Our understanding of G protein-coupled receptor (GPCR) signalling has significantly evolved over the past decade, whereby signalling not only occurs from the plasma membrane but continues, or is reactivated, following internalisation in to endosomal compartments. The spatial organisation of GPCRs is thus essential to decode dynamic and complex signals and to activate specific downstream pathways that elicit the appropriate cellular response. For the gonadotrophin hormone receptors, membrane trafficking has been demonstrated to play a significant role in regulating its signal activity that in turn would impact at physiological and even pathophysiological level. Here, we will describe the developments in our understanding of the role of ‘location’ in gonadotrophin hormone receptor signalling, and how these receptors have unveiled fundamental mechanisms of signal regulation likely to be pertinent for other GPCRs. We will also discuss the potential impact of spatially controlled gonadotrophin hormone receptor signalling in both health and disease, and the therapeutic possibilities this new understanding of these receptors, so key in reproduction, offers.
Reproduction is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 34 | 15 | 2 |
PDF Downloads | 42 | 23 | 1 |
Abbe E. 1873 Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie 9 413–420. (https://doi.org/10.1007/BF02956173)
Aittomaki K, Lucena JL, Pakarinen P, Sistonen P, Tapanainen J, Gromoll J, Kaskikari R, Sankila EM, Lehvaslaiho H & Engel AR et al.1995 Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell 82 959–968. (https://doi.org/10.1016/0092-8674(95)90275-9)
Andric N & Ascoli M 2006 A delayed gonadotropin-dependent and growth factor-mediated activation of the extracellular signal-regulated kinase 1/2 cascade negatively regulates aromatase expression in granulosa cells. Molecular Endocrinology 20 3308–3320. (https://doi.org/10.1210/me.2006-0241)
Ascoli M, Fanelli F & Segaloff DL 2002 The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocrine Reviews 23 141–174. (https://doi.org/10.1210/edrv.23.2.0462)
Attramadal H, Arriza JL, Aoki C, Dawson TM, Codina J, Kwatra MM, Snyder SH, Caron MG & Lefkowitz RJ 1992 Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. Journal of Biological Chemistry 267 17882–17890.
Ayoub MA, Yvinec R, Jegot G, Dias JA, Poli SM, Poupon A, Crepieux P & Reiter E 2016 Profiling of FSHR negative allosteric modulators on LH/CGR reveals biased antagonism with implications in steroidogenesis. Molecular and Cellular Endocrinology 436 10–22. (https://doi.org/10.1016/j.mce.2016.07.013)
Bernardini L, Brush M, Rojas FJ & Balmaceda JP 2013 Failure of hCG/LH receptors to stimulate the transmembrane effector adenylyl cyclase in human endometrium. Advances in Bioscience and Biotechnology 4 949–957. (https://doi.org/10.4236/abb.2013.410126)
Bhaskaran RS, Min L, Krishnamurthy H & Ascoli M 2003 Studies with chimeras of the gonadotropin receptors reveal the importance of third intracellular loop threonines on the formation of the receptor/nonvisual arrestin complex. Biochemistry 42 13950–13959. (https://doi.org/10.1021/bbib34907w)
Bousfield GR, May JV, Davis JS, Dias JA & Kumar TR 2018 In vivo and in vitro impact of carbohydrate variation on human follicle-stimulating hormone function. Frontiers in Endocrinology 9 216. (https://doi.org/10.3389/fendo.2018.00216)
Breen SM, Andric N, Ping T, Xie F, Offermans S, Gossen JA & Ascoli M 2013 Ovulation involves the luteinizing hormone-dependent activation of G(q/11) in granulosa cells. Molecular Endocrinology 27 1483–1491. (https://doi.org/10.1210/me.2013-1130)
Butcher AJ, Prihandoko R, Kong KC, McWilliams P, Edwards JM, Bottrill A, Mistry S & Tobin AB 2011 Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code. Journal of Biological Chemistry 286 11506–11518. (https://doi.org/10.1074/jbc.M110.154526)
Cahill TJ 3rd, Thomsen AR, Tarrasch JT, Plouffe B, Nguyen AH, Yang F, Huang LY, Kahsai AW, Bassoni DL & Gavino BJ et al.2017 Distinct conformations of GPCR-beta-arrestin complexes mediate desensitization, signaling, and endocytosis. PNAS 114 2562–2567. (https://doi.org/10.1073/pnas.1701529114)
Cao TT, Deacon HW, Reczek D, Bretscher A & von Zastrow M 1999 A kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta2-adrenergic receptor. Nature 401 286–290. (https://doi.org/10.1038/45816)
Casarini L, Lispi M, Longobardi S, Milosa F, La Marca A, Tagliasacchi D, Pignatti E & Simoni M 2012 LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signalling. PLoS ONE 7 e46682. (https://doi.org/10.1371/journal.pone.0046682)
Casarini L, Moriondo V, Marino M, Adversi F, Capodanno F, Grisolia C, La Marca A, La Sala GB & Simoni M 2014 FSHR polymorphism p.N680S mediates different responses to FSH in vitro. Molecular and Cellular Endocrinology 393 83–91. (https://doi.org/10.1016/j.mce.2014.06.013)
Casarini L, Reiter E & Simoni M 2016 beta-arrestins regulate gonadotropin receptor-mediated cell proliferation and apoptosis by controlling different FSHR or LHCGR intracellular signaling in the hGL5 cell line. Molecular and Cellular Endocrinology 437 11–21. (https://doi.org/10.1016/j.mce.2016.08.005)
Casarini L, Santi D, Brigante G & Simoni M 2018 Two hormones for one receptor: evolution, biochemistry, actions and pathophysiology of LH and hCG. Endocrine Reviews 39 549–592. (https://doi.org/10.1210/er.2018-00065)
Casas-Gonzalez P, Scaglia HE, Perez-Solis MA, Durand G, Scaglia J, Zarinan T, Dias JA, Reiter E & Ulloa-Aguirre A 2012 Normal testicular function without detectable follicle-stimulating hormone. A novel mutation in the follicle-stimulating hormone receptor gene leading to apparent constitutive activity and impaired agonist-induced desensitization and internalization. Molecular and Cellular Endocrinology 364 71–82. (https://doi.org/10.1016/j.mce.2012.08.011)
Choi J & Smitz J 2014 Luteinizing hormone and human chorionic gonadotropin: origins of difference. Molecular and Cellular Endocrinology 383 203–213. (https://doi.org/10.1016/j.mce.2013.12.009)
Choi JH, Wong AS, Huang HF & Leung PC 2007 Gonadotropins and ovarian cancer. Endocrine Reviews 28 440–461. (https://doi.org/10.1210/er.2006-0036)
Chopineau M, Martinat N, Galet C, Guillou F & Combarnous Y 2001 beta-Subunit 102-104 residues are crucial to confer FSH activity to equine LH/CG but are not sufficient to confer FSH activity to human CG. Journal of Endocrinology 169 55–63. (https://doi.org/10.1677/joe.0.1690055)
Cohen L, Bousfield GR & Ben-Menahem D 2015 The recombinant equine LHbeta subunit combines divergent intracellular traits of human LHbeta and CGbeta subunits. Theriogenology 83 1469–1476. (https://doi.org/10.1016/j.theriogenology.2015.01.026)
Comim FV, Hardy K & Franks S 2013a Adiponectin and its receptors in the ovary: further evidence for a link between obesity and hyperandrogenism in polycystic ovary syndrome. PLoS ONE 8 e80416. (https://doi.org/10.1371/journal.pone.0080416)
Comim FV, Teerds K, Hardy K & Franks S 2013b Increased protein expression of LHCG receptor and 17alpha-hydroxylase/17-20-lyase in human polycystic ovaries. Human Reproduction 28 3086–3092. (https://doi.org/10.1093/humrep/det352)
Craft CM, Whitmore DH & Wiechmann AF 1994 Cone arrestin identified by targeting expression of a functional family. Journal of Biological Chemistry 269 4613–4619.
Crepieux P, Marion S, Martinat N, Fafeur V, Vern YL, Kerboeuf D, Guillou F & Reiter E 2001 The ERK-dependent signalling is stage-specifically modulated by FSH, during primary Sertoli cell maturation. Oncogene 20 4696–4709. (https://doi.org/10.1038/sj.onc.1204632)
DeFea KA, Zalevsky J, Thoma MS, Dery O, Mullins RD & Bunnett NW 2000 beta-Arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. Journal of Cell Biology 148 1267–1281. (https://doi.org/10.1083/jcb.148.6.1267)
Dias JA, Mahale SD, Nechamen CA, Davydenko O, Thomas RM & Ulloa-Aguirre A 2010 Emerging roles for the FSH receptor adapter protein APPL1 and overlap of a putative 14-3-3tau interaction domain with a canonical G-protein interaction site. Molecular and Cellular Endocrinology 329 17–25. (https://doi.org/10.1016/j.mce.2010.05.009)
Diggins NL & Webb DJ 2017 APPL1 is a multifunctional endosomal signaling adaptor protein. Biochemical Society Transactions 45 771–779. (https://doi.org/10.1042/BST20160191)
Egbert JR, Shuhaibar LC, Edmund AB, Van Helden DA, Robinson JW, Uliasz TF, Baena V, Geerts A, Wunder F & Potter LR et al.2014 Dephosphorylation and inactivation of NPR2 guanylyl cyclase in granulosa cells contributes to the LH-induced decrease in cGMP that causes resumption of meiosis in rat oocytes. Development 141 3594–3604. (https://doi.org/10.1242/dev.112219)
Eichel K, Jullie D & von Zastrow M 2016 beta-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nature Cell Biology 18 303–310. (https://doi.org/10.1038/ncb3307)
Eichel K, Jullie D, Barsi-Rhyne B, Latorraca NR, Masureel M, Sibarita JB, Dror RO & von Zastrow M 2018 Catalytic activation of beta-arrestin by GPCRs. Nature 557 381–386. (https://doi.org/10.1038/s41586-018-0079-1)
Feng X, Zhang M, Guan R & Segaloff DL 2013 Heterodimerization between the lutropin and follitropin receptors is associated with an attenuation of hormone-dependent signaling. Endocrinology 154 3925–3930. (https://doi.org/10.1210/en.2013-1407)
Galet C & Ascoli M 2008 Arrestin-3 is essential for the activation of Fyn by the luteinizing hormone receptor (LHR) in MA-10 cells. Cellular Signalling 20 1822–1829. (https://doi.org/10.1016/j.cellsig.2008.06.005)
Galet C, Min L, Narayanan R, Kishi M, Weigel NL & Ascoli M 2003 Identification of a transferable two-amino-acid motif (GT) present in the C-terminal tail of the human lutropin receptor that redirects internalized G protein-coupled receptors from a degradation to a recycling pathway. Molecular Endocrinology 17 411–422. (https://doi.org/10.1210/me.2002-0161)
Galet C, Hirakawa T & Ascoli M 2004 The postendocytotic trafficking of the human lutropin receptor is mediated by a transferable motif consisting of the C-terminal cysteine and an upstream leucine. Molecular Endocrinology 18 434–446. (https://doi.org/10.1210/me.2003-0293)
Ghinea N, Vu Hai MT, Groyer-Picard MT, Houllier A, Schoevaert D & Milgrom E 1992 Pathways of internalization of the hCG/LH receptor: immunoelectron microscopic studies in Leydig cells and transfected L-cells. Journal of Cell Biology 118 1347–1358. (https://doi.org/10.1083/jcb.118.6.1347)
Gilchrist RL, Ryu KS, Ji I & Ji TH 1996 The luteinizing hormone/chorionic gonadotropin receptor has distinct transmembrane conductors for cAMP and inositol phosphate signals. Journal of Biological Chemistry 271 19283–19287. (https://doi.org/10.1074/jbc.271.32.19283)
Green ED & Baenziger JU 1988 Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. II. Distributions of sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones. Journal of Biological Chemistry 263 36–44.
Grundmann M, Merten N, Malfacini D, Inoue A, Preis P, Simon K, Ruttiger N, Ziegler N, Benkel T & Schmitt NK et al.2018 Lack of beta-arrestin signaling in the absence of active G proteins. Nature Communications 9 341. (https://doi.org/10.1038/s41467-017-02661-3)
Gulappa T, Clouser CL & Menon KMJ 2011 The role of Rab5a GTPase in endocytosis and post-endocytic trafficking of the hCG-human luteinizing hormone receptor complex. Cellular and Molecular Life Sciences 68 2785–2795. (https://doi.org/10.1007/s00018-010-0594-1)
Hanyaloglu AC & von Zastrow M 2008 Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annual Review of Pharmacology and Toxicology 48 537–568. (https://doi.org/10.1146/annurev.pharmtox.48.113006.094830)
Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB & Gloriam DE 2017 Trends in GPCR drug discovery: new agents, targets and indications. Nature Reviews Drug Discovery 16 829–842. (https://doi.org/10.1038/nrd.2017.178)
He J, Bellini M, Inuzuka H, Xu J, Xiong Y, Yang X, Castleberry AM & Hall RA 2006 Proteomic analysis of beta1-adrenergic receptor interactions with PDZ scaffold proteins. Journal of Biological Chemistry 281 2820–2827. (https://doi.org/10.1074/jbc.M509503200)
Hirakawa T, Galet C, Kishi M & Ascoli M 2003 GIPC binds to the human lutropin receptor (hLHR) through an unusual PDZ domain binding motif, and it regulates the sorting of the internalized human choriogonadotropin and the density of cell surface hLHR. Journal of Biological Chemistry 278 49348–49357. (https://doi.org/10.1074/jbc.M306557200)
Hislop JN & von Zastrow M 2011 Role of ubiquitination in endocytic trafficking of G-protein-coupled receptors. Traffic 12 137–148. (https://doi.org/10.1111/j.1600-0854.2010.01121.x)
Hu LA, Chen W, Martin NP, Whalen EJ, Premont RT & Lefkowitz RJ 2003 GIPC interacts with the beta1-adrenergic receptor and regulates beta1-adrenergic receptor-mediated ERK activation. Journal of Biological Chemistry 278 26295–26301. (https://doi.org/10.1074/jbc.M212352200)
Huhtaniemi I 2006 Mutations along the pituitary-gonadal axis affecting sexual maturation: novel information from transgenic and knockout mice. Molecular and Cellular Endocrinology 254–255 84–90. (https://doi.org/10.1016/j.mce.2006.04.015)
Huhtaniemi IT & Themmen AP 2005 Mutations in human gonadotropin and gonadotropin-receptor genes. Endocrine 26 207–217. (https://doi.org/10.1385/ENDO:26:3:207)
Irannejad R, Tsvetanova NG, Lobingier BT & von Zastrow M 2015 Effects of endocytosis on receptor-mediated signaling. Current Opinion in Cell Biology 35 137–143. (https://doi.org/10.1016/j.ceb.2015.05.005)
Jean-Alphonse FG, Bowersox S, Chen S, Beard G, Puthenveedu MA & Hanyaloglu AC 2014 Spatially restricted G protein-coupled receptor activity via divergent endocytic compartments. Journal of Biological Chemistry 289 3960–3977. (https://doi.org/10.1074/jbc.M113.526350)
Jensen DD, Lieu T, Halls ML, Veldhuis NA, Imlach WL, Mai QN, Poole DP, Quach T, Aurelio L & Conner J et al.2017 Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief. Science Translational Medicine 9 eaal3447. (https://doi.org/10.1126/scitranslmed.aal3447)
Jonas KC, Oduwole OO, Peltoketo H, Rulli SB & Huhtaniemi IT 2014 Mouse models of altered gonadotrophin action: insight into male reproductive disorders. Reproduction 148 R63–70. (https://doi.org/10.1530/REP-14-0302)
Jonas KC, Chen S, Virta M, Mora J, Franks S, Huhtaniemi I & Hanyaloglu AC 2018 Temporal reprogramming of calcium signalling via crosstalk of gonadotrophin receptors that associate as functionally asymmetric heteromers. Scientific Reports 8 2239. (https://doi.org/10.1038/s41598-018-20722-5)
Kalaidzidis I, Miaczynska M, Brewinska-Olchowik M, Hupalowska A, Ferguson C, Parton RG, Kalaidzidis Y & Zerial M 2015 APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments. Journal of Cell Biology 211 123–144. (https://doi.org/10.1083/jcb.201311117)
Kara E, Crepieux P, Gauthier C, Martinat N, Piketty V, Guillou F & Reiter E 2006 A phosphorylation cluster of five serine and threonine residues in the C-terminus of the follicle-stimulating hormone receptor is important for desensitization but not for beta-arrestin-mediated ERK activation. Molecular Endocrinology 20 3014–3026. (https://doi.org/10.1210/me.2006-0098)
Kawate N & Menon KM 1994 Palmitoylation of luteinizing hormone/human choriogonadotropin receptors in transfected cells. Abolition of palmitoylation by mutation of Cys-621 and Cys-622 residues in the cytoplasmic tail increases ligand-induced internalization of the receptor. Journal of Biological Chemistry 269 30651–30658.
Kennedy JE & Marchese A 2015 Regulation of GPCR trafficking by ubiquitin. Progress in Molecular Biology and Translational Science 132 15–38. (https://doi.org/10.1016/bs.pmbts.2015.02.005)
Kishi H & Ascoli M 2000 Multiple distant amino acid residues present in the serpentine region of the follitropin receptor modulate the rate of agonist-induced internalization. Journal of Biological Chemistry 275 31030–31037. (https://doi.org/10.1074/jbc.M005528200)
Kishi M, Liu X, Hirakawa T, Reczek D, Bretscher A & Ascoli M 2001 Identification of two distinct structural motifs that, when added to the C-terminal tail of the rat LH receptor, redirect the internalized hormone-receptor complex from a degradation to a recycling pathway. Molecular Endocrinology 15 1624–1635. (https://doi.org/10.1210/mend.15.9.0698)
Komolov KE & Benovic JL 2018 G protein-coupled receptor kinases: past, present and future. Cellular Signalling 41 17–24. (https://doi.org/10.1016/j.cellsig.2017.07.004)
Krishnamurthy H, Kishi H, Shi M, Galet C, Bhaskaran RS, Hirakawa T & Ascoli M 2003 Postendocytotic trafficking of the follicle-stimulating hormone (FSH)-FSH receptor complex. Molecular Endocrinoogyl 17 2162–2176. (https://doi.org/10.1210/me.2003-0118)
Kumari P, Srivastava A, Banerjee R, Ghosh E, Gupta P, Ranjan R, Chen X, Gupta B, Gupta C & Jaiman D et al.2016 Functional competence of a partially engaged GPCR-beta-arrestin complex. Nature Communications 7 13416. (https://doi.org/10.1038/ncomms13416)
Landomiel F, Gallay N, Jégot G, Tranchant T, Durand G, Bourquard T, Crépieux P, Poupon A & Reiter E 2014 Biased signalling in follicle stimulating hormone action. Molecular and Cellular Endocrinology 382 452–459. (https://doi.org/10.1016/j.mce.2013.09.035)
Lauffer BE, Melero C, Temkin P, Lei C, Hong W, Kortemme T & von Zastrow M 2010 SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane. Journal of Cell Biology 190 565–574. (https://doi.org/10.1083/jcb.201004060)
Lazari MF, Bertrand JE, Nakamura K, Liu X, Krupnick JG, Benovic JL & Ascoli M 1998 Mutation of individual serine residues in the C-terminal tail of the lutropin/choriogonadotropin receptor reveal distinct structural requirements for agonist-induced uncoupling and agonist-induced internalization. Journal of Biological Chemistry 273 18316–18324. (https://doi.org/10.1074/jbc.273.29.18316)
Li X, Chen W, Li P, Wei J, Cheng Y, Liu P, Yan Q, Xu X, Cui Y & Gu Z et al.2017 Follicular stimulating hormone accelerates atherogenesis by increasing endothelial VCAM-1 expression. Theranostics 7 4671–4688. (https://doi.org/10.7150/thno.21216)
Lin DC, Quevedo C, Brewer NE, Bell A, Testa JR, Grimes ML, Miller FD & Kaplan DR 2006a APPL1 associates with TrkA and GIPC1 and is required for nerve growth factor-mediated signal transduction. Molecular and Cellular Biology 26 8928–8941. (https://doi.org/10.1128/MCB.00228-06)
Lin YF, Tseng MJ, Hsu HL, Wu YW, Lee YH & Tsai YH 2006b A novel follicle-stimulating hormone-induced G alpha h/phospholipase C-delta1 signaling pathway mediating rat sertoli cell Ca2+-influx. Molecular Endocrinology 20 2514–2527. (https://doi.org/10.1210/me.2005-0347)
Liu P, Ji Y, Yuen T, Rendina-Ruedy E, DeMambro VE, Dhawan S, Abu-Amer W, Izadmehr S, Zhou B & Shin AC et al.2017a Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature 546 107–112. (https://doi.org/10.1038/nature22342)
Liu Z, Xiao T, Peng X, Li G & Hu F 2017b APPLs: more than just adiponectin receptor binding proteins. Cellular Signalling 32 76–84. (https://doi.org/10.1016/j.cellsig.2017.01.018)
Lohse MJ & Calebiro D 2013 Receptor signals come in waves. Nature 495 457–458. (https://doi.org/10.1038/nature12086)
Lohse MJ, Benovic JL, Codina J, Caron MG & Lefkowitz RJ 1990 beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248 1547–1550. (https://doi.org/10.1126/science.2163110)
Luttrell LM, Wang J, Plouffe B, Smith JS, Yamani L, Kaur S, Jean-Charles PY, Gauthier C, Lee MH & Pani B et al.2018 Manifold roles of beta-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Science Signaling 11 eaat7650. (https://doi.org/10.1126/scisignal.aat7650)
Lyga S, Volpe S, Werthmann RC, Gotz K, Sungkaworn T, Lohse MJ & Calebiro D 2016 Persistent cAMP signaling by internalized LH receptors in ovarian follicles. Endocrinology 157 1613–1621. (https://doi.org/10.1210/en.2015-1945)
Marchese A, Paing MM, Temple BR & Trejo J 2008 G protein-coupled receptor sorting to endosomes and lysosomes. Annual Review of Pharmacology and Toxicology 48 601–629. (https://doi.org/10.1146/annurev.pharmtox.48.113006.094646)
Mazurkiewicz JE, Herrick-Davis K, Barroso M, Ulloa-Aguirre A, Lindau-Shepard B, Thomas RM & Dias JA 2015 Single-molecule analyses of fully functional fluorescent protein-tagged follitropin receptor reveal homodimerization and specific heterodimerization with lutropin receptor. Biology of Reproduction 92 100. (https://doi.org/10.1095/biolreprod.114.125781)
McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ & Lefkowitz RJ 2000 Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290 1574–1577. (https://doi.org/10.1126/science.290.5496.1574)
McDonald CA, Millena AC, Reddy S, Finlay S, Vizcarra J, Khan SA & Davis JS 2006 Follicle-stimulating hormone-induced aromatase in immature rat Sertoli cells requires an active phosphatidylinositol 3-kinase pathway and is inhibited via the mitogen-activated protein kinase signaling pathway. Molecular Endocrinology 20 608–618. (https://doi.org/10.1210/me.2005-0245)
Melo-Nava B, Casas-Gonzalez P, Perez-Solis MA, Castillo-Badillo J, Maravillas-Montero JL, Jardon-Valadez E, Zarinan T, Aguilar-Rojas A, Gallay N & Reiter E et al.2016 Role of cysteine residues in the carboxyl-terminus of the follicle-stimulating hormone receptor in intracellular traffic and postendocytic processing. Frontiers in Cell and Developmental Biology 4 76. (https://doi.org/10.3389/fcell.2016.00076)
Menon KM & Menon B 2012 Structure, function and regulation of gonadotropin receptors – a perspective. Molecular and Cellular Endocrinology 356 88–97. (https://doi.org/10.1016/j.mce.2012.01.021)
Min L, Galet C & Ascoli M 2002 The association of arrestin-3 with the human lutropin/choriogonadotropin receptor depends mostly on receptor activation rather than on receptor phosphorylation. Journal of Biological Chemistry 277 702–710. (https://doi.org/10.1074/jbc.M106082200)
Moraga PF, Llanos MN & Ronco AM 1997 Arachidonic acid release from rat Leydig cells depends on the presence of luteinizing hormone/human chorionic gonadotrophin receptors. Journal of Endocrinology 154 201–209. (https://doi.org/10.1677/joe.0.1540201)
Mukherjee S, Gurevich VV, Jones JC, Casanova JE, Frank SR, Maizels ET, Bader MF, Kahn RA, Palczewski K & Aktories K et al.2000 The ADP ribosylation factor nucleotide exchange factor ARNO promotes beta-arrestin release necessary for luteinizing hormone/choriogonadotropin receptor desensitization. PNAS 97 5901–5906. (https://doi.org/10.1073/pnas.100127097)
Mukherjee S, Gurevich V, Preninger A, Hamm H, Bader M-F, Fazleabas A, Birnbaumer L & Hunzicker-Dunn M 2002 Aspartic acid 564 in the third cytoplasmic loop of the luteinizing hormone/choriogonadotropin receptor is crucial for phosphorylation-independent interaction with arrestin2. Journal of Biological Chemistry 277 17916–17943. (https://doi.org/10.1074/jbc.M110479200)
Munshi UM, Peegel H & Menon KM 2001 Palmitoylation of the luteinizing hormone/human chorionic gonadotropin receptor regulates receptor interaction with the arrestin-mediated internalization pathway. European Journal of Biochemistry 268 1631–1639. (https://doi.org/10.1046/j.1432-1327.2001.02032.x)
Nakamura K, Liu X & Ascoli M 2000 Seven non-contiguous intracellular residues of the lutropin/choriogonadotropin receptor dictate the rate of agonist-induced internalization and its sensitivity to non-visual arrestins. Journal of Biological Chemistry 275 241–247. (https://doi.org/10.1074/jbc.275.1.241)
Nataraja SG, Yu HN & Palmer SS 2015 Discovery and development of small molecule allosteric modulators of glycoprotein hormone receptors. Frontiers in Endocrinology 6 142. (https://doi.org/10.3389/fendo.2015.00142)
Nechamen CA, Thomas RM, Cohen BD, Acevedo G, Poulikakos PI, Testa JR & Dias JA 2004 Human follicle-stimulating hormone (FSH) receptor interacts with the adaptor protein APPL1 in HEK 293 cells: potential involvement of the PI3K pathway in FSH signaling. Biology of Reproduction 71 629–636. (https://doi.org/10.1095/biolreprod.103.025833)
Nechamen CA, Thomas RM & Dias JA 2007 APPL1, APPL2, Akt2 and FOXO1a interact with FSHR in a potential signaling complex. Molecular and Cellular Endocrinology 260–262 93–99. (https://doi.org/10.1016/j.mce.2006.08.014)
Newton CL, Anderson RC, Katz AA & Millar RP 2016 Loss-of-function mutations in the human luteinizing hormone receptor predominantly cause intracellular retention. Endocrinology 157 4364–4377. (https://doi.org/10.1210/en.2016-1104)
Nobles KN, Xiao K, Ahn S, Shukla AK, Lam CM, Rajagopal S, Strachan RT, Huang TY, Bressler EA & Hara MR et al.2011 Distinct phosphorylation sites on the beta(2)-adrenergic receptor establish a barcode that encodes differential functions of beta-arrestin. Science Signaling 4 ra51. (https://doi.org/10.1126/scisignal.2001707)
Nordhoff V, Sonntag B, von Tils D, Gotte M, Schuring AN, Gromoll J, Redmann K, Casarini L & Simoni M 2011 Effects of the FSH receptor gene polymorphism p.N680S on cAMP and steroid production in cultured primary human granulosa cells. Reproductive Biomedicine Online 23 196–203. (https://doi.org/10.1016/j.rbmo.2011.04.009)
O’Hayre M, Eichel K, Avino S, Zhao X, Steffen DJ, Feng X, Kawakami K, Aoki J, Messer K & Sunahara R et al.2017 Genetic evidence that beta-arrestins are dispensable for the initiation of beta2-adrenergic receptor signaling to ERK. Science Signaling 10 eaal3395. (https://doi.org/10.1126/scisignal.aal3395)
Pakarainen T, Ahtiainen P, Zhang FP, Rulli S, Poutanen M & Huhtaniemi I 2007 Extragonadal LH/hCG action – not yet time to rewrite textbooks. Molecular and Cellular Endocrinology 269 9–16. (https://doi.org/10.1016/j.mce.2006.10.019)
Park JJ, Seong HK, Kim JS, Munkhzaya B, Kang MH & Min KS 2017 Internalization of rat FSH and LH/CG receptors by rec-eCG in CHO-K1 cells. Development and Reproduction 21 111–120. (https://doi.org/10.12717/DR.2017.21.2.111)
Pavlos NJ & Friedman PA 2017 GPCR signaling and trafficking: the long and short of it. Trends in Endocrinology and Metabolism 28 213–226. (https://doi.org/10.1016/j.tem.2016.10.007)
Piketty V, Kara E, Guillou F, Reiter E & Crepieux P 2006 Follicle-stimulating hormone (FSH) activates extracellular signal-regulated kinase phosphorylation independently of beta-arrestin- and dynamin-mediated FSH receptor internalization. Reproductive Biology and Endocrinology 4 33. (https://doi.org/10.1186/1477-7827-4-33)
Puett D, Li Y, DeMars G, Angelova K & Fanelli F 2007 A functional transmembrane complex: the luteinizing hormone receptor with bound ligand and G protein. Molecular and Cellular Endocrinology 260–262 126–136. (https://doi.org/10.1016/j.mce.2006.05.009)
Rajagopal S & Shenoy SK 2018 GPCR desensitization: acute and prolonged phases. Cellular Signalling 41 9–16. (https://doi.org/10.1016/j.cellsig.2017.01.024)
Reiter E, Ayoub MA, Pellissier LP, Landomiel F, Musnier A, Trefier A, Gandia J, De Pascali F, Tahir S & Yvinec R et al.2017 beta-arrestin signalling and bias in hormone-responsive GPCRs. Molecular and Cellular Endocrinology 449 28–41. (https://doi.org/10.1016/j.mce.2017.01.052)
Riccetti L, De Pascali F, Gilioli L, Poti F, Giva LB, Marino M, Tagliavini S, Trenti T, Fanelli F & Mezzullo M et al.2017a Human LH and hCG stimulate differently the early signalling pathways but result in equal testosterone synthesis in mouse Leydig cells in vitro. Reproductive Biology and Endocrinology 15 2. (https://doi.org/10.1186/s12958-016-0224-3)
Riccetti L, Yvinec R, Klett D, Gallay N, Combarnous Y, Reiter E, Simoni M, Casarini L & Ayoub MA 2017b Human luteinizing hormone and chorionic gonadotropin display biased agonism at the LH and LH/CG receptors. Scientific Reports 7 940. (https://doi.org/10.1038/s41598-017-01078-8)
Sacchi S, Sena P, Degli Esposti C, Lui J & La Marca A 2018 Evidence for expression and functionality of FSH and LH/hCG receptors in human endometrium. Journal of Assisted Reproduction and Genetics 35 1703–1712. (https://doi.org/10.1007/s10815-018-1248-8)
Seibel MJ, Dunstan CR, Zhou H, Allan CM & Handelsman DJ 2006 Sex steroids, not FSH, influence bone mass. Cell 127 1079; author reply 1080–1071. (https://doi.org/10.1016/j.cell.2006.12.002)
Shukla AK, Westfield GH, Xiao K, Reis RI, Huang LY, Tripathi-Shukla P, Qian J, Li S, Blanc A & Oleskie AN et al.2014 Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512 218–222. (https://doi.org/10.1038/nature13430)
Sigal YM, Zhou R & Zhuang X 2018 Visualizing and discovering cellular structures with super-resolution microscopy. Science 361 880–887. (https://doi.org/10.1126/science.aau1044)
Simoni M, Santi D, Negri L, Hoffmann I, Muratori M, Baldi E, Cambi M, Marcou M, Greither T & Baraldi E et al.2016 Treatment with human, recombinant FSH improves sperm DNA fragmentation in idiopathic infertile men depending on the FSH receptor polymorphism p.N680S: a pharmacogenetic study. Human Reproduction 31 1960–1969. (https://doi.org/10.1093/humrep/dew167)
Smith JS, Lefkowitz RJ & Rajagopal S 2018 Biased signalling: from simple switches to allosteric microprocessors. Nature Reviews Drug Discovery 17 243–260. (https://doi.org/10.1038/nrd.2017.229)
Spangler SM & Bruchas MR 2017 Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits. Current Opinion in Pharmacology 32 56–70. (https://doi.org/10.1016/j.coph.2016.11.001)
Sposini S & Hanyaloglu AC 2017 Spatial encryption of G protein-coupled receptor signaling in endosomes; mechanisms and applications. Biochemical Pharmacology 143 1–9. (https://doi.org/10.1016/j.bcp.2017.04.028)
Sposini S, Jean-Alphonse FG, Ayoub MA, Oqua A, West C, Lavery S, Brosens JJ, Reiter E & Hanyaloglu AC 2017 Integration of GPCR signaling and sorting from very early endosomes via opposing APPL1 mechanisms. Cell Reports 21 2855–2867. (https://doi.org/10.1016/j.celrep.2017.11.023)
Stelmaszewska J, Chrusciel M, Doroszko M, Akerfelt M, Ponikwicka-Tyszko D, Nees M, Frentsch M, Li X, Kero J & Huhtaniemi I et al.2016 Revisiting the expression and function of follicle-stimulation hormone receptor in human umbilical vein endothelial cells. Scientific Reports 6 37095. (https://doi.org/10.1038/srep37095)
Stilley JA, Christensen DE, Dahlem KB, Guan R, Santillan DA, England SK, Al-Hendy A, Kirby PA & Segaloff DL 2014a FSH receptor (FSHR) expression in human extragonadal reproductive tissues and the developing placenta, and the impact of its deletion on pregnancy in mice. Biology of Reproduction 91 74. (https://doi.org/10.1095/biolreprod.114.118562)
Stilley JA, Guan R, Duffy DM & Segaloff DL 2014b Signaling through FSH receptors on human umbilical vein endothelial cells promotes angiogenesis. Journal of Clinical Endocrinology and Metabolism 99 E813–E820. (https://doi.org/10.1210/jc.2013-3186)
Sun L, Peng Y, Sharrow AC, Iqbal J, Zhang Z, Papachristou DJ, Zaidi S, Zhu LL, Yaroslavskiy BB & Zhou H et al.2006 FSH directly regulates bone mass. Cell 125 247–260. (https://doi.org/10.1016/j.cell.2006.01.051)
Terrillon S & Bouvier M 2004 Receptor activity-independent recruitment of betaarrestin2 reveals specific signalling modes. EMBO Journal 23 3950–3961. (https://doi.org/10.1038/sj.emboj.7600387)
Thomas RM, Nechamen CA, Mazurkiewicz JE, Ulloa-Aguirre A & Dias JA 2011 The adapter protein APPL1 links FSH receptor to inositol 1,4,5-trisphosphate production and is implicated in intracellular Ca(2+) mobilization. Endocrinology 152 1691–1701. (https://doi.org/10.1210/en.2010-1353)
Thomsen ARB, Plouffe B, Cahill TJ, Shukla AK, Tarrasch JT, Dosey AM, Kahsai AW, Strachan RT, Pani B & Mahoney JP et al.2016 GPCR-G protein-beta-arrestin super-complex mediates sustained G protein signaling. Cell 166 907–919. (https://doi.org/10.1016/j.cell.2016.07.004)
Tilley DG, Kim IM, Patel PA, Violin JD & Rockman HA 2009 beta-Arrestin mediates beta1-adrenergic receptor-epidermal growth factor receptor interaction and downstream signaling. Journal of Biological Chemistry 284 20375–20386. (https://doi.org/10.1074/jbc.M109.005793)
Tranchant T, Durand G, Gauthier C, Crepieux P, Ulloa-Aguirre A, Royere D & Reiter E 2011 Preferential beta-arrestin signalling at low receptor density revealed by functional characterization of the human FSH receptor A189 V mutation. Molecular and Cellular Endocrinology 331 109–118. (https://doi.org/10.1016/j.mce.2010.08.016)
Trefier A, Musnier A, Landomiel F, Bourquard T, Boulo T, Ayoub MA, Leon K, Bruneau G, Chevalier M & Durand G et al.2018 G protein-dependent signaling triggers a beta-arrestin-scaffolded p70S6K/rpS6 module that controls 5′TOP mRNA translation. FASEB Journal 32 1154–1169. (https://doi.org/10.1096/fj.201700763R)
Troispoux C, Guillou F, Elalouf JM, Firsov D, Iacovelli L, De Blasi A, Combarnous Y & Reiter E 1999 Involvement of G protein-coupled receptor kinases and arrestins in desensitization to follicle-stimulating hormone action. Molecular Endocrinology 13 1599–1614. (https://doi.org/10.1210/mend.13.9.0342)
Troppmann B, Kleinau G, Krause G & Gromoll J 2013 Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor. Human Reproduction Update 19 583–602. (https://doi.org/10.1093/humupd/dmbib23)
Violin JD, Crombie AL, Soergel DG & Lark MW 2014 Biased ligands at G-protein-coupled receptors: promise and progress. Trends in Pharmacological Sciences 35 308–316. (https://doi.org/10.1016/j.tips.2014.04.007)
Walton WJ, Nguyen VT, Butnev VY, Singh V, Moore WT & Bousfield GR 2001 Characterization of human FSH isoforms reveals a nonglycosylated beta-subunit in addition to the conventional glycosylated beta-subunit. Journal of Clinical Endocrinology and Metabolism 86 3675–3685. (https://doi.org/10.1210/jcem.86.8.7712)
Wehbi VL, Stevenson HP, Feinstein TN, Calero G, Romero G & Vilardaga J-P 2013 Noncanonical GPCR signaling arising from a PTH receptor-arrestin-Gβγ complex. PNAS 110 1530–1535. (https://doi.org/10.1073/pnas.1205756110)
Wilden U, Wust E, Weyand I & Kuhn H 1986 Rapid affinity purification of retinal arrestin (48 kDa protein) via its light-dependent binding to phosphorylated rhodopsin. FEBS Letters 207 292–295. (https://doi.org/10.1016/0014-5793(86)81507-1)
Yarwood RE, Imlach WL, Lieu T, Veldhuis NA, Jensen DD, Klein Herenbrink C, Aurelio L, Cai Z, Christie MJ & Poole DP et al.2017 Endosomal signaling of the receptor for calcitonin gene-related peptide mediates pain transmission. PNAS 114 12309–12314. (https://doi.org/10.1073/pnas.1706656114)
Zhao Z, Liu XF, Wu HC, Zou SB, Wang JY, Ni PH, Chen XH & Fan QS 2010 Rab5a overexpression promoting ovarian cancer cell proliferation may be associated with APPL1-related epidermal growth factor signaling pathway. Cancer Science 101 1454–1462. (https://doi.org/10.1111/j.1349-7006.2010.01558.x)
Zoncu R, Perera RM, Balkin DM, Pirruccello M, Toomre D & De Camilli P 2009 A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136 1110–1121. (https://doi.org/10.1016/j.cell.2009.01.032)
Online ISSN: 1741-7899
Print ISSN: 1470-1626
CONTACT US
Bioscientifica Ltd | Starling House | 1600 Bristol Parkway North | Bristol BS34 8YU | UK
Bioscientifica Ltd | Registered in England no 3190519