005), Yu & Hecht (2008) and Liu et al. (2013b)
miR469Pachytene spermatocytes and round spermatidsTP2 and PRM2Regulates the chromatin remodeling, plays a role in spermiogenesisDai et al. (2011)
miR355Up-regulated in adult testisRsbn1Transcriptional regulation in haploid germ cellsYan et al. (2007) and McIver et al. (2012a)
miR181bUp-regulated in adult testisRsbn1Transcriptional regulation in haploid germ cellsYan et al. (2007) and McIver et al. (2012a)
miR181cUp-regulated in adult testisSox5, Sox6, and Rsbn1Transcriptional regulation in haploid germ cellsYan et al. (2007) and McIver et al. (2012a)
miR185Preferentially expressed in pachytene spermatocytesRHOA and CDC42Cell cycle regulator Marcon et al. (2008)
miR191Highly expressed in testis, preferentially expressed in beta pachytene spermatocytes, down-regulated in teratozoospermiaBNC2 Required for normal sperm morphologyMarcon et al. (2008)

GC, germ cell; mGSCs, male germline stem-cell; SSCs, spermatogonial stem cells.

Role of miRNA expression in Sertoli cells

Sertoli cells play a central and essential role in coordinating spermatogenesis by structurally and nutritionally supporting germ cells and secreting factors that control the survival and progression of germ cells, without which the production of normal sperm would be hindered (Papaioannou et al. 2011, Panneerdoss et al. 2012). Dicer is absolutely essential for Sertoli cells to mature, survive, and ultimately sustain germ cell development. In fact, ablation of Dicer leads to infertility suggesting that miRNA expression in Sertoli cells is important for supporting germ cell development (Nicholls et al. 2011, Papaioannou et al. 2011). Panneerdoss et al. (2012) had identified miRNAs as one group of testosterone-dependent trans-acting factors in postnatal Sertoli cells that may play a crucial role in androgen-mediated events during spermatogenesis by targeting Sertoli cell/germ cell-specific genes. A large number of miRNAs (e.g., miR471, miR470, miR463, miR465, miR743a/miR743b, miR883, miR880, miR201, and miR547) expressed in Sertoli cells have been demonstrated to play a coordinated role in androgen-dependent spermatogenic events (Panneerdoss et al. 2012). In addition, a subset of miRNAs expressed in Sertoli cells, including miR23b, miR30c, miR30d, and miR690, are stimulated upon FSH and androgen suppression, which are critical regulators of target proteins associated with junction restructuring and spermiation (Nicholls et al. 2011). Thus, FSH and androgens act on Sertoli cells at stage VIII to regulate the expression of miRNAs that operate in a coordinated manner to control cell adhesion pathways and male fertility.

miRNA and germ cell tumors

miRNAs are essential for cell proliferation and differentiation by regulating cell cycle-related factors. A growing number of studies have demonstrated that miRNAs may play a similar role as proto-oncogenes, as both are involved in occurrence and evolution of tumors (Gregory & Shiekhattar 2005, Calin & Croce 2006, Costinean et al. 2006, Hwang & Mendell 2007, Manikandan et al. 2008). A high-throughput microarray showed that miRNA expression profiles in tumor tissue significantly differed from the normal tissue obtained from the same source (Murakami et al. 2006, Wang & Wang 2006, Hwang & Mendell 2007), and as such, could assist in the diagnosis and treatment of cancer according to this differential expression pattern (Mattie et al. 2006, Volinia et al. 2006, Yanaihara et al. 2006). Human germ cell tumors comprise a heterogeneous group of neoplasms, all with a defined histological appearance. They have specific epidemiological characteristics, clinical behavior, and pathogenesis (Looijenga et al. 2014). In the testis, there are three types of testicular germ cell tumors (TGCTs) that occur at distinct ages in men, namely, the teratomas–yolk sac tumors of the infantile testis (type I), the seminomas and non-seminomas of adolescents and adults (type II), and the spermatocytic seminomas of the elderly (type III) (Oosterhuis & Looijenga 2005, Looijenga et al. 2006, 2014, Gillis et al. 2007). The expression profiles of miRNAs in these different types of TGCTs vary. For example, Gillis found that the miR302 cluster, which plays a role in the maintenance of embryonic stem cells pluripotency, is elevated in seminoma tumors. miR21 and miR155, as oncogenic miRNAs, are highly expressed in seminomas and spermatocytic seminomas. The up-regulation of miR19a and miR29a and down-regulation of miR133a and miR145 are found in seminomas and spermatocytic seminomas. miR146 expression is lower in seminomas, spermatocytic seminomas, and even different type II tumors such as embryonic carcinomas and teratomas compared with normal testes (Gillis et al. 2007). Analysis of the 156 miRNAs expressed in normal human testes, type II and type III TGCTs, and cell lines derived from TGCTs, verified that terminally differentiated histological subgroups (e.g., normal testicular tissue) expressed most discriminating miRNAs at a higher level than poorly differentiated tumor tissue subpopulations, such as seminoma, dysgerminoma, and embryonal carcinomas (Gillis et al. 2007). These results support the model that miRNAs are involved in the regulation of differentiation of stem cells retained in germ cell tumor (GCTs). Lin 28 is thought to be involved in the maintenance of pluripotency. Let7, miR125a, and miR9 are implicated in the formation of testicular teratomas by targeting Lin28 (Zhong et al. 2010). miR199a expression is significantly lower in TGCTs compared with normal testicular germ cells. The v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MAFB) transcription factor was identified as a putative target of miR199a-5p in TGCTs and mediates the tumor suppression activity of miR199a (Gu et al. 2013). miR372 and miR373 neutralize p53-mediated cyclin-dependent kinase (CDK) inhibition, possibly through direct inhibition of expression of the tumor suppressor LATS2 (Voorhoeve et al. 2006, 2007, Gillis et al. 2007). Studies have demonstrated that these miRNAs are potential novel oncogenes that participate in the development of human TGCTs by inhibiting the Trp 53 pathway, thus allowing tumorigenic growth in the presence of WT Trp 53 (Costinean et al. 2006). The hsa-miR371–373 cluster is involved in counteracting cellular senescence induced by oncogenic stress, allowing cells to become malignant (Gillis et al. 2007). Protein tyrosine phosphatase non-receptor type 23 (PTPN23) is one of the important tumor suppressor candidates and is involved in the tumorigenesis of various organs. Relatively higher miR142-3p expression can be found in the absence of PTPN23 protein expression in human TGCTs, suggesting that miR142-3p plays an important role in the pathogenesis of TGCTs by repressing PTPN23 expression (Tanaka et al. 2013). Together, the data presented in this review indicate that aberrant miRNA expression is related to human germ cell tumor occurrence. The miRNAs implicated in the development of TGCTs are shown in Table 4.

Table 4

miRNAs implicated in the development of TGCTs.

Name of miRNAExpressionTargets (predicted and confirmed)FunctionsReferences
miR301SS, YST, teratomaGillis et al. (2007)
miR302 clusterSE, YSTNR2F2Gillis et al. (2007), Palmer et al. (2010) and Rosa & Brivanlou (2011)
miR302dSE, EC, up-regulated in YSTLATS2, LEFTY1, MLL3, DAZAP2, TNFA1P1, BCL11B, and PLAG1Oncogene, suppressor of apoptosis Gillis et al. (2007) and Murray et al. (2010)
miR21Highly expressed in SE and SSP12OncogeneGillis et al. (2007)
miR155Highly expressed in SE and SSOncogeneGillis et al. (2007)
miR19aOverexpressed in SE and SSGillis et al. (2007)
miR29aOverexpressed in SE and SSGillis et al. (2007)
miR133aDown-regulated in SE and SSGillis et al. (2007)
miR133bTeratomasPOU4F1, MEIS2, and FSCN1Tumor suppressorGillis et al. (2007), Kano et al. (2010) and Qiu et al. (2014)
miR140TeratomasBCL11A, SOX4, and CXCL12Skeletal development and cartilage maintenanceNicolas et al. (2008) and Miyaki et al. (2010)
Let7TeratomasLin28Zhong et al. (2010)
miR9TeratomasLin28Zhong et al. (2010)
miR125aTeratomasLin28Zhong et al. (2010)
miR145Down-regulated in SSPLAGL2, E2F3, SOX9, OCT4, SOS2, KLF4, and FSCN1Represses pluripotency, tumor suppressor Gillis et al. (2007), Kano et al. (2010), Port et al. (2011) and Qiu et al. (2014)
miR146Down-regulated in SE, SS, and even certain type II tumors, such as EC and teratomasGillis et al. (2007)
miR199aExpressed at low levels in TGCTsMAFBTumor suppressorGu et al. (2013)
miR200cExpressed in EC, SE, and various elements of NSZEB1 and TRKBTumor suppressor, inhibitor of cell invasion/migration, control of apoptosisRadisky 2011)
miR367Expressed at low levels in human ES and EC cellsLATS2, KLF4, RUNX1, SYNJ1, and SMAD6Maintenance of pluripotency, regulation of gene transcription Gillis et al. (2007) and Li et al. (2009)
miR368SE, ECGillis et al. (2007)
miR371–373SE, EC, overexpressed in malignant pediatric germ cell tumors and cisplatin-resistant cell lines derived from GCTsLATS2, ZIC4, LEFTY1, DAZAP, TNFA1P1, PLAG2, and MLL3 Involved in over-ruling cellular senescenceVoorhoeve et al. (2006, 2007) and Gillis et al. (2007)
miR375Overexpressed in pediatric YSTsIGR1RTumor suppressor, inhibits metastasisMurray et al. (2010) and Hudson et al. (2013)
miR142-3pTGCT cell linesRepresses PTPN23 expressionTanaka et al. (2013)

SE, seminomas; NS, non-seminomas; EC, embryonal carcinoma; YST, yolk sack tumors; SS, spermatocytic seminoma; TGCTs, testicular germ cell tumors; GCT, germ cell tumor.

Epigenetics of miRNA in spermatogenesis and TGCTs

Epigenetics is the study of heritable changes in gene expression that occur without changes in DNA sequence and is an important mechanism that underlies the ability of environmental chemicals to influence health and disease (Singh & Li 2012). The association of DNA methylation, histone modification, and miRNA with environmental exposure and heritable phenotypes has been widely established. Cigarette smoke, one of the most prevalent and significant global chemical carcinogens, induces differential miRNA expression in the spermatozoa of smokers compared with non-smokers. These altered miRNAs predominantly mediate pathways vital for healthy sperm and normal embryonic development, particularly in cell death (Marczylo et al. 2012). Epigenetics can also affect miRNA expression through DNA methylation and histone modifications and can inversely regulate epigenetic inheritance through DNA methylation transferase, thereby maintaining DNA methylation levels and altering histone modifications (Sato et al. 2011, Liu et al. 2013a, Udali et al. 2013, Nana-Sinkam & Choi 2014). For example, expression of miR34b and let-7a-3 is regulated by DNA methylation (Lu et al. 2007, Toyota et al. 2008), and miRNAs with tumor suppressor functions are often silenced by DNA hypermethylation, leading to tumor formation. miR199a expression, which is significantly lower in TGCTs compared with normal testicular germ cells, is controlled by epigenetic changes such as DNA methylation and histone modification; demethylation with 5-aza can restore miR199a expression (Gu et al. 2013).

Future perspectives

The most current miRNA research has demonstrated the biological significance of these molecules in the regulation of spermatogenesis and TGCTs. There are a large number of miRNAs and their expression during spermatogenesis is phase or cell specific. In other words, some miRNA expression differs from SSCs, and premeiotic, meiotic, post-meiotic, and spermatid cells. The differential expression pattern of these miRNAs demonstrates that they play a regulating role in a specific phase during spermatogenesis. In addition, studies demonstrate that some serum miRNAs could act as biomarkers to detect germ cell tumors. However, future studies concerning the stage- and cell-specific expression of miRNAs during spermatogenesis and the potential roles of miRNA in TGCT occurrence are still required for addressing more thoroughly. The in-depth study of miRNAs in testes would lead to a better understanding of the etiology of male infertility and testicular cancer and would probably result in the design and development of a number of biological agents for the diagnosis and treatment of male infertility and testicular cancer. This would lead to an improved quality of life, ultimately resulting in enormous economic and social benefits.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the review.

Funding

This work was supported by the National Natural Science Foundation of China (no. 30771139 and no. 81471497 to C Xu) and the Shanghai Natural Science Foundation (12JC1405500 to C Xu).

References

  • Abu-HalimaMHammadehMSchmittJLeidingerPKellerAMeeseEBackesC2013Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertility and Sterility9912491255.e16. (doi:10.1016/j.fertnstert.2012.11.054)

    • Search Google Scholar
    • Export Citation
  • Abu-HalimaMBackesCLeidingerPKellerALubbadAMHammadehMMeeseE2014MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns. Fertility and Sterility1017886.e2. (doi:10.1016/j.fertnstert.2013.09.009)

    • Search Google Scholar
    • Export Citation
  • AmbrosV2003MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell113673676. (doi:10.1016/S0092-8674(03)00428-8)

    • Search Google Scholar
    • Export Citation
  • BabiarzJERubyJGWangYBartelDPBlellochR2008Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes and Development2227732785. (doi:10.1101/gad.1705308)

    • Search Google Scholar
    • Export Citation
  • BaoJLiDWangLWuJHuYWangZChenYCaoXJiangCYanW2012MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor-retinoblastoma protein (E2F-pRb) pathway. Journal of Biological Chemistry2872168621698. (doi:10.1074/jbc.M111.328054)

    • Search Google Scholar
    • Export Citation
  • BaradOMeiriEAvnielAAharonovRBarzilaiABentwichIEinavUGiladSHurbanPKarovY2004MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Research1424862494. (doi:10.1101/gr.2845604)

    • Search Google Scholar
    • Export Citation
  • BjorkJKSandqvistAElsingANKotajaNSistonenL2010miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development13731773184. (doi:10.1242/dev.050955)

    • Search Google Scholar
    • Export Citation
  • BlakajALinH2008Piecing together the mosaic of early mammalian development through microRNAs. Journal of Biological Chemistry28395059508. (doi:10.1074/jbc.R800002200)

    • Search Google Scholar
    • Export Citation
  • BouhallierFAllioliNLavialFChalmelFPerrardMHDurandPSamarutJPainBRouaultJP2010Role of miR-34c microRNA in the late steps of spermatogenesis. RNA16720731. (doi:10.1261/rna.1963810)

    • Search Google Scholar
    • Export Citation
  • BrenneckeJHipfnerDRStarkARussellRBCohenSM2003bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell1132536. (doi:10.1016/S0092-8674(03)00231-9)

    • Search Google Scholar
    • Export Citation
  • BucholdGMCoarfaCKimJMilosavljevicAGunaratnePHMatzukMM2010Analysis of microRNA expression in the prepubertal testis. PLoS ONE5e15317. (doi:10.1371/journal.pone.0015317)

    • Search Google Scholar
    • Export Citation
  • CalinGACroceCM2006MicroRNA-cancer connection: the beginning of a new tale. Cancer Research6673907394. (doi:10.1158/0008-5472.CAN-06-0800)

    • Search Google Scholar
    • Export Citation
  • CalinGADumitruCDShimizuMBichiRZupoSNochEAldlerHRattanSKeatingMRaiK2002Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. PNAS991552415529. (doi:10.1073/pnas.242606799)

    • Search Google Scholar
    • Export Citation
  • CalinGALiuCGSevignaniCFerracinMFelliNDumitruCDShimizuMCimminoAZupoSDonoM2004MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. PNAS1011175511760. (doi:10.1073/pnas.0404432101)

    • Search Google Scholar
    • Export Citation
  • CarmellMAHannonGJ2004RNase III enzymes and the initiation of gene silencing. Nature Structural & Molecular Biology11214218. (doi:10.1038/nsmb729)

    • Search Google Scholar
    • Export Citation
  • CarringtonJCAmbrosV2003Role of microRNAs in plant and animal development. Science301336338. (doi:10.1126/science.1085242)

  • ChenCZLiLLodishHFBartelDP2004MicroRNAs modulate hematopoietic lineage differentiation. Science3038386. (doi:10.1126/science.1091903)

  • CostineanSZanesiNPekarskyYTiliEVoliniaSHeeremaNCroceCM2006Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. PNAS10370247029. (doi:10.1073/pnas.0602266103)

    • Search Google Scholar
    • Export Citation
  • DaiLTsai-MorrisCHSatoHVillarJKangJHZhangJDufauML2011Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development. Journal of Biological Chemistry2864430644318. (doi:10.1074/jbc.M111.282756)

    • Search Google Scholar
    • Export Citation
  • DamestoyAPerrardMHVigierMSabidoODurandP2005Transforming growth factor β-1 decreases the yield of the second meiotic division of rat pachytene spermatocytes in vitro. Reproductive Biology and Endocrinology322. (doi:10.1186/1477-7827-3-22)

    • Search Google Scholar
    • Export Citation
  • DovereLFeraSGrassoMLambertiDGargioliCMuciacciaBLustriAMStefaniniMViciniE2013The niche-derived glial cell line-derived neurotrophic factor (GDNF) induces migration of mouse spermatogonial stem/progenitor cells. PLoS ONE8e59431. (doi:10.1371/journal.pone.0059431)

    • Search Google Scholar
    • Export Citation
  • van den DriescheSSharpeRMSaundersPTMitchellRT2014Regulation of the germ stem cell niche as the foundation for adult spermatogenesis: a role for miRNAs?Seminars in Cell & Developmental Biology297683. (doi:10.1016/j.semcdb.2014.04.006)

    • Search Google Scholar
    • Export Citation
  • DycePWTomsDLiJ2010Stem cells and germ cells: microRNA and gene expression signatures. Histology and Histopathology25505513.

  • DymM1994Spermatogonial stem cells of the testis. PNAS911128711289. (doi:10.1073/pnas.91.24.11287)

  • Esquela-KerscherASlackFJ2006Oncomirs – microRNAs with a role in cancer. Nature Reviews. Cancer6259269. (doi:10.1038/nrc1840)

  • FokKLChenHRuanYCChanHC2011Novel regulators of spermatogenesis. Seminars in Cell & Developmental Biology293142. (doi:10.1016/j.semcdb.2014.02.008)

    • Search Google Scholar
    • Export Citation
  • FoshayKMGallicanoGI2009miR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation. Developmental Biology326431443. (doi:10.1016/j.ydbio.2008.11.016)

    • Search Google Scholar
    • Export Citation
  • GillisAJStoopHJHersmusROosterhuisJWSunYChenCGuentherSSherlockJVeltmanIBaetenJ2007High-throughput microRNAome analysis in human germ cell tumours. Journal of Pathology213319328. (doi:10.1002/path.2230)

    • Search Google Scholar
    • Export Citation
  • GoudarziAShiotaHRousseauxSKhochbinS2014Genome-scale acetylation-dependent histone eviction during spermatogenesis. Journal of Molecular Biology42633423349. (doi:10.1016/j.jmb.2014.02.023)

    • Search Google Scholar
    • Export Citation
  • GregoryRIShiekhattarR2005MicroRNA biogenesis and cancer. Cancer Research6535093512. (doi:10.1158/0008-5472.CAN-05-0298)

  • GrimaldiPDiGDGeremiaR2013The endocannabinoid system and spermatogenesis. Frontiers in Endocrinology4192. (doi:10.3389/fendo.2013.00192)

  • GuSCheungHHLeeTLLuGPoonWSChanWY2013Molecular mechanisms of regulation and action of microRNA-199a in testicular germ cell tumor and glioblastomas. PLoS ONE8e83980. (doi:10.1371/journal.pone.0083980)

    • Search Google Scholar
    • Export Citation
  • GuoYHaiYGongYLiZHeZ2014Characterization, isolation, and culture of mouse and human spermatogonial stem cells. Journal of Cellular Physiology229407413. (doi:10.1002/jcp.24471)

    • Search Google Scholar
    • Export Citation
  • HavensMAReichAADuelliDMHastingsML2012Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Research4046264640. (doi:10.1093/nar/gks026)

    • Search Google Scholar
    • Export Citation
  • HayashiKde Sousa LopesSMCKanedaMTangFHajkovaPLaoKO'CarrollDDasPPTarakhovskyAMiskaEA2008MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS ONE3e1738. (doi:10.1371/journal.pone.0001738)

    • Search Google Scholar
    • Export Citation
  • HeZKokkinakiMPantDGallicanoGIDymM2009Small RNA molecules in the regulation of spermatogenesis. Reproduction137901911. (doi:10.1530/REP-08-0494)

    • Search Google Scholar
    • Export Citation
  • HeZJiangJKokkinakiMTangLZengWGallicanoIDobrinskiIDymM2013MiRNA-20 and mirna-106a regulate spermatogonial stem cell renewal at the post-transcriptional level via targeting STAT3 and Ccnd1. Stem Cells3122052217. (doi:10.1002/stem.1474)

    • Search Google Scholar
    • Export Citation
  • HessRACookePSHofmannMCMurphyKM2006Mechanistic insights into the regulation of the spermatogonial stem cell niche. Cell Cycle511641170. (doi:10.4161/cc.5.11.2775)

    • Search Google Scholar
    • Export Citation
  • HudsonJDuncavageETamburrinoASalernoPXiLRaffeldMMoleyJChernockRD2013Overexpression of miR-10a and miR-375 and downregulation of YAP1 in medullary thyroid carcinoma. Experimental and Molecular Pathology956267. (doi:10.1016/j.yexmp.2013.05.001)

    • Search Google Scholar
    • Export Citation
  • HuszarJMPayneCJ2013MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice. Biology of Reproduction8815. (doi:10.1095/biolreprod.112.103747)

    • Search Google Scholar
    • Export Citation
  • HutvagnerGMcLachlanJPasquinelliAEBalintETuschlTZamorePD2001A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science293834838. (doi:10.1126/science.1062961)

    • Search Google Scholar
    • Export Citation
  • HwangHWMendellJT2007MicroRNAs in cell proliferation, cell death, and tumorigenesis. British Journal of Cancer96 (Suppl 2) R40R44.

  • ItoTYagiSYamakuchiM2010MicroRNA-34a regulation of endothelial senescence. Biochemical and Biophysical Research Communications398735740. (doi:10.1016/j.bbrc.2010.07.012)

    • Search Google Scholar
    • Export Citation
  • JiZLuRMouLDuanYGZhangQWangYGuiYCaiZ2014Expressions of miR-15a and its target gene HSPA1B in the spermatozoa of patients with varicocele. Reproduction147693701. (doi:10.1530/REP-13-0656)

    • Search Google Scholar
    • Export Citation
  • KanoMSekiNKikkawaNFujimuraLHoshinoIAkutsuYChiyomaruTEnokidaHNakagawaMMatsubaraH2010miR-145, miR-133a and miR-133b: tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. International Journal of Cancer12728042814. (doi:10.1002/ijc.25284)

    • Search Google Scholar
    • Export Citation
  • KimVNHanJSiomiMC2009Biogenesis of small RNAs in animals. Nature Reviews. Molecular Cell Biology10126139. (doi:10.1038/nrm2632)

  • KorhonenHMMeikarOYadavRPPapaioannouMDRomeroYDaRMHerreraPLToppariJNefSKotajaN2011Dicer is required for haploid male germ cell differentiation in mice. PLoS ONE6e24821. (doi:10.1371/journal.pone.0024821)

    • Search Google Scholar
    • Export Citation
  • KosterevaNHofmannMC2008Regulation of the spermatogonial stem cell niche. Reproduction in Domestic Animals43 (Suppl 2) 386392. (doi:10.1111/j.1439-0531.2008.01189.x)

    • Search Google Scholar
    • Export Citation
  • KotajaN2014MicroRNAs and spermatogenesis. Fertility and Sterility10115521562. (doi:10.1016/j.fertnstert.2014.04.025)

  • LaiEC2002Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nature Genetics30363364. (doi:10.1038/ng865)

    • Search Google Scholar
    • Export Citation
  • LeeRCFeinbaumRLAmbrosV1993The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75843854. (doi:10.1016/0092-8674(93)90529-Y)

    • Search Google Scholar
    • Export Citation
  • LeeYSKimHKChungSKimKSDuttaA2005Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. Journal of Biological Chemistry2801663516641. (doi:10.1074/jbc.M412247200)

    • Search Google Scholar
    • Export Citation
  • LiCFengYCoukosGZhangL2009Therapeutic microRNA strategies in human cancer. AAPS Journal11747757. (doi:10.1208/s12248-009-9145-9)

  • LiMYuMLiuCZhuHHeXPengSHuaJ2013miR-34c works downstream of p53 leading to dairy goat male germline stem-cell (mGSCs) apoptosis. Cell Proliferation46223231. (doi:10.1111/cpr.12013)

    • Search Google Scholar
    • Export Citation
  • LianJZhangXTianHLiangNWangYLiangCLiXSunF2009Altered microRNA expression in patients with non-obstructive azoospermia. Reproductive Biology and Endocrinology713. (doi:10.1186/1477-7827-7-13)

    • Search Google Scholar
    • Export Citation
  • LiangXZhouDWeiCLuoHLiuJFuRCuiS2012MicroRNA-34c enhances murine male germ cell apoptosis through targeting ATF1. PLoS ONE7e33861. (doi:10.1371/journal.pone.0033861)

    • Search Google Scholar
    • Export Citation
  • LiuJCarmellMARivasFVMarsdenCGThomsonJMSongJJHammondSMJoshua-TorLHannonGJ2004Argonaute2 is the catalytic engine of mammalian RNAi. Science30514371441. (doi:10.1126/science.1102513)

    • Search Google Scholar
    • Export Citation
  • LiuXChenXYuXTaoYBodeAMDongZCaoY2013aRegulation of microRNAs by epigenetics and their interplay involved in cancer. Journal of Experimental & Clinical Cancer Research3296. (doi:10.1186/1756-9966-32-96)

    • Search Google Scholar
    • Export Citation
  • LiuTHuangYLiuJZhaoYJiangLHuangQChengWGuoL2013bMicroRNA-122 influences the development of sperm abnormalities from human induced pluripotent stem cells by regulating TNP2 expression. Stem Cells and Development2218391850. (doi:10.1089/scd.2012.0653)

    • Search Google Scholar
    • Export Citation
  • LooijengaLHHersmusRGillisAJPfundtRStoopHJvan GurpRJVeltmanJBeverlooHBvan DrunenEvan KesselAG2006Genomic and expression profiling of human spermatocytic seminomas: primary spermatocyte as tumorigenic precursor and DMRT1 as candidate chromosome 9 gene. Cancer Research66290302. (doi:10.1158/0008-5472.CAN-05-2936)

    • Search Google Scholar
    • Export Citation
  • LooijengaLHStoopHBiermannK2014Testicular cancer: biology and biomarkers. Virchows Archiv464301313. (doi:10.1007/s00428-013-1522-1)

  • LuLKatsarosDde la LongraisIASochircaOYuH2007Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Research671011710122. (doi:10.1158/0008-5472.CAN-07-2544)

    • Search Google Scholar
    • Export Citation
  • LuoLYeLLiuGShaoGZhengRRenZZuoBXuDLeiMJiangS2010Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS ONE5e11744. (doi:10.1371/journal.pone.0011744)

    • Search Google Scholar
    • Export Citation
  • MaatoukDMLovelandKLMcManusMTMooreKHarfeBD2008Dicer1 is required for differentiation of the mouse male germline. Biology of Reproduction79696703. (doi:10.1095/biolreprod.108.067827)

    • Search Google Scholar
    • Export Citation
  • ManikandanJAarthiJJKumarSDPushparajPN2008Oncomirs: the potential role of non-coding microRNAs in understanding cancer. Bioinformation2330334. (doi:10.6026/97320630002330)

    • Search Google Scholar
    • Export Citation
  • MarconEBabakTChuaGHughesTMoensPB2008miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Research16243260. (doi:10.1007/s10577-007-1190-6)

    • Search Google Scholar
    • Export Citation
  • MarczyloELAmoakoAAKonjeJCGantTWMarczyloTH2012Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern. Epigenetics7432439. (doi:10.4161/epi.19794)

    • Search Google Scholar
    • Export Citation
  • MattieMDBenzCCBowersJSensingerKWongLScottGKFedeleVGinzingerDGettsRHaqqC2006Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Molecular Cancer524. (doi:10.1186/1476-4598-5-24)

    • Search Google Scholar
    • Export Citation
  • McIverSCRomanSDNixonBMcLaughlinEA2012amiRNA and mammalian male germ cells. Human Reproduction Update184459. (doi:10.1093/humupd/dmr041)

    • Search Google Scholar
    • Export Citation
  • McIverSCStangerSJSantarelliDMRomanSDNixonBMcLaughlinEA2012bA unique combination of male germ cell miRNAs coordinates gonocyte differentiation. PLoS ONE7e35553. (doi:10.1371/journal.pone.0035553)

    • Search Google Scholar
    • Export Citation
  • MiyakiSSatoTInoueAOtsukiSItoYYokoyamaSKatoYTakemotoFNakasaTYamashitaS2010MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes and Development2411731185. (doi:10.1101/gad.1915510)

    • Search Google Scholar
    • Export Citation
  • MoritokiYHayashiYMizunoKKamisawaHNishioHKurokawaSUgawaSKojimaYKohriK2014Expression profiling of microRNA in cryptorchid testes: miR-135a contributes to the maintenance of spermatogonial stem cells by regulating FoxO1. Journal of Urology19111741180. (doi:10.1016/j.juro.2013.10.137)

    • Search Google Scholar
    • Export Citation
  • MurakamiYYasudaTSaigoKUrashimaTToyodaHOkanoueTShimotohnoK2006Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene2525372545. (doi:10.1038/sj.onc.1209283)

    • Search Google Scholar
    • Export Citation
  • MurrayMJSainiHKvan DongenSPalmerRDMuralidharBPettMRPiipariMThorntonCMNicholsonJCEnrightAJ2010The two most common histological subtypes of malignant germ cell tumour are distinguished by global microRNA profiles, associated with differential transcription factor expression. Molecular Cancer9290. (doi:10.1186/1476-4598-9-290)

    • Search Google Scholar
    • Export Citation
  • Nana-SinkamSPChoiAM2014Epigenetics and the unfolded protein response in the lung: emerging role for microRNAs. American Journal of Respiratory and Critical Care Medicine189239240. (doi:10.1164/rccm.201312-2230ED)

    • Search Google Scholar
    • Export Citation
  • NichollsPKHarrisonCAWaltonKLMcLachlanRIO'DonnellLStantonPG2011Hormonal regulation of sertoli cell micro-RNAs at spermiation. Endocrinology15216701683. (doi:10.1210/en.2010-1341)

    • Search Google Scholar
    • Export Citation
  • NicolasFEPaisHSchwachFLindowMKauppinenSMoultonVDalmayT2008Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140. RNA1425132520. (doi:10.1261/rna.1221108)

    • Search Google Scholar
    • Export Citation
  • NiuZGoodyearSMRaoSWuXTobiasJWAvarbockMRBrinsterRL2011MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. PNAS1081274012745. (doi:10.1073/pnas.1109987108)

    • Search Google Scholar
    • Export Citation
  • OkamuraKHagenJWDuanHTylerDMLaiEC2007The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell13089100. (doi:10.1016/j.cell.2007.06.028)

    • Search Google Scholar
    • Export Citation
  • OosterhuisJWLooijengaLH2005Testicular germ-cell tumours in a broader perspective. Nature Reviews. Cancer5210222. (doi:10.1038/nrc1568)

    • Search Google Scholar
    • Export Citation
  • OstermeierGCGoodrichRJMoldenhauerJSDiamondMPKrawetzSA2005A suite of novel human spermatozoal RNAs. Journal of Andrology267074.

  • PalmerRDMurrayMJSainiHKvan DongenSAbreu-GoodgerCMuralidharBPettMRThorntonCMNicholsonJCEnrightAJ2010Malignant germ cell tumors display common microRNA profiles resulting in global changes in expression of messenger RNA targets. Cancer Research7029112923. (doi:10.1158/0008-5472.CAN-09-3301)

    • Search Google Scholar
    • Export Citation
  • PanneerdossSChangYFBuddavarapuKCChenHIShettyGWangHChenYKumarTRRaoMK2012Androgen-responsive microRNAs in mouse Sertoli cells. PLoS ONE7e41146. (doi:10.1371/journal.pone.0041146)

    • Search Google Scholar
    • Export Citation
  • PapaioannouMDLagarrigueMVejnarCERollandADKuhneFAubryFSchaadOFortADescombesPNeerman-ArbezM2011Loss of Dicer in Sertoli cells has a major impact on the testicular proteome of mice. Molecular & Cellular Proteomics10M900587MCP200. (doi:10.1074/mcp.M900587-MCP200)

    • Search Google Scholar
    • Export Citation
  • PeterME2010Targeting of mRNAs by multiple miRNAs: the next step. Oncogene2921612164. (doi:10.1038/onc.2010.59)

  • PortMGlaesenerSRufCRieckeABokemeyerCMeinekeVHoneckerFAbendM2011Micro-RNA expression in cisplatin resistant germ cell tumor cell lines. Molecular Cancer1052. (doi:10.1186/1476-4598-10-52)

    • Search Google Scholar
    • Export Citation
  • QiuTZhouXWangJDuYXuJHuangZZhuWShuYLiuP2014MiR-145, miR-133a and miR-133b inhibit proliferation, migration, invasion and cell cycle progression via targeting transcription factor Sp1 in gastric cancer. FEBS Letters58811681177. (doi:10.1016/j.febslet.2014.02.054)

    • Search Google Scholar
    • Export Citation
  • RadiskyDC2011miR-200c at the nexus of epithelial–mesenchymal transition, resistance to apoptosis, and the breast cancer stem cell phenotype. Breast Cancer Research13110. (doi:10.1186/bcr2885)

    • Search Google Scholar
    • Export Citation
  • RoSParkCSandersKMMcCarreyJRYanW2007Cloning and expression profiling of testis-expressed microRNAs. Developmental Biology311592602. (doi:10.1016/j.ydbio.2007.09.009)

    • Search Google Scholar
    • Export Citation
  • RomeroYMeikarOPapaioannouMDConneBGreyCWeierMPralongFDe MassyBKaessmannHVassalliJD2011Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS ONE6e25241. (doi:10.1371/journal.pone.0025241)

    • Search Google Scholar
    • Export Citation
  • RosaABrivanlouAH2011A regulatory circuitry comprised of miR-302 and the transcription factors OCT4 and NR2F2 regulates human embryonic stem cell differentiation. EMBO Journal30237248. (doi:10.1038/emboj.2010.319)

    • Search Google Scholar
    • Export Citation
  • SatoFTsuchiyaSMeltzerSJShimizuK2011MicroRNAs and epigenetics. FEBS Journal27815981609. (doi:10.1111/j.1742-4658.2011.08089.x)

  • SilvanUDiez-TorreAMorenoPArluzeaJAndradeRSilioMArechagaJ2013The spermatogonial stem cell niche in testicular germ cell tumors. International Journal of Developmental Biology57185195. (doi:10.1387/ijdb.130068ja)

    • Search Google Scholar
    • Export Citation
  • SinghSLiSS2012Epigenetic effects of environmental chemicals bisphenol A and phthalates. International Journal of Molecular Sciences131014310153. (doi:10.3390/ijms130810143)

    • Search Google Scholar
    • Export Citation
  • SmoragLZhengYNolteJZechnerUEngelWPantakaniDV2012MicroRNA signature in various cell types of mouse spermatogenesis: evidence for stage-specifically expressed miRNA-221, -203 and -34b-5p mediated spermatogenesis regulation. Biology of the Cell104677692. (doi:10.1111/boc.201200014)

    • Search Google Scholar
    • Export Citation
  • TanakaKKondoKKitajimaKMuraokaMNozawaAHaraT2013Tumor-suppressive function of protein-tyrosine phosphatase non-receptor type 23 in testicular germ cell tumors is lost upon overexpression of miR142-3p microRNA. Journal of Biological Chemistry2882399023999. (doi:10.1074/jbc.M113.478891)

    • Search Google Scholar
    • Export Citation
  • TangFKanedaMO'CarrollDHajkovaPBartonSCSunYALeeCTarakhovskyALaoKSuraniMA2007Maternal microRNAs are essential for mouse zygotic development. Genes and Development21644648. (doi:10.1101/gad.418707)

    • Search Google Scholar
    • Export Citation
  • TomeMLopez-RomeroPAlboCSepulvedaJCFernandez-GutierrezBDopazoABernadAGonzalezMA2011miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death and Differentiation18985995. (doi:10.1038/cdd.2010.167)

    • Search Google Scholar
    • Export Citation
  • TongMHMitchellDAMcGowanSDEvanoffRGriswoldMD2012Two miRNA clusters, Mir-17–92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biology of Reproduction8672. (doi:10.1095/biolreprod.111.096313)

    • Search Google Scholar
    • Export Citation
  • ToyotaMSuzukiHSasakiYMaruyamaRImaiKShinomuraYTokinoT2008Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Research6841234132. (doi:10.1158/0008-5472.CAN-08-0325)

    • Search Google Scholar
    • Export Citation
  • UdaliSGuariniPMoruzziSChoiSWFrisoS2013Cardiovascular epigenetics: from DNA methylation to microRNAs. Molecular Aspects of Medicine34883901. (doi:10.1016/j.mam.2012.08.001)

    • Search Google Scholar
    • Export Citation
  • VentelaSMakelaJAKulmalaJWestermarckJToppariJ2012Identification and regulation of a stage-specific stem cell niche enriched by Nanog-positive spermatogonial stem cells in the mouse testis. Stem Cells3010081020. (doi:10.1002/stem.1077)

    • Search Google Scholar
    • Export Citation
  • VogtMMundingJGrunerMLiffersSTVerdoodtBHaukJSteinstraesserLTannapfelAHermekingH2011Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Archiv458313322. (doi:10.1007/s00428-010-1030-5)

    • Search Google Scholar
    • Export Citation
  • VoliniaSCalinGALiuCGAmbsSCimminoAPetroccaFVisoneRIorioMRoldoCFerracinM2006A microRNA expression signature of human solid tumors defines cancer gene targets. PNAS10322572261. (doi:10.1073/pnas.0510565103)

    • Search Google Scholar
    • Export Citation
  • VoorhoevePMleSCSchrierMGillisAJStoopHNagelRLiuYPvan DuijseJDrostJGriekspoorA2006A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell12411691181. (doi:10.1016/j.cell.2006.02.037)

    • Search Google Scholar
    • Export Citation
  • VoorhoevePMleSCSchrierMGillisAJStoopHNagelRLiuYPvan DuijseJDrostJGriekspoorA2007A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Advances in Experimental Medicine and Biology6041746.

    • Search Google Scholar
    • Export Citation
  • WangXWangX2006Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Research3416461652. (doi:10.1093/nar/gkl068)

    • Search Google Scholar
    • Export Citation
  • WangFYuJYangGHWangXSZhangJW2011Regulation of erythroid differentiation by miR-376a and its targets. Cell Research2111961209. (doi:10.1038/cr.2011.79)

    • Search Google Scholar
    • Export Citation
  • WightmanBHaIRuvkunG1993Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75855862. (doi:10.1016/0092-8674(93)90530-4)

    • Search Google Scholar
    • Export Citation
  • WuJBaoJWangLHuYXuC2011MicroRNA-184 downregulates nuclear receptor corepressor 2 in mouse spermatogenesis. BMC Developmental Biology1164. (doi:10.1186/1471-213X-11-64)

    • Search Google Scholar
    • Export Citation
  • WuQSongROrtogeroNZhengHEvanoffRSmallCLGriswoldMDNamekawaSHRoyoHTurnerJM2012The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. Journal of Biological Chemistry2872517325190. (doi:10.1074/jbc.M112.362053)

    • Search Google Scholar
    • Export Citation
  • WuJBaoJKimMYuanSTangCZhengHMastickGSXuCYanW2014aTwo miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. PNAS111E2851E2857. (doi:10.1073/pnas.1407777111)

    • Search Google Scholar
    • Export Citation
  • WuJZhuHSongWLiMLiuCLiNTangFMuHLiaoMLiX2014bIdentification of conservative microRNAs in Saanen dairy goat testis through deep sequencing. Reproduction in Domestic Animals493240. (doi:10.1111/rda.12217)

    • Search Google Scholar
    • Export Citation
  • XuPVernooySYGuoMHayBA2003The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Current Biology13790795. (doi:10.1016/S0960-9822(03)00250-1)

    • Search Google Scholar
    • Export Citation
  • YanNLuYSunHTaoDZhangSLiuWMaY2007A microarray for microRNA profiling in mouse testis tissues. Reproduction1347379. (doi:10.1530/REP-07-0056)

    • Search Google Scholar
    • Export Citation
  • YanNLuYSunHQiuWTaoDLiuYChenHYangYZhangSLiX2009Microarray profiling of microRNAs expressed in testis tissues of developing primates. Journal of Assisted Reproduction and Genetics26179186. (doi:10.1007/s10815-009-9305-y)

    • Search Google Scholar
    • Export Citation
  • YanaiharaNCaplenNBowmanESeikeMKumamotoKYiMStephensRMOkamotoAYokotaJTanakaT2006Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell9189198. (doi:10.1016/j.ccr.2006.01.025)

    • Search Google Scholar
    • Export Citation
  • YangQHuaJWangLXuBZhangHYeNZhangZYuDCookeHJZhangY2013aMicroRNA and piRNA profiles in normal human testis detected by next generation sequencing. PLoS ONE8e66809. (doi:10.1371/journal.pone.0066809)

    • Search Google Scholar
    • Export Citation
  • YangQERacicotKEKaucherAVOatleyMJOatleyJM2013bMicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells. Development140280290. (doi:10.1242/dev.087403)

    • Search Google Scholar
    • Export Citation
  • YiRPoyMNStoffelMFuchsE2008A skin microRNA promotes differentiation by repressing ’stemness’. Nature452225229. (doi:10.1038/nature06642)

    • Search Google Scholar
    • Export Citation
  • YuZHechtNB2008The DNA/RNA-binding protein, translin, binds microRNA122a and increases its in vivo stability. Journal of Andrology29572579. (doi:10.2164/jandrol.108.005090)

    • Search Google Scholar
    • Export Citation
  • YuZRaabeTHechtNB2005MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biology of Reproduction73427433. (doi:10.1095/biolreprod.105.040998)

    • Search Google Scholar
    • Export Citation
  • YuMMuHNiuZChuZZhuHHuaJ2014miR-34c enhances mouse spermatogonial stem cells differentiation by targeting Nanos2. Journal of Cellular Biochemistry115232242. (doi:10.1002/jcb.24655)

    • Search Google Scholar
    • Export Citation
  • ZhangSYuMLiuCWangLHuYBaiYHuaJ2012MIR-34c regulates mouse embryonic stem cells differentiation into male germ-like cells through RARg. Cell Biochemistry and Function30623632. (doi:10.1002/cbf.2922)

    • Search Google Scholar
    • Export Citation
  • ZhengJXueHWangTJiangYLiuBLiJLiuYWangWZhangBSunM2011miR-21 downregulates the tumor suppressor P12 CDK2AP1 and stimulates cell proliferation and invasion. Journal of Cellular Biochemistry112872880. (doi:10.1002/jcb.22995)

    • Search Google Scholar
    • Export Citation
  • ZhongXLiNLiangSHuangQCoukosGZhangL2010Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. Journal of Biological Chemistry2854196141971. (doi:10.1074/jbc.M110.169607)

    • Search Google Scholar
    • Export Citation
  • ZovoilisANolteJDrusenheimerNZechnerUHadaHGuanKHasenfussGNayerniaKEngelW2008Multipotent adult germline stem cells and embryonic stem cells have similar microRNA profiles. Molecular Human Reproduction14521529. (doi:10.1093/molehr/gan044)

    • Search Google Scholar
    • Export Citation
  • ZovoilisAPantaziASmoragLOpitzLRiesterGSWolfMZechnerUHolubowskaAStewartCLEngelW2010Embryonic stem cell-related miRNAs are involved in differentiation of pluripotent cells originating from the germ line. Molecular Human Reproduction16793803. (doi:10.1093/molehr/gaq053)

    • Search Google Scholar
    • Export Citation

If the inline PDF is not rendering correctly, you can download the PDF file here.

 

    Society for Reproduction and Fertility

Related Articles

Article Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1056 1056 36
PDF Downloads 273 273 21

Altmetrics

Figures

References

  • Abu-HalimaMHammadehMSchmittJLeidingerPKellerAMeeseEBackesC2013Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertility and Sterility9912491255.e16. (doi:10.1016/j.fertnstert.2012.11.054)

    • Search Google Scholar
    • Export Citation
  • Abu-HalimaMBackesCLeidingerPKellerALubbadAMHammadehMMeeseE2014MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns. Fertility and Sterility1017886.e2. (doi:10.1016/j.fertnstert.2013.09.009)

    • Search Google Scholar
    • Export Citation
  • AmbrosV2003MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell113673676. (doi:10.1016/S0092-8674(03)00428-8)

    • Search Google Scholar
    • Export Citation
  • BabiarzJERubyJGWangYBartelDPBlellochR2008Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes and Development2227732785. (doi:10.1101/gad.1705308)

    • Search Google Scholar
    • Export Citation
  • BaoJLiDWangLWuJHuYWangZChenYCaoXJiangCYanW2012MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor-retinoblastoma protein (E2F-pRb) pathway. Journal of Biological Chemistry2872168621698. (doi:10.1074/jbc.M111.328054)

    • Search Google Scholar
    • Export Citation
  • BaradOMeiriEAvnielAAharonovRBarzilaiABentwichIEinavUGiladSHurbanPKarovY2004MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Research1424862494. (doi:10.1101/gr.2845604)

    • Search Google Scholar
    • Export Citation
  • BjorkJKSandqvistAElsingANKotajaNSistonenL2010miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development13731773184. (doi:10.1242/dev.050955)

    • Search Google Scholar
    • Export Citation
  • BlakajALinH2008Piecing together the mosaic of early mammalian development through microRNAs. Journal of Biological Chemistry28395059508. (doi:10.1074/jbc.R800002200)

    • Search Google Scholar
    • Export Citation
  • BouhallierFAllioliNLavialFChalmelFPerrardMHDurandPSamarutJPainBRouaultJP2010Role of miR-34c microRNA in the late steps of spermatogenesis. RNA16720731. (doi:10.1261/rna.1963810)

    • Search Google Scholar
    • Export Citation
  • BrenneckeJHipfnerDRStarkARussellRBCohenSM2003bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell1132536. (doi:10.1016/S0092-8674(03)00231-9)

    • Search Google Scholar
    • Export Citation
  • BucholdGMCoarfaCKimJMilosavljevicAGunaratnePHMatzukMM2010Analysis of microRNA expression in the prepubertal testis. PLoS ONE5e15317. (doi:10.1371/journal.pone.0015317)

    • Search Google Scholar
    • Export Citation
  • CalinGACroceCM2006MicroRNA-cancer connection: the beginning of a new tale. Cancer Research6673907394. (doi:10.1158/0008-5472.CAN-06-0800)

    • Search Google Scholar
    • Export Citation
  • CalinGADumitruCDShimizuMBichiRZupoSNochEAldlerHRattanSKeatingMRaiK2002Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. PNAS991552415529. (doi:10.1073/pnas.242606799)

    • Search Google Scholar
    • Export Citation
  • CalinGALiuCGSevignaniCFerracinMFelliNDumitruCDShimizuMCimminoAZupoSDonoM2004MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. PNAS1011175511760. (doi:10.1073/pnas.0404432101)

    • Search Google Scholar
    • Export Citation
  • CarmellMAHannonGJ2004RNase III enzymes and the initiation of gene silencing. Nature Structural & Molecular Biology11214218. (doi:10.1038/nsmb729)

    • Search Google Scholar
    • Export Citation
  • CarringtonJCAmbrosV2003Role of microRNAs in plant and animal development. Science301336338. (doi:10.1126/science.1085242)

  • ChenCZLiLLodishHFBartelDP2004MicroRNAs modulate hematopoietic lineage differentiation. Science3038386. (doi:10.1126/science.1091903)

  • CostineanSZanesiNPekarskyYTiliEVoliniaSHeeremaNCroceCM2006Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. PNAS10370247029. (doi:10.1073/pnas.0602266103)

    • Search Google Scholar
    • Export Citation
  • DaiLTsai-MorrisCHSatoHVillarJKangJHZhangJDufauML2011Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development. Journal of Biological Chemistry2864430644318. (doi:10.1074/jbc.M111.282756)

    • Search Google Scholar
    • Export Citation
  • DamestoyAPerrardMHVigierMSabidoODurandP2005Transforming growth factor β-1 decreases the yield of the second meiotic division of rat pachytene spermatocytes in vitro. Reproductive Biology and Endocrinology322. (doi:10.1186/1477-7827-3-22)

    • Search Google Scholar
    • Export Citation
  • DovereLFeraSGrassoMLambertiDGargioliCMuciacciaBLustriAMStefaniniMViciniE2013The niche-derived glial cell line-derived neurotrophic factor (GDNF) induces migration of mouse spermatogonial stem/progenitor cells. PLoS ONE8e59431. (doi:10.1371/journal.pone.0059431)

    • Search Google Scholar
    • Export Citation
  • van den DriescheSSharpeRMSaundersPTMitchellRT2014Regulation of the germ stem cell niche as the foundation for adult spermatogenesis: a role for miRNAs?Seminars in Cell & Developmental Biology297683. (doi:10.1016/j.semcdb.2014.04.006)

    • Search Google Scholar
    • Export Citation
  • DycePWTomsDLiJ2010Stem cells and germ cells: microRNA and gene expression signatures. Histology and Histopathology25505513.

  • DymM1994Spermatogonial stem cells of the testis. PNAS911128711289. (doi:10.1073/pnas.91.24.11287)

  • Esquela-KerscherASlackFJ2006Oncomirs – microRNAs with a role in cancer. Nature Reviews. Cancer6259269. (doi:10.1038/nrc1840)

  • FokKLChenHRuanYCChanHC2011Novel regulators of spermatogenesis. Seminars in Cell & Developmental Biology293142. (doi:10.1016/j.semcdb.2014.02.008)

    • Search Google Scholar
    • Export Citation
  • FoshayKMGallicanoGI2009miR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation. Developmental Biology326431443. (doi:10.1016/j.ydbio.2008.11.016)

    • Search Google Scholar
    • Export Citation
  • GillisAJStoopHJHersmusROosterhuisJWSunYChenCGuentherSSherlockJVeltmanIBaetenJ2007High-throughput microRNAome analysis in human germ cell tumours. Journal of Pathology213319328. (doi:10.1002/path.2230)

    • Search Google Scholar
    • Export Citation
  • GoudarziAShiotaHRousseauxSKhochbinS2014Genome-scale acetylation-dependent histone eviction during spermatogenesis. Journal of Molecular Biology42633423349. (doi:10.1016/j.jmb.2014.02.023)

    • Search Google Scholar
    • Export Citation
  • GregoryRIShiekhattarR2005MicroRNA biogenesis and cancer. Cancer Research6535093512. (doi:10.1158/0008-5472.CAN-05-0298)

  • GrimaldiPDiGDGeremiaR2013The endocannabinoid system and spermatogenesis. Frontiers in Endocrinology4192. (doi:10.3389/fendo.2013.00192)

  • GuSCheungHHLeeTLLuGPoonWSChanWY2013Molecular mechanisms of regulation and action of microRNA-199a in testicular germ cell tumor and glioblastomas. PLoS ONE8e83980. (doi:10.1371/journal.pone.0083980)

    • Search Google Scholar
    • Export Citation
  • GuoYHaiYGongYLiZHeZ2014Characterization, isolation, and culture of mouse and human spermatogonial stem cells. Journal of Cellular Physiology229407413. (doi:10.1002/jcp.24471)

    • Search Google Scholar
    • Export Citation
  • HavensMAReichAADuelliDMHastingsML2012Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Research4046264640. (doi:10.1093/nar/gks026)

    • Search Google Scholar
    • Export Citation
  • HayashiKde Sousa LopesSMCKanedaMTangFHajkovaPLaoKO'CarrollDDasPPTarakhovskyAMiskaEA2008MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS ONE3e1738. (doi:10.1371/journal.pone.0001738)

    • Search Google Scholar
    • Export Citation
  • HeZKokkinakiMPantDGallicanoGIDymM2009Small RNA molecules in the regulation of spermatogenesis. Reproduction137901911. (doi:10.1530/REP-08-0494)

    • Search Google Scholar
    • Export Citation
  • HeZJiangJKokkinakiMTangLZengWGallicanoIDobrinskiIDymM2013MiRNA-20 and mirna-106a regulate spermatogonial stem cell renewal at the post-transcriptional level via targeting STAT3 and Ccnd1. Stem Cells3122052217. (doi:10.1002/stem.1474)

    • Search Google Scholar
    • Export Citation
  • HessRACookePSHofmannMCMurphyKM2006Mechanistic insights into the regulation of the spermatogonial stem cell niche. Cell Cycle511641170. (doi:10.4161/cc.5.11.2775)

    • Search Google Scholar
    • Export Citation
  • HudsonJDuncavageETamburrinoASalernoPXiLRaffeldMMoleyJChernockRD2013Overexpression of miR-10a and miR-375 and downregulation of YAP1 in medullary thyroid carcinoma. Experimental and Molecular Pathology956267. (doi:10.1016/j.yexmp.2013.05.001)

    • Search Google Scholar
    • Export Citation
  • HuszarJMPayneCJ2013MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice. Biology of Reproduction8815. (doi:10.1095/biolreprod.112.103747)

    • Search Google Scholar
    • Export Citation
  • HutvagnerGMcLachlanJPasquinelliAEBalintETuschlTZamorePD2001A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science293834838. (doi:10.1126/science.1062961)

    • Search Google Scholar
    • Export Citation
  • HwangHWMendellJT2007MicroRNAs in cell proliferation, cell death, and tumorigenesis. British Journal of Cancer96 (Suppl 2) R40R44.

  • ItoTYagiSYamakuchiM2010MicroRNA-34a regulation of endothelial senescence. Biochemical and Biophysical Research Communications398735740. (doi:10.1016/j.bbrc.2010.07.012)

    • Search Google Scholar
    • Export Citation
  • JiZLuRMouLDuanYGZhangQWangYGuiYCaiZ2014Expressions of miR-15a and its target gene HSPA1B in the spermatozoa of patients with varicocele. Reproduction147693701. (doi:10.1530/REP-13-0656)

    • Search Google Scholar
    • Export Citation
  • KanoMSekiNKikkawaNFujimuraLHoshinoIAkutsuYChiyomaruTEnokidaHNakagawaMMatsubaraH2010miR-145, miR-133a and miR-133b: tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. International Journal of Cancer12728042814. (doi:10.1002/ijc.25284)

    • Search Google Scholar
    • Export Citation
  • KimVNHanJSiomiMC2009Biogenesis of small RNAs in animals. Nature Reviews. Molecular Cell Biology10126139. (doi:10.1038/nrm2632)

  • KorhonenHMMeikarOYadavRPPapaioannouMDRomeroYDaRMHerreraPLToppariJNefSKotajaN2011Dicer is required for haploid male germ cell differentiation in mice. PLoS ONE6e24821. (doi:10.1371/journal.pone.0024821)

    • Search Google Scholar
    • Export Citation
  • KosterevaNHofmannMC2008Regulation of the spermatogonial stem cell niche. Reproduction in Domestic Animals43 (Suppl 2) 386392. (doi:10.1111/j.1439-0531.2008.01189.x)

    • Search Google Scholar
    • Export Citation
  • KotajaN2014MicroRNAs and spermatogenesis. Fertility and Sterility10115521562. (doi:10.1016/j.fertnstert.2014.04.025)

  • LaiEC2002Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nature Genetics30363364. (doi:10.1038/ng865)

    • Search Google Scholar
    • Export Citation
  • LeeRCFeinbaumRLAmbrosV1993The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75843854. (doi:10.1016/0092-8674(93)90529-Y)

    • Search Google Scholar
    • Export Citation
  • LeeYSKimHKChungSKimKSDuttaA2005Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. Journal of Biological Chemistry2801663516641. (doi:10.1074/jbc.M412247200)

    • Search Google Scholar
    • Export Citation
  • LiCFengYCoukosGZhangL2009Therapeutic microRNA strategies in human cancer. AAPS Journal11747757. (doi:10.1208/s12248-009-9145-9)

  • LiMYuMLiuCZhuHHeXPengSHuaJ2013miR-34c works downstream of p53 leading to dairy goat male germline stem-cell (mGSCs) apoptosis. Cell Proliferation46223231. (doi:10.1111/cpr.12013)

    • Search Google Scholar
    • Export Citation
  • LianJZhangXTianHLiangNWangYLiangCLiXSunF2009Altered microRNA expression in patients with non-obstructive azoospermia. Reproductive Biology and Endocrinology713. (doi:10.1186/1477-7827-7-13)

    • Search Google Scholar
    • Export Citation
  • LiangXZhouDWeiCLuoHLiuJFuRCuiS2012MicroRNA-34c enhances murine male germ cell apoptosis through targeting ATF1. PLoS ONE7e33861. (doi:10.1371/journal.pone.0033861)

    • Search Google Scholar
    • Export Citation
  • LiuJCarmellMARivasFVMarsdenCGThomsonJMSongJJHammondSMJoshua-TorLHannonGJ2004Argonaute2 is the catalytic engine of mammalian RNAi. Science30514371441. (doi:10.1126/science.1102513)

    • Search Google Scholar
    • Export Citation
  • LiuXChenXYuXTaoYBodeAMDongZCaoY2013aRegulation of microRNAs by epigenetics and their interplay involved in cancer. Journal of Experimental & Clinical Cancer Research3296. (doi:10.1186/1756-9966-32-96)

    • Search Google Scholar
    • Export Citation
  • LiuTHuangYLiuJZhaoYJiangLHuangQChengWGuoL2013bMicroRNA-122 influences the development of sperm abnormalities from human induced pluripotent stem cells by regulating TNP2 expression. Stem Cells and Development2218391850. (doi:10.1089/scd.2012.0653)

    • Search Google Scholar
    • Export Citation
  • LooijengaLHHersmusRGillisAJPfundtRStoopHJvan GurpRJVeltmanJBeverlooHBvan DrunenEvan KesselAG2006Genomic and expression profiling of human spermatocytic seminomas: primary spermatocyte as tumorigenic precursor and DMRT1 as candidate chromosome 9 gene. Cancer Research66290302. (doi:10.1158/0008-5472.CAN-05-2936)

    • Search Google Scholar
    • Export Citation
  • LooijengaLHStoopHBiermannK2014Testicular cancer: biology and biomarkers. Virchows Archiv464301313. (doi:10.1007/s00428-013-1522-1)

  • LuLKatsarosDde la LongraisIASochircaOYuH2007Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Research671011710122. (doi:10.1158/0008-5472.CAN-07-2544)

    • Search Google Scholar
    • Export Citation
  • LuoLYeLLiuGShaoGZhengRRenZZuoBXuDLeiMJiangS2010Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS ONE5e11744. (doi:10.1371/journal.pone.0011744)

    • Search Google Scholar
    • Export Citation
  • MaatoukDMLovelandKLMcManusMTMooreKHarfeBD2008Dicer1 is required for differentiation of the mouse male germline. Biology of Reproduction79696703. (doi:10.1095/biolreprod.108.067827)

    • Search Google Scholar
    • Export Citation
  • ManikandanJAarthiJJKumarSDPushparajPN2008Oncomirs: the potential role of non-coding microRNAs in understanding cancer. Bioinformation2330334. (doi:10.6026/97320630002330)

    • Search Google Scholar
    • Export Citation
  • MarconEBabakTChuaGHughesTMoensPB2008miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Research16243260. (doi:10.1007/s10577-007-1190-6)

    • Search Google Scholar
    • Export Citation
  • MarczyloELAmoakoAAKonjeJCGantTWMarczyloTH2012Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern. Epigenetics7432439. (doi:10.4161/epi.19794)

    • Search Google Scholar
    • Export Citation
  • MattieMDBenzCCBowersJSensingerKWongLScottGKFedeleVGinzingerDGettsRHaqqC2006Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Molecular Cancer524. (doi:10.1186/1476-4598-5-24)

    • Search Google Scholar
    • Export Citation
  • McIverSCRomanSDNixonBMcLaughlinEA2012amiRNA and mammalian male germ cells. Human Reproduction Update184459. (doi:10.1093/humupd/dmr041)

    • Search Google Scholar
    • Export Citation
  • McIverSCStangerSJSantarelliDMRomanSDNixonBMcLaughlinEA2012bA unique combination of male germ cell miRNAs coordinates gonocyte differentiation. PLoS ONE7e35553. (doi:10.1371/journal.pone.0035553)

    • Search Google Scholar
    • Export Citation
  • MiyakiSSatoTInoueAOtsukiSItoYYokoyamaSKatoYTakemotoFNakasaTYamashitaS2010MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes and Development2411731185. (doi:10.1101/gad.1915510)

    • Search Google Scholar
    • Export Citation
  • MoritokiYHayashiYMizunoKKamisawaHNishioHKurokawaSUgawaSKojimaYKohriK2014Expression profiling of microRNA in cryptorchid testes: miR-135a contributes to the maintenance of spermatogonial stem cells by regulating FoxO1. Journal of Urology19111741180. (doi:10.1016/j.juro.2013.10.137)

    • Search Google Scholar
    • Export Citation
  • MurakamiYYasudaTSaigoKUrashimaTToyodaHOkanoueTShimotohnoK2006Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene2525372545. (doi:10.1038/sj.onc.1209283)

    • Search Google Scholar
    • Export Citation
  • MurrayMJSainiHKvan DongenSPalmerRDMuralidharBPettMRPiipariMThorntonCMNicholsonJCEnrightAJ2010The two most common histological subtypes of malignant germ cell tumour are distinguished by global microRNA profiles, associated with differential transcription factor expression. Molecular Cancer9290. (doi:10.1186/1476-4598-9-290)

    • Search Google Scholar
    • Export Citation
  • Nana-SinkamSPChoiAM2014Epigenetics and the unfolded protein response in the lung: emerging role for microRNAs. American Journal of Respiratory and Critical Care Medicine189239240. (doi:10.1164/rccm.201312-2230ED)

    • Search Google Scholar
    • Export Citation
  • NichollsPKHarrisonCAWaltonKLMcLachlanRIO'DonnellLStantonPG2011Hormonal regulation of sertoli cell micro-RNAs at spermiation. Endocrinology15216701683. (doi:10.1210/en.2010-1341)

    • Search Google Scholar
    • Export Citation
  • NicolasFEPaisHSchwachFLindowMKauppinenSMoultonVDalmayT2008Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140. RNA1425132520. (doi:10.1261/rna.1221108)

    • Search Google Scholar
    • Export Citation
  • NiuZGoodyearSMRaoSWuXTobiasJWAvarbockMRBrinsterRL2011MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. PNAS1081274012745. (doi:10.1073/pnas.1109987108)

    • Search Google Scholar
    • Export Citation
  • OkamuraKHagenJWDuanHTylerDMLaiEC2007The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell13089100. (doi:10.1016/j.cell.2007.06.028)

    • Search Google Scholar
    • Export Citation
  • OosterhuisJWLooijengaLH2005Testicular germ-cell tumours in a broader perspective. Nature Reviews. Cancer5210222. (doi:10.1038/nrc1568)

    • Search Google Scholar
    • Export Citation
  • OstermeierGCGoodrichRJMoldenhauerJSDiamondMPKrawetzSA2005A suite of novel human spermatozoal RNAs. Journal of Andrology267074.

  • PalmerRDMurrayMJSainiHKvan DongenSAbreu-GoodgerCMuralidharBPettMRThorntonCMNicholsonJCEnrightAJ2010Malignant germ cell tumors display common microRNA profiles resulting in global changes in expression of messenger RNA targets. Cancer Research7029112923. (doi:10.1158/0008-5472.CAN-09-3301)

    • Search Google Scholar
    • Export Citation
  • PanneerdossSChangYFBuddavarapuKCChenHIShettyGWangHChenYKumarTRRaoMK2012Androgen-responsive microRNAs in mouse Sertoli cells. PLoS ONE7e41146. (doi:10.1371/journal.pone.0041146)

    • Search Google Scholar
    • Export Citation
  • PapaioannouMDLagarrigueMVejnarCERollandADKuhneFAubryFSchaadOFortADescombesPNeerman-ArbezM2011Loss of Dicer in Sertoli cells has a major impact on the testicular proteome of mice. Molecular & Cellular Proteomics10M900587MCP200. (doi:10.1074/mcp.M900587-MCP200)

    • Search Google Scholar
    • Export Citation
  • PeterME2010Targeting of mRNAs by multiple miRNAs: the next step. Oncogene2921612164. (doi:10.1038/onc.2010.59)

  • PortMGlaesenerSRufCRieckeABokemeyerCMeinekeVHoneckerFAbendM2011Micro-RNA expression in cisplatin resistant germ cell tumor cell lines. Molecular Cancer1052. (doi:10.1186/1476-4598-10-52)

    • Search Google Scholar
    • Export Citation
  • QiuTZhouXWangJDuYXuJHuangZZhuWShuYLiuP2014MiR-145, miR-133a and miR-133b inhibit proliferation, migration, invasion and cell cycle progression via targeting transcription factor Sp1 in gastric cancer. FEBS Letters58811681177. (doi:10.1016/j.febslet.2014.02.054)

    • Search Google Scholar
    • Export Citation
  • RadiskyDC2011miR-200c at the nexus of epithelial–mesenchymal transition, resistance to apoptosis, and the breast cancer stem cell phenotype. Breast Cancer Research13110. (doi:10.1186/bcr2885)

    • Search Google Scholar
    • Export Citation
  • RoSParkCSandersKMMcCarreyJRYanW2007Cloning and expression profiling of testis-expressed microRNAs. Developmental Biology311592602. (doi:10.1016/j.ydbio.2007.09.009)

    • Search Google Scholar
    • Export Citation
  • RomeroYMeikarOPapaioannouMDConneBGreyCWeierMPralongFDe MassyBKaessmannHVassalliJD2011Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS ONE6e25241. (doi:10.1371/journal.pone.0025241)

    • Search Google Scholar
    • Export Citation
  • RosaABrivanlouAH2011A regulatory circuitry comprised of miR-302 and the transcription factors OCT4 and NR2F2 regulates human embryonic stem cell differentiation. EMBO Journal30237248. (doi:10.1038/emboj.2010.319)

    • Search Google Scholar
    • Export Citation
  • SatoFTsuchiyaSMeltzerSJShimizuK2011MicroRNAs and epigenetics. FEBS Journal27815981609. (doi:10.1111/j.1742-4658.2011.08089.x)

  • SilvanUDiez-TorreAMorenoPArluzeaJAndradeRSilioMArechagaJ2013The spermatogonial stem cell niche in testicular germ cell tumors. International Journal of Developmental Biology57185195. (doi:10.1387/ijdb.130068ja)

    • Search Google Scholar
    • Export Citation
  • SinghSLiSS2012Epigenetic effects of environmental chemicals bisphenol A and phthalates. International Journal of Molecular Sciences131014310153. (doi:10.3390/ijms130810143)

    • Search Google Scholar
    • Export Citation
  • SmoragLZhengYNolteJZechnerUEngelWPantakaniDV2012MicroRNA signature in various cell types of mouse spermatogenesis: evidence for stage-specifically expressed miRNA-221, -203 and -34b-5p mediated spermatogenesis regulation. Biology of the Cell104677692. (doi:10.1111/boc.201200014)

    • Search Google Scholar
    • Export Citation
  • TanakaKKondoKKitajimaKMuraokaMNozawaAHaraT2013Tumor-suppressive function of protein-tyrosine phosphatase non-receptor type 23 in testicular germ cell tumors is lost upon overexpression of miR142-3p microRNA. Journal of Biological Chemistry2882399023999. (doi:10.1074/jbc.M113.478891)

    • Search Google Scholar
    • Export Citation
  • TangFKanedaMO'CarrollDHajkovaPBartonSCSunYALeeCTarakhovskyALaoKSuraniMA2007Maternal microRNAs are essential for mouse zygotic development. Genes and Development21644648. (doi:10.1101/gad.418707)

    • Search Google Scholar
    • Export Citation
  • TomeMLopez-RomeroPAlboCSepulvedaJCFernandez-GutierrezBDopazoABernadAGonzalezMA2011miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death and Differentiation18985995. (doi:10.1038/cdd.2010.167)

    • Search Google Scholar
    • Export Citation
  • TongMHMitchellDAMcGowanSDEvanoffRGriswoldMD2012Two miRNA clusters, Mir-17–92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biology of Reproduction8672. (doi:10.1095/biolreprod.111.096313)

    • Search Google Scholar
    • Export Citation
  • ToyotaMSuzukiHSasakiYMaruyamaRImaiKShinomuraYTokinoT2008Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Research6841234132. (doi:10.1158/0008-5472.CAN-08-0325)

    • Search Google Scholar
    • Export Citation
  • UdaliSGuariniPMoruzziSChoiSWFrisoS2013Cardiovascular epigenetics: from DNA methylation to microRNAs. Molecular Aspects of Medicine34883901. (doi:10.1016/j.mam.2012.08.001)

    • Search Google Scholar
    • Export Citation
  • VentelaSMakelaJAKulmalaJWestermarckJToppariJ2012Identification and regulation of a stage-specific stem cell niche enriched by Nanog-positive spermatogonial stem cells in the mouse testis. Stem Cells3010081020. (doi:10.1002/stem.1077)

    • Search Google Scholar
    • Export Citation
  • VogtMMundingJGrunerMLiffersSTVerdoodtBHaukJSteinstraesserLTannapfelAHermekingH2011Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Archiv458313322. (doi:10.1007/s00428-010-1030-5)

    • Search Google Scholar
    • Export Citation
  • VoliniaSCalinGALiuCGAmbsSCimminoAPetroccaFVisoneRIorioMRoldoCFerracinM2006A microRNA expression signature of human solid tumors defines cancer gene targets. PNAS10322572261. (doi:10.1073/pnas.0510565103)

    • Search Google Scholar
    • Export Citation
  • VoorhoevePMleSCSchrierMGillisAJStoopHNagelRLiuYPvan DuijseJDrostJGriekspoorA2006A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell12411691181. (doi:10.1016/j.cell.2006.02.037)

    • Search Google Scholar
    • Export Citation
  • VoorhoevePMleSCSchrierMGillisAJStoopHNagelRLiuYPvan DuijseJDrostJGriekspoorA2007A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Advances in Experimental Medicine and Biology6041746.

    • Search Google Scholar
    • Export Citation
  • WangXWangX2006Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Research3416461652. (doi:10.1093/nar/gkl068)

    • Search Google Scholar
    • Export Citation
  • WangFYuJYangGHWangXSZhangJW2011Regulation of erythroid differentiation by miR-376a and its targets. Cell Research2111961209. (doi:10.1038/cr.2011.79)

    • Search Google Scholar
    • Export Citation
  • WightmanBHaIRuvkunG1993Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75855862. (doi:10.1016/0092-8674(93)90530-4)

    • Search Google Scholar
    • Export Citation
  • WuJBaoJWangLHuYXuC2011MicroRNA-184 downregulates nuclear receptor corepressor 2 in mouse spermatogenesis. BMC Developmental Biology1164. (doi:10.1186/1471-213X-11-64)

    • Search Google Scholar
    • Export Citation
  • WuQSongROrtogeroNZhengHEvanoffRSmallCLGriswoldMDNamekawaSHRoyoHTurnerJM2012The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. Journal of Biological Chemistry