Driving gonadotrophin hormone receptor signalling: the role of membrane trafficking

in Reproduction
Authors:
Silvia Sposini Institute of Reproductive and Developmental Biology, Imperial College London, London, UK

Search for other papers by Silvia Sposini in
Current site
Google Scholar
PubMed
Close
and
Aylin C Hanyaloglu Institute of Reproductive and Developmental Biology, Imperial College London, London, UK

Search for other papers by Aylin C Hanyaloglu in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to A C Hanyaloglu; Email: a.hanyaloglu@imperial.ac.uk
Restricted access
Rent on DeepDyve

Sign up for journal news

Our understanding of G protein-coupled receptor (GPCR) signalling has significantly evolved over the past decade, whereby signalling not only occurs from the plasma membrane but continues, or is reactivated, following internalisation in to endosomal compartments. The spatial organisation of GPCRs is thus essential to decode dynamic and complex signals and to activate specific downstream pathways that elicit the appropriate cellular response. For the gonadotrophin hormone receptors, membrane trafficking has been demonstrated to play a significant role in regulating its signal activity that in turn would impact at physiological and even pathophysiological level. Here, we will describe the developments in our understanding of the role of ‘location’ in gonadotrophin hormone receptor signalling, and how these receptors have unveiled fundamental mechanisms of signal regulation likely to be pertinent for other GPCRs. We will also discuss the potential impact of spatially controlled gonadotrophin hormone receptor signalling in both health and disease, and the therapeutic possibilities this new understanding of these receptors, so key in reproduction, offers.

 

  • Collapse
  • Expand
  • Abbe E. 1873 Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie 9 413420. (https://doi.org/10.1007/BF02956173)

  • Aittomaki K, Lucena JL, Pakarinen P, Sistonen P, Tapanainen J, Gromoll J, Kaskikari R, Sankila EM, Lehvaslaiho H & Engel AR et al.1995 Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell 82 959968. (https://doi.org/10.1016/0092-8674(95)90275-9)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Andric N & Ascoli M 2006 A delayed gonadotropin-dependent and growth factor-mediated activation of the extracellular signal-regulated kinase 1/2 cascade negatively regulates aromatase expression in granulosa cells. Molecular Endocrinology 20 33083320. (https://doi.org/10.1210/me.2006-0241)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ascoli M, Fanelli F & Segaloff DL 2002 The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocrine Reviews 23 141174. (https://doi.org/10.1210/edrv.23.2.0462)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Attramadal H, Arriza JL, Aoki C, Dawson TM, Codina J, Kwatra MM, Snyder SH, Caron MG & Lefkowitz RJ 1992 Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. Journal of Biological Chemistry 267 1788217890.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ayoub MA, Yvinec R, Jegot G, Dias JA, Poli SM, Poupon A, Crepieux P & Reiter E 2016 Profiling of FSHR negative allosteric modulators on LH/CGR reveals biased antagonism with implications in steroidogenesis. Molecular and Cellular Endocrinology 436 1022. (https://doi.org/10.1016/j.mce.2016.07.013)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bernardini L, Brush M, Rojas FJ & Balmaceda JP 2013 Failure of hCG/LH receptors to stimulate the transmembrane effector adenylyl cyclase in human endometrium. Advances in Bioscience and Biotechnology 4 949957. (https://doi.org/10.4236/abb.2013.410126)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bhaskaran RS, Min L, Krishnamurthy H & Ascoli M 2003 Studies with chimeras of the gonadotropin receptors reveal the importance of third intracellular loop threonines on the formation of the receptor/nonvisual arrestin complex. Biochemistry 42 1395013959. (https://doi.org/10.1021/bbib34907w)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bousfield GR, May JV, Davis JS, Dias JA & Kumar TR 2018 In vivo and in vitro impact of carbohydrate variation on human follicle-stimulating hormone function. Frontiers in Endocrinology 9 216. (https://doi.org/10.3389/fendo.2018.00216)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Breen SM, Andric N, Ping T, Xie F, Offermans S, Gossen JA & Ascoli M 2013 Ovulation involves the luteinizing hormone-dependent activation of G(q/11) in granulosa cells. Molecular Endocrinology 27 14831491. (https://doi.org/10.1210/me.2013-1130)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Butcher AJ, Prihandoko R, Kong KC, McWilliams P, Edwards JM, Bottrill A, Mistry S & Tobin AB 2011 Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code. Journal of Biological Chemistry 286 1150611518. (https://doi.org/10.1074/jbc.M110.154526)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cahill TJ 3rd, Thomsen AR, Tarrasch JT, Plouffe B, Nguyen AH, Yang F, Huang LY, Kahsai AW, Bassoni DL & Gavino BJ et al.2017 Distinct conformations of GPCR-beta-arrestin complexes mediate desensitization, signaling, and endocytosis. PNAS 114 25622567. (https://doi.org/10.1073/pnas.1701529114)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cao TT, Deacon HW, Reczek D, Bretscher A & von Zastrow M 1999 A kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta2-adrenergic receptor. Nature 401 286290. (https://doi.org/10.1038/45816)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Casarini L, Lispi M, Longobardi S, Milosa F, La Marca A, Tagliasacchi D, Pignatti E & Simoni M 2012 LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signalling. PLoS ONE 7 e46682. (https://doi.org/10.1371/journal.pone.0046682)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Casarini L, Moriondo V, Marino M, Adversi F, Capodanno F, Grisolia C, La Marca A, La Sala GB & Simoni M 2014 FSHR polymorphism p.N680S mediates different responses to FSH in vitro. Molecular and Cellular Endocrinology 393 8391. (https://doi.org/10.1016/j.mce.2014.06.013)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Casarini L, Reiter E & Simoni M 2016 beta-arrestins regulate gonadotropin receptor-mediated cell proliferation and apoptosis by controlling different FSHR or LHCGR intracellular signaling in the hGL5 cell line. Molecular and Cellular Endocrinology 437 1121. (https://doi.org/10.1016/j.mce.2016.08.005)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Casarini L, Santi D, Brigante G & Simoni M 2018 Two hormones for one receptor: evolution, biochemistry, actions and pathophysiology of LH and hCG. Endocrine Reviews 39 549592. (https://doi.org/10.1210/er.2018-00065)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Casas-Gonzalez P, Scaglia HE, Perez-Solis MA, Durand G, Scaglia J, Zarinan T, Dias JA, Reiter E & Ulloa-Aguirre A 2012 Normal testicular function without detectable follicle-stimulating hormone. A novel mutation in the follicle-stimulating hormone receptor gene leading to apparent constitutive activity and impaired agonist-induced desensitization and internalization. Molecular and Cellular Endocrinology 364 7182. (https://doi.org/10.1016/j.mce.2012.08.011)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Choi J & Smitz J 2014 Luteinizing hormone and human chorionic gonadotropin: origins of difference. Molecular and Cellular Endocrinology 383 203213. (https://doi.org/10.1016/j.mce.2013.12.009)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Choi JH, Wong AS, Huang HF & Leung PC 2007 Gonadotropins and ovarian cancer. Endocrine Reviews 28 440461. (https://doi.org/10.1210/er.2006-0036)

  • Chopineau M, Martinat N, Galet C, Guillou F & Combarnous Y 2001 beta-Subunit 102-104 residues are crucial to confer FSH activity to equine LH/CG but are not sufficient to confer FSH activity to human CG. Journal of Endocrinology 169 5563. (https://doi.org/10.1677/joe.0.1690055)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cohen L, Bousfield GR & Ben-Menahem D 2015 The recombinant equine LHbeta subunit combines divergent intracellular traits of human LHbeta and CGbeta subunits. Theriogenology 83 14691476. (https://doi.org/10.1016/j.theriogenology.2015.01.026)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Comim FV, Hardy K & Franks S 2013a Adiponectin and its receptors in the ovary: further evidence for a link between obesity and hyperandrogenism in polycystic ovary syndrome. PLoS ONE 8 e80416. (https://doi.org/10.1371/journal.pone.0080416)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Comim FV, Teerds K, Hardy K & Franks S 2013b Increased protein expression of LHCG receptor and 17alpha-hydroxylase/17-20-lyase in human polycystic ovaries. Human Reproduction 28 30863092. (https://doi.org/10.1093/humrep/det352)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Craft CM, Whitmore DH & Wiechmann AF 1994 Cone arrestin identified by targeting expression of a functional family. Journal of Biological Chemistry 269 46134619.

  • Crepieux P, Marion S, Martinat N, Fafeur V, Vern YL, Kerboeuf D, Guillou F & Reiter E 2001 The ERK-dependent signalling is stage-specifically modulated by FSH, during primary Sertoli cell maturation. Oncogene 20 46964709. (https://doi.org/10.1038/sj.onc.1204632)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • DeFea KA, Zalevsky J, Thoma MS, Dery O, Mullins RD & Bunnett NW 2000 beta-Arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. Journal of Cell Biology 148 12671281. (https://doi.org/10.1083/jcb.148.6.1267)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dias JA, Mahale SD, Nechamen CA, Davydenko O, Thomas RM & Ulloa-Aguirre A 2010 Emerging roles for the FSH receptor adapter protein APPL1 and overlap of a putative 14-3-3tau interaction domain with a canonical G-protein interaction site. Molecular and Cellular Endocrinology 329 1725. (https://doi.org/10.1016/j.mce.2010.05.009)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diggins NL & Webb DJ 2017 APPL1 is a multifunctional endosomal signaling adaptor protein. Biochemical Society Transactions 45 771779. (https://doi.org/10.1042/BST20160191)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Egbert JR, Shuhaibar LC, Edmund AB, Van Helden DA, Robinson JW, Uliasz TF, Baena V, Geerts A, Wunder F & Potter LR et al.2014 Dephosphorylation and inactivation of NPR2 guanylyl cyclase in granulosa cells contributes to the LH-induced decrease in cGMP that causes resumption of meiosis in rat oocytes. Development 141 35943604. (https://doi.org/10.1242/dev.112219)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eichel K, Jullie D & von Zastrow M 2016 beta-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nature Cell Biology 18 303310. (https://doi.org/10.1038/ncb3307)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eichel K, Jullie D, Barsi-Rhyne B, Latorraca NR, Masureel M, Sibarita JB, Dror RO & von Zastrow M 2018 Catalytic activation of beta-arrestin by GPCRs. Nature 557 381386. (https://doi.org/10.1038/s41586-018-0079-1)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feng X, Zhang M, Guan R & Segaloff DL 2013 Heterodimerization between the lutropin and follitropin receptors is associated with an attenuation of hormone-dependent signaling. Endocrinology 154 39253930. (https://doi.org/10.1210/en.2013-1407)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galet C & Ascoli M 2008 Arrestin-3 is essential for the activation of Fyn by the luteinizing hormone receptor (LHR) in MA-10 cells. Cellular Signalling 20 18221829. (https://doi.org/10.1016/j.cellsig.2008.06.005)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galet C, Min L, Narayanan R, Kishi M, Weigel NL & Ascoli M 2003 Identification of a transferable two-amino-acid motif (GT) present in the C-terminal tail of the human lutropin receptor that redirects internalized G protein-coupled receptors from a degradation to a recycling pathway. Molecular Endocrinology 17 411422. (https://doi.org/10.1210/me.2002-0161)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galet C, Hirakawa T & Ascoli M 2004 The postendocytotic trafficking of the human lutropin receptor is mediated by a transferable motif consisting of the C-terminal cysteine and an upstream leucine. Molecular Endocrinology 18 434446. (https://doi.org/10.1210/me.2003-0293)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ghinea N, Vu Hai MT, Groyer-Picard MT, Houllier A, Schoevaert D & Milgrom E 1992 Pathways of internalization of the hCG/LH receptor: immunoelectron microscopic studies in Leydig cells and transfected L-cells. Journal of Cell Biology 118 13471358. (https://doi.org/10.1083/jcb.118.6.1347)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gilchrist RL, Ryu KS, Ji I & Ji TH 1996 The luteinizing hormone/chorionic gonadotropin receptor has distinct transmembrane conductors for cAMP and inositol phosphate signals. Journal of Biological Chemistry 271 1928319287. (https://doi.org/10.1074/jbc.271.32.19283)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Green ED & Baenziger JU 1988 Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. II. Distributions of sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones. Journal of Biological Chemistry 263 3644.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grundmann M, Merten N, Malfacini D, Inoue A, Preis P, Simon K, Ruttiger N, Ziegler N, Benkel T & Schmitt NK et al.2018 Lack of beta-arrestin signaling in the absence of active G proteins. Nature Communications 9 341. (https://doi.org/10.1038/s41467-017-02661-3)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gulappa T, Clouser CL & Menon KMJ 2011 The role of Rab5a GTPase in endocytosis and post-endocytic trafficking of the hCG-human luteinizing hormone receptor complex. Cellular and Molecular Life Sciences 68 27852795. (https://doi.org/10.1007/s00018-010-0594-1)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hanyaloglu AC & von Zastrow M 2008 Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annual Review of Pharmacology and Toxicology 48 537568. (https://doi.org/10.1146/annurev.pharmtox.48.113006.094830)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB & Gloriam DE 2017 Trends in GPCR drug discovery: new agents, targets and indications. Nature Reviews Drug Discovery 16 829842. (https://doi.org/10.1038/nrd.2017.178)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • He J, Bellini M, Inuzuka H, Xu J, Xiong Y, Yang X, Castleberry AM & Hall RA 2006 Proteomic analysis of beta1-adrenergic receptor interactions with PDZ scaffold proteins. Journal of Biological Chemistry 281 28202827. (https://doi.org/10.1074/jbc.M509503200)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hirakawa T, Galet C, Kishi M & Ascoli M 2003 GIPC binds to the human lutropin receptor (hLHR) through an unusual PDZ domain binding motif, and it regulates the sorting of the internalized human choriogonadotropin and the density of cell surface hLHR. Journal of Biological Chemistry 278 4934849357. (https://doi.org/10.1074/jbc.M306557200)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hislop JN & von Zastrow M 2011 Role of ubiquitination in endocytic trafficking of G-protein-coupled receptors. Traffic 12 137148. (https://doi.org/10.1111/j.1600-0854.2010.01121.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hu LA, Chen W, Martin NP, Whalen EJ, Premont RT & Lefkowitz RJ 2003 GIPC interacts with the beta1-adrenergic receptor and regulates beta1-adrenergic receptor-mediated ERK activation. Journal of Biological Chemistry 278 2629526301. (https://doi.org/10.1074/jbc.M212352200)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huhtaniemi I 2006 Mutations along the pituitary-gonadal axis affecting sexual maturation: novel information from transgenic and knockout mice. Molecular and Cellular Endocrinology 254–255 8490. (https://doi.org/10.1016/j.mce.2006.04.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huhtaniemi IT & Themmen AP 2005 Mutations in human gonadotropin and gonadotropin-receptor genes. Endocrine 26 207217. (https://doi.org/10.1385/ENDO:26:3:207)

  • Irannejad R, Tsvetanova NG, Lobingier BT & von Zastrow M 2015 Effects of endocytosis on receptor-mediated signaling. Current Opinion in Cell Biology 35 137143. (https://doi.org/10.1016/j.ceb.2015.05.005)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jean-Alphonse FG, Bowersox S, Chen S, Beard G, Puthenveedu MA & Hanyaloglu AC 2014 Spatially restricted G protein-coupled receptor activity via divergent endocytic compartments. Journal of Biological Chemistry 289 39603977. (https://doi.org/10.1074/jbc.M113.526350)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jensen DD, Lieu T, Halls ML, Veldhuis NA, Imlach WL, Mai QN, Poole DP, Quach T, Aurelio L & Conner J et al.2017 Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief. Science Translational Medicine 9 eaal3447. (https://doi.org/10.1126/scitranslmed.aal3447)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jonas KC, Oduwole OO, Peltoketo H, Rulli SB & Huhtaniemi IT 2014 Mouse models of altered gonadotrophin action: insight into male reproductive disorders. Reproduction 148 R6370. (https://doi.org/10.1530/REP-14-0302)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jonas KC, Chen S, Virta M, Mora J, Franks S, Huhtaniemi I & Hanyaloglu AC 2018 Temporal reprogramming of calcium signalling via crosstalk of gonadotrophin receptors that associate as functionally asymmetric heteromers. Scientific Reports 8 2239. (https://doi.org/10.1038/s41598-018-20722-5)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kalaidzidis I, Miaczynska M, Brewinska-Olchowik M, Hupalowska A, Ferguson C, Parton RG, Kalaidzidis Y & Zerial M 2015 APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments. Journal of Cell Biology 211 123144. (https://doi.org/10.1083/jcb.201311117)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kara E, Crepieux P, Gauthier C, Martinat N, Piketty V, Guillou F & Reiter E 2006 A phosphorylation cluster of five serine and threonine residues in the C-terminus of the follicle-stimulating hormone receptor is important for desensitization but not for beta-arrestin-mediated ERK activation. Molecular Endocrinology 20 30143026. (https://doi.org/10.1210/me.2006-0098)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kawate N & Menon KM 1994 Palmitoylation of luteinizing hormone/human choriogonadotropin receptors in transfected cells. Abolition of palmitoylation by mutation of Cys-621 and Cys-622 residues in the cytoplasmic tail increases ligand-induced internalization of the receptor. Journal of Biological Chemistry 269 3065130658.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kennedy JE & Marchese A 2015 Regulation of GPCR trafficking by ubiquitin. Progress in Molecular Biology and Translational Science 132 1538. (https://doi.org/10.1016/bs.pmbts.2015.02.005)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kishi H & Ascoli M 2000 Multiple distant amino acid residues present in the serpentine region of the follitropin receptor modulate the rate of agonist-induced internalization. Journal of Biological Chemistry 275 3103031037. (https://doi.org/10.1074/jbc.M005528200)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kishi M, Liu X, Hirakawa T, Reczek D, Bretscher A & Ascoli M 2001 Identification of two distinct structural motifs that, when added to the C-terminal tail of the rat LH receptor, redirect the internalized hormone-receptor complex from a degradation to a recycling pathway. Molecular Endocrinology 15 16241635. (https://doi.org/10.1210/mend.15.9.0698)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Komolov KE & Benovic JL 2018 G protein-coupled receptor kinases: past, present and future. Cellular Signalling 41 1724. (https://doi.org/10.1016/j.cellsig.2017.07.004)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy H, Kishi H, Shi M, Galet C, Bhaskaran RS, Hirakawa T & Ascoli M 2003 Postendocytotic trafficking of the follicle-stimulating hormone (FSH)-FSH receptor complex. Molecular Endocrinoogyl 17 21622176. (https://doi.org/10.1210/me.2003-0118)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kumari P, Srivastava A, Banerjee R, Ghosh E, Gupta P, Ranjan R, Chen X, Gupta B, Gupta C & Jaiman D et al.2016 Functional competence of a partially engaged GPCR-beta-arrestin complex. Nature Communications 7 13416. (https://doi.org/10.1038/ncomms13416)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Landomiel F, Gallay N, Jégot G, Tranchant T, Durand G, Bourquard T, Crépieux P, Poupon A & Reiter E 2014 Biased signalling in follicle stimulating hormone action. Molecular and Cellular Endocrinology 382 452459. (https://doi.org/10.1016/j.mce.2013.09.035)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lauffer BE, Melero C, Temkin P, Lei C, Hong W, Kortemme T & von Zastrow M 2010 SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane. Journal of Cell Biology 190 565574. (https://doi.org/10.1083/jcb.201004060)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lazari MF, Bertrand JE, Nakamura K, Liu X, Krupnick JG, Benovic JL & Ascoli M 1998 Mutation of individual serine residues in the C-terminal tail of the lutropin/choriogonadotropin receptor reveal distinct structural requirements for agonist-induced uncoupling and agonist-induced internalization. Journal of Biological Chemistry 273 1831618324. (https://doi.org/10.1074/jbc.273.29.18316)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li X, Chen W, Li P, Wei J, Cheng Y, Liu P, Yan Q, Xu X, Cui Y & Gu Z et al.2017 Follicular stimulating hormone accelerates atherogenesis by increasing endothelial VCAM-1 expression. Theranostics 7 46714688. (https://doi.org/10.7150/thno.21216)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lin DC, Quevedo C, Brewer NE, Bell A, Testa JR, Grimes ML, Miller FD & Kaplan DR 2006a APPL1 associates with TrkA and GIPC1 and is required for nerve growth factor-mediated signal transduction. Molecular and Cellular Biology 26 89288941. (https://doi.org/10.1128/MCB.00228-06)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lin YF, Tseng MJ, Hsu HL, Wu YW, Lee YH & Tsai YH 2006b A novel follicle-stimulating hormone-induced G alpha h/phospholipase C-delta1 signaling pathway mediating rat sertoli cell Ca2+-influx. Molecular Endocrinology 20 25142527. (https://doi.org/10.1210/me.2005-0347)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu P, Ji Y, Yuen T, Rendina-Ruedy E, DeMambro VE, Dhawan S, Abu-Amer W, Izadmehr S, Zhou B & Shin AC et al.2017a Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature 546 107112. (https://doi.org/10.1038/nature22342)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu Z, Xiao T, Peng X, Li G & Hu F 2017b APPLs: more than just adiponectin receptor binding proteins. Cellular Signalling 32 7684. (https://doi.org/10.1016/j.cellsig.2017.01.018)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lohse MJ & Calebiro D 2013 Receptor signals come in waves. Nature 495 457458. (https://doi.org/10.1038/nature12086)

  • Lohse MJ, Benovic JL, Codina J, Caron MG & Lefkowitz RJ 1990 beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248 15471550. (https://doi.org/10.1126/science.2163110)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luttrell LM, Wang J, Plouffe B, Smith JS, Yamani L, Kaur S, Jean-Charles PY, Gauthier C, Lee MH & Pani B et al.2018 Manifold roles of beta-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Science Signaling 11 eaat7650. (https://doi.org/10.1126/scisignal.aat7650)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lyga S, Volpe S, Werthmann RC, Gotz K, Sungkaworn T, Lohse MJ & Calebiro D 2016 Persistent cAMP signaling by internalized LH receptors in ovarian follicles. Endocrinology 157 16131621. (https://doi.org/10.1210/en.2015-1945)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marchese A, Paing MM, Temple BR & Trejo J 2008 G protein-coupled receptor sorting to endosomes and lysosomes. Annual Review of Pharmacology and Toxicology 48 601629. (https://doi.org/10.1146/annurev.pharmtox.48.113006.094646)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mazurkiewicz JE, Herrick-Davis K, Barroso M, Ulloa-Aguirre A, Lindau-Shepard B, Thomas RM & Dias JA 2015 Single-molecule analyses of fully functional fluorescent protein-tagged follitropin receptor reveal homodimerization and specific heterodimerization with lutropin receptor. Biology of Reproduction 92 100. (https://doi.org/10.1095/biolreprod.114.125781)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ & Lefkowitz RJ 2000 Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290 15741577. (https://doi.org/10.1126/science.290.5496.1574)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • McDonald CA, Millena AC, Reddy S, Finlay S, Vizcarra J, Khan SA & Davis JS 2006 Follicle-stimulating hormone-induced aromatase in immature rat Sertoli cells requires an active phosphatidylinositol 3-kinase pathway and is inhibited via the mitogen-activated protein kinase signaling pathway. Molecular Endocrinology 20 608618. (https://doi.org/10.1210/me.2005-0245)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Melo-Nava B, Casas-Gonzalez P, Perez-Solis MA, Castillo-Badillo J, Maravillas-Montero JL, Jardon-Valadez E, Zarinan T, Aguilar-Rojas A, Gallay N & Reiter E et al.2016 Role of cysteine residues in the carboxyl-terminus of the follicle-stimulating hormone receptor in intracellular traffic and postendocytic processing. Frontiers in Cell and Developmental Biology 4 76. (https://doi.org/10.3389/fcell.2016.00076)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Menon KM & Menon B 2012 Structure, function and regulation of gonadotropin receptors – a perspective. Molecular and Cellular Endocrinology 356 8897. (https://doi.org/10.1016/j.mce.2012.01.021)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Min L, Galet C & Ascoli M 2002 The association of arrestin-3 with the human lutropin/choriogonadotropin receptor depends mostly on receptor activation rather than on receptor phosphorylation. Journal of Biological Chemistry 277 702710. (https://doi.org/10.1074/jbc.M106082200)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moraga PF, Llanos MN & Ronco AM 1997 Arachidonic acid release from rat Leydig cells depends on the presence of luteinizing hormone/human chorionic gonadotrophin receptors. Journal of Endocrinology 154 201209. (https://doi.org/10.1677/joe.0.1540201)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mukherjee S, Gurevich VV, Jones JC, Casanova JE, Frank SR, Maizels ET, Bader MF, Kahn RA, Palczewski K & Aktories K et al.2000 The ADP ribosylation factor nucleotide exchange factor ARNO promotes beta-arrestin release necessary for luteinizing hormone/choriogonadotropin receptor desensitization. PNAS 97 59015906. (https://doi.org/10.1073/pnas.100127097)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mukherjee S, Gurevich V, Preninger A, Hamm H, Bader M-F, Fazleabas A, Birnbaumer L & Hunzicker-Dunn M 2002 Aspartic acid 564 in the third cytoplasmic loop of the luteinizing hormone/choriogonadotropin receptor is crucial for phosphorylation-independent interaction with arrestin2. Journal of Biological Chemistry 277 1791617943. (https://doi.org/10.1074/jbc.M110479200)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Munshi UM, Peegel H & Menon KM 2001 Palmitoylation of the luteinizing hormone/human chorionic gonadotropin receptor regulates receptor interaction with the arrestin-mediated internalization pathway. European Journal of Biochemistry 268 16311639. (https://doi.org/10.1046/j.1432-1327.2001.02032.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nakamura K, Liu X & Ascoli M 2000 Seven non-contiguous intracellular residues of the lutropin/choriogonadotropin receptor dictate the rate of agonist-induced internalization and its sensitivity to non-visual arrestins. Journal of Biological Chemistry 275 241247. (https://doi.org/10.1074/jbc.275.1.241)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nataraja SG, Yu HN & Palmer SS 2015 Discovery and development of small molecule allosteric modulators of glycoprotein hormone receptors. Frontiers in Endocrinology 6 142. (https://doi.org/10.3389/fendo.2015.00142)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nechamen CA, Thomas RM, Cohen BD, Acevedo G, Poulikakos PI, Testa JR & Dias JA 2004 Human follicle-stimulating hormone (FSH) receptor interacts with the adaptor protein APPL1 in HEK 293 cells: potential involvement of the PI3K pathway in FSH signaling. Biology of Reproduction 71 629636. (https://doi.org/10.1095/biolreprod.103.025833)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nechamen CA, Thomas RM & Dias JA 2007 APPL1, APPL2, Akt2 and FOXO1a interact with FSHR in a potential signaling complex. Molecular and Cellular Endocrinology 260–262 9399. (https://doi.org/10.1016/j.mce.2006.08.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Newton CL, Anderson RC, Katz AA & Millar RP 2016 Loss-of-function mutations in the human luteinizing hormone receptor predominantly cause intracellular retention. Endocrinology 157 43644377. (https://doi.org/10.1210/en.2016-1104)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nobles KN, Xiao K, Ahn S, Shukla AK, Lam CM, Rajagopal S, Strachan RT, Huang TY, Bressler EA & Hara MR et al.2011 Distinct phosphorylation sites on the beta(2)-adrenergic receptor establish a barcode that encodes differential functions of beta-arrestin. Science Signaling 4 ra51. (https://doi.org/10.1126/scisignal.2001707)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nordhoff V, Sonntag B, von Tils D, Gotte M, Schuring AN, Gromoll J, Redmann K, Casarini L & Simoni M 2011 Effects of the FSH receptor gene polymorphism p.N680S on cAMP and steroid production in cultured primary human granulosa cells. Reproductive Biomedicine Online 23 196203. (https://doi.org/10.1016/j.rbmo.2011.04.009)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • O’Hayre M, Eichel K, Avino S, Zhao X, Steffen DJ, Feng X, Kawakami K, Aoki J, Messer K & Sunahara R et al.2017 Genetic evidence that beta-arrestins are dispensable for the initiation of beta2-adrenergic receptor signaling to ERK. Science Signaling 10 eaal3395. (https://doi.org/10.1126/scisignal.aal3395)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pakarainen T, Ahtiainen P, Zhang FP, Rulli S, Poutanen M & Huhtaniemi I 2007 Extragonadal LH/hCG action – not yet time to rewrite textbooks. Molecular and Cellular Endocrinology 269 916. (https://doi.org/10.1016/j.mce.2006.10.019)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park JJ, Seong HK, Kim JS, Munkhzaya B, Kang MH & Min KS 2017 Internalization of rat FSH and LH/CG receptors by rec-eCG in CHO-K1 cells. Development and Reproduction 21 111120. (https://doi.org/10.12717/DR.2017.21.2.111)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pavlos NJ & Friedman PA 2017 GPCR signaling and trafficking: the long and short of it. Trends in Endocrinology and Metabolism 28 213226. (https://doi.org/10.1016/j.tem.2016.10.007)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Piketty V, Kara E, Guillou F, Reiter E & Crepieux P 2006 Follicle-stimulating hormone (FSH) activates extracellular signal-regulated kinase phosphorylation independently of beta-arrestin- and dynamin-mediated FSH receptor internalization. Reproductive Biology and Endocrinology 4 33. (https://doi.org/10.1186/1477-7827-4-33)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Puett D, Li Y, DeMars G, Angelova K & Fanelli F 2007 A functional transmembrane complex: the luteinizing hormone receptor with bound ligand and G protein. Molecular and Cellular Endocrinology 260–262 126136. (https://doi.org/10.1016/j.mce.2006.05.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rajagopal S & Shenoy SK 2018 GPCR desensitization: acute and prolonged phases. Cellular Signalling 41 916. (https://doi.org/10.1016/j.cellsig.2017.01.024)

  • Reiter E, Ayoub MA, Pellissier LP, Landomiel F, Musnier A, Trefier A, Gandia J, De Pascali F, Tahir S & Yvinec R et al.2017 beta-arrestin signalling and bias in hormone-responsive GPCRs. Molecular and Cellular Endocrinology 449 2841. (https://doi.org/10.1016/j.mce.2017.01.052)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Riccetti L, De Pascali F, Gilioli L, Poti F, Giva LB, Marino M, Tagliavini S, Trenti T, Fanelli F & Mezzullo M et al.2017a Human LH and hCG stimulate differently the early signalling pathways but result in equal testosterone synthesis in mouse Leydig cells in vitro. Reproductive Biology and Endocrinology 15 2. (https://doi.org/10.1186/s12958-016-0224-3)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Riccetti L, Yvinec R, Klett D, Gallay N, Combarnous Y, Reiter E, Simoni M, Casarini L & Ayoub MA 2017b Human luteinizing hormone and chorionic gonadotropin display biased agonism at the LH and LH/CG receptors. Scientific Reports 7 940. (https://doi.org/10.1038/s41598-017-01078-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sacchi S, Sena P, Degli Esposti C, Lui J & La Marca A 2018 Evidence for expression and functionality of FSH and LH/hCG receptors in human endometrium. Journal of Assisted Reproduction and Genetics 35 17031712. (https://doi.org/10.1007/s10815-018-1248-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Seibel MJ, Dunstan CR, Zhou H, Allan CM & Handelsman DJ 2006 Sex steroids, not FSH, influence bone mass. Cell 127 1079; author reply 10801071. (https://doi.org/10.1016/j.cell.2006.12.002)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shukla AK, Westfield GH, Xiao K, Reis RI, Huang LY, Tripathi-Shukla P, Qian J, Li S, Blanc A & Oleskie AN et al.2014 Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512 218222. (https://doi.org/10.1038/nature13430)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sigal YM, Zhou R & Zhuang X 2018 Visualizing and discovering cellular structures with super-resolution microscopy. Science 361 880887. (https://doi.org/10.1126/science.aau1044)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Simoni M, Santi D, Negri L, Hoffmann I, Muratori M, Baldi E, Cambi M, Marcou M, Greither T & Baraldi E et al.2016 Treatment with human, recombinant FSH improves sperm DNA fragmentation in idiopathic infertile men depending on the FSH receptor polymorphism p.N680S: a pharmacogenetic study. Human Reproduction 31 19601969. (https://doi.org/10.1093/humrep/dew167)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smith JS, Lefkowitz RJ & Rajagopal S 2018 Biased signalling: from simple switches to allosteric microprocessors. Nature Reviews Drug Discovery 17 243260. (https://doi.org/10.1038/nrd.2017.229)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Spangler SM & Bruchas MR 2017 Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits. Current Opinion in Pharmacology 32 5670. (https://doi.org/10.1016/j.coph.2016.11.001)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sposini S & Hanyaloglu AC 2017 Spatial encryption of G protein-coupled receptor signaling in endosomes; mechanisms and applications. Biochemical Pharmacology 143 19. (https://doi.org/10.1016/j.bcp.2017.04.028)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sposini S, Jean-Alphonse FG, Ayoub MA, Oqua A, West C, Lavery S, Brosens JJ, Reiter E & Hanyaloglu AC 2017 Integration of GPCR signaling and sorting from very early endosomes via opposing APPL1 mechanisms. Cell Reports 21 28552867. (https://doi.org/10.1016/j.celrep.2017.11.023)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stelmaszewska J, Chrusciel M, Doroszko M, Akerfelt M, Ponikwicka-Tyszko D, Nees M, Frentsch M, Li X, Kero J & Huhtaniemi I et al.2016 Revisiting the expression and function of follicle-stimulation hormone receptor in human umbilical vein endothelial cells. Scientific Reports 6 37095. (https://doi.org/10.1038/srep37095)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stilley JA, Christensen DE, Dahlem KB, Guan R, Santillan DA, England SK, Al-Hendy A, Kirby PA & Segaloff DL 2014a FSH receptor (FSHR) expression in human extragonadal reproductive tissues and the developing placenta, and the impact of its deletion on pregnancy in mice. Biology of Reproduction 91 74. (https://doi.org/10.1095/biolreprod.114.118562)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stilley JA, Guan R, Duffy DM & Segaloff DL 2014b Signaling through FSH receptors on human umbilical vein endothelial cells promotes angiogenesis. Journal of Clinical Endocrinology and Metabolism 99 E813E820. (https://doi.org/10.1210/jc.2013-3186)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sun L, Peng Y, Sharrow AC, Iqbal J, Zhang Z, Papachristou DJ, Zaidi S, Zhu LL, Yaroslavskiy BB & Zhou H et al.2006 FSH directly regulates bone mass. Cell 125 247260. (https://doi.org/10.1016/j.cell.2006.01.051)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Terrillon S & Bouvier M 2004 Receptor activity-independent recruitment of betaarrestin2 reveals specific signalling modes. EMBO Journal 23 39503961. (https://doi.org/10.1038/sj.emboj.7600387)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thomas RM, Nechamen CA, Mazurkiewicz JE, Ulloa-Aguirre A & Dias JA 2011 The adapter protein APPL1 links FSH receptor to inositol 1,4,5-trisphosphate production and is implicated in intracellular Ca(2+) mobilization. Endocrinology 152 16911701. (https://doi.org/10.1210/en.2010-1353)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thomsen ARB, Plouffe B, Cahill TJ, Shukla AK, Tarrasch JT, Dosey AM, Kahsai AW, Strachan RT, Pani B & Mahoney JP et al.2016 GPCR-G protein-beta-arrestin super-complex mediates sustained G protein signaling. Cell 166 907919. (https://doi.org/10.1016/j.cell.2016.07.004)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tilley DG, Kim IM, Patel PA, Violin JD & Rockman HA 2009 beta-Arrestin mediates beta1-adrenergic receptor-epidermal growth factor receptor interaction and downstream signaling. Journal of Biological Chemistry 284 2037520386. (https://doi.org/10.1074/jbc.M109.005793)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tranchant T, Durand G, Gauthier C, Crepieux P, Ulloa-Aguirre A, Royere D & Reiter E 2011 Preferential beta-arrestin signalling at low receptor density revealed by functional characterization of the human FSH receptor A189 V mutation. Molecular and Cellular Endocrinology 331 109118. (https://doi.org/10.1016/j.mce.2010.08.016)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trefier A, Musnier A, Landomiel F, Bourquard T, Boulo T, Ayoub MA, Leon K, Bruneau G, Chevalier M & Durand G et al.2018 G protein-dependent signaling triggers a beta-arrestin-scaffolded p70S6K/rpS6 module that controls 5′TOP mRNA translation. FASEB Journal 32 11541169. (https://doi.org/10.1096/fj.201700763R)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Troispoux C, Guillou F, Elalouf JM, Firsov D, Iacovelli L, De Blasi A, Combarnous Y & Reiter E 1999 Involvement of G protein-coupled receptor kinases and arrestins in desensitization to follicle-stimulating hormone action. Molecular Endocrinology 13 15991614. (https://doi.org/10.1210/mend.13.9.0342)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Troppmann B, Kleinau G, Krause G & Gromoll J 2013 Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor. Human Reproduction Update 19 583602. (https://doi.org/10.1093/humupd/dmbib23)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Violin JD, Crombie AL, Soergel DG & Lark MW 2014 Biased ligands at G-protein-coupled receptors: promise and progress. Trends in Pharmacological Sciences 35 308316. (https://doi.org/10.1016/j.tips.2014.04.007)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Walton WJ, Nguyen VT, Butnev VY, Singh V, Moore WT & Bousfield GR 2001 Characterization of human FSH isoforms reveals a nonglycosylated beta-subunit in addition to the conventional glycosylated beta-subunit. Journal of Clinical Endocrinology and Metabolism 86 36753685. (https://doi.org/10.1210/jcem.86.8.7712)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wehbi VL, Stevenson HP, Feinstein TN, Calero G, Romero G & Vilardaga J-P 2013 Noncanonical GPCR signaling arising from a PTH receptor-arrestin-Gβγ complex. PNAS 110 15301535. (https://doi.org/10.1073/pnas.1205756110)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wilden U, Wust E, Weyand I & Kuhn H 1986 Rapid affinity purification of retinal arrestin (48 kDa protein) via its light-dependent binding to phosphorylated rhodopsin. FEBS Letters 207 292295. (https://doi.org/10.1016/0014-5793(86)81507-1)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yarwood RE, Imlach WL, Lieu T, Veldhuis NA, Jensen DD, Klein Herenbrink C, Aurelio L, Cai Z, Christie MJ & Poole DP et al.2017 Endosomal signaling of the receptor for calcitonin gene-related peptide mediates pain transmission. PNAS 114 1230912314. (https://doi.org/10.1073/pnas.1706656114)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao Z, Liu XF, Wu HC, Zou SB, Wang JY, Ni PH, Chen XH & Fan QS 2010 Rab5a overexpression promoting ovarian cancer cell proliferation may be associated with APPL1-related epidermal growth factor signaling pathway. Cancer Science 101 14541462. (https://doi.org/10.1111/j.1349-7006.2010.01558.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zoncu R, Perera RM, Balkin DM, Pirruccello M, Toomre D & De Camilli P 2009 A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136 11101121. (https://doi.org/10.1016/j.cell.2009.01.032)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation