Modulatory effects of TGF-β1 and BMP6 on thecal angiogenesis and steroidogenesis in the bovine ovary

in Reproduction

Correspondence should be addressed to P G Knight; Email: p.g.knight@reading.ac.uk

(M Samir is now at College of Veterinary Medicine, University of Wasit, Wasit, Iraq)

Restricted access

Angiogenesis plays an integral role in follicular and luteal development and is positively regulated by several intra-ovarian factors including vascular endothelial growth factor A (VEGFA) and fibroblast growth factor 2 (FGF2). Various transforming growth factor-β (TGF-β) superfamily members function as intra-ovarian regulators of follicle and luteal function, but their potential roles in modulating ovarian angiogenesis have received little attention. In this study, we used a bovine theca interna culture model (exhibiting characteristics of luteinization) to examine the effects of TGF-β1 and bone morphogenetic protein 6 (BMP6) on angiogenesis and steroidogenesis. VEGFA/FGF2 treatment promoted endothelial cell network formation but had little or no effect on progesterone and androstenedione secretion or expression of key steroidogenesis-related genes. TGF-β1 suppressed basal and VEGFA/FGF2-induced endothelial cell network formation and progesterone secretion, effects that were reversed by an activin receptor-like kinase 5 (ALK5) inhibitor (SB-431542). The ALK5 inhibitor alone raised androstenedione secretion and expression of several transcripts including CYP17A1. BMP6 also suppressed endothelial cell network formation under VEGFA/FGF2-stimulated conditions and inhibited progesterone secretion and expression of several steroidogenesis-related genes under basal and VEGFA/FGF2-stimulated conditions. These effects were reversed by an ALK1/2 inhibitor (K02288). Moreover, the ALK1/2 inhibitor alone augmented endothelial network formation, progesterone secretion, androstenedione secretion and expression of several steroidogenesis-related genes. The results indicate dual suppressive actions of both TGF-β1 and BMP6 on follicular angiogenesis and steroidogenesis. Further experiments are needed to unravel the complex interactions between TGF-β superfamily signalling and other regulatory factors controlling ovarian angiogenesis and steroidogenesis.

 

    Society for Reproduction and Fertility

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 72 72 72
Full Text Views 13 13 13
PDF Downloads 7 7 7
  • AbramovichDRodriguez CelinAHernandezFTesoneMParborellF 2009 Spatiotemporal analysis of the protein expression of angiogenic factors and their related receptors during folliculogenesis in rats with and without hormonal treatment. Reproduction 309320. (https://doi.org/10.1530/REP-08-0130)

    • Search Google Scholar
    • Export Citation
  • AkiyamaIYoshinoOOsugaYShiJHaradaMKogaKHirotaYHirataTFujiiTSaitoS 2014 Bone morphogenetic protein 7 increased vascular endothelial growth factor (VEGF)-a expression in human granulosa cells and VEGF receptor expression in endothelial cells. Reproductive Sciences 477482. (https://doi.org/10.1177/1933719113503411)

    • Search Google Scholar
    • Export Citation
  • BerishaBSchamsDKosmannMAmselgruberWEinspanierR 2000 Expression and tissue concentration of vascular endothelial growth factor, its receptors, and localization in the bovine corpus luteum during estrous cycle and pregnancy. Biology of Reproduction 11061114. (https://doi.org/10.1095/biolreprod63.4.1106)

    • Search Google Scholar
    • Export Citation
  • BerishaBSinowatzFSchamsD 2004 Expression and localization of fibroblast growth factor (FGF) family members during the final growth of bovine ovarian follicles. Molecular Reproduction and Development 162171. (https://doi.org/10.1002/mrd.10386)

    • Search Google Scholar
    • Export Citation
  • BerishaBSchamsDRodlerDPfafflMW 2016 Angiogenesis in the ovary – the most important regulatory event for follicle and corpus luteum development and function in cow – an overview. Anatomia Histologia Embryologia 124130. (https://doi.org/10.1111/ahe.12180)

    • Search Google Scholar
    • Export Citation
  • CaiJPardaliESanchez-DuffhuesGten DijkeP 2012 BMP signaling in vascular diseases. FEBS Letters 19932002. (https://doi.org/10.1016/j.febslet.2012.04.030)

    • Search Google Scholar
    • Export Citation
  • CampbellBKBairdDTWebbR 1998 Effects of dose of LH on androgen production and luteinization of ovine theca cells cultured in a serum-free system. Journal of Reproduction and Fertility 6977. (https://doi.org/10.1530/jrf.0.1120069)

    • Search Google Scholar
    • Export Citation
  • CastonguayRWernerEDMatthewsRGPresmanEMulivorAWSolbanNSakoDPearsallRSUnderwoodKWSeehraJ 2011 Soluble endoglin specifically binds bone morphogenetic Proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. Journal of Biological Chemistry 3003430046. (https://doi.org/10.1074/jbc.M111.260133)

    • Search Google Scholar
    • Export Citation
  • CurryTEOsteenKG 2003 The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocrine Reviews 428465. (https://doi.org/10.1210/er.2002-0005)

    • Search Google Scholar
    • Export Citation
  • DavidLFeigeJJBaillyS 2009 Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine and Growth Factor Reviews 203212. (https://doi.org/10.1016/j.cytogfr.2009.05.001)

    • Search Google Scholar
    • Export Citation
  • DeckersMMvan BezooijenRLvan der HorstGHoogendamJvan Der BentCPapapoulosSELowikCW 2002 Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 15451553. (https://doi.org/10.1210/endo.143.4.8719)

    • Search Google Scholar
    • Export Citation
  • ElvinJAClarkATWangPWolfmanNMMatzukMM 1999 Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Molecular Endocrinology 10351048. (https://doi.org/10.1210/mend.13.6.0310)

    • Search Google Scholar
    • Export Citation
  • EricksonGFShimasakiS 2003 The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reproductive Biology and Endocrinology: RB&E 9. (https://doi.org/10.1186/1477-7827-1-9)

    • Search Google Scholar
    • Export Citation
  • FerrariGPintucciGSeghezziGHymanKGallowayACMignattiP 2006 VEGF, a prosurvival factor, acts in concert with TGF-beta 1 to induce endothelial cell apoptosis. PNAS 1726017265. (https://doi.org/10.1073/pnas.0605556103)

    • Search Google Scholar
    • Export Citation
  • FraserHMDuncanWC2005Vascular morphogenesis in the primate ovaryAngiogenesis8101116. (https://doi.org/10.1007/s10456-005-9004-y)

  • GablerCPlath-GablerAKillianGJBerishaBSchamsD 2004 Expression pattern of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) system members in bovine corpus luteum endothelial cells during treatment with FGF-2, VEGF or oestradiol. Reproduction in Domestic Animals: Zuchthygiene 321327. (https://doi.org/10.1111/j.1439-0531.2004.00517.x)

    • Search Google Scholar
    • Export Citation
  • GerhardtHBetsholtzC 2003 Endothelial-pericyte interactions in angiogenesis. Cell and Tissue Research 1523. (https://doi.org/10.1007/s00441-003-0745-x)

    • Search Google Scholar
    • Export Citation
  • GlisterCRichardsSLKnightPG 2005 Bone morphogenetic proteins (BMP) -4, -6, And -7 potently suppress basal and luteinizing hormone-induced androgen production by bovine theca interna cells in primary culture: could ovarian hyperandrogenic dysfunction be caused by a defect in thecal BMP signaling? Endocrinology 18831892. (https://doi.org/10.1210/en.2004-1303)

    • Search Google Scholar
    • Export Citation
  • GlisterCSatchellLKnightPG 2010 Changes in expression of bone morphogenetic proteins (BMPs), their receptors and inhibin co-receptor betaglycan during bovine antral follicle development: inhibin can antagonize the suppressive effect of BMPs on thecal androgen production. Reproduction 699712. (https://doi.org/10.1530/REP-10-0216)

    • Search Google Scholar
    • Export Citation
  • GlisterCSatchellLBathgateRAWadeJDDaiYIvellRAnand-IvellRRodgersRJKnightPG 2013 Functional link between bone morphogenetic proteins and insulin-like peptide 3 signaling in modulating ovarian androgen production. PNAS 110 E1426E1435. (https://doi.org/10.1073/pnas.1222216110)

    • Search Google Scholar
    • Export Citation
  • GoumansMJValdimarsdottirGItohSRosendahlASiderasPten DijkeP 2002 Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO Journal 17431753. (https://doi.org/10.1093/emboj/21.7.1743)

    • Search Google Scholar
    • Export Citation
  • GoumansMJLebrinFValdimarsdottirG 2003 Controlling the angiogenic switch – a balance between two distinct TGF-beta receptor signaling pathways. Trends in Cardiovascular Medicine 301307. (https://doi.org/10.1016/s1050-1738(03)00142-7)

    • Search Google Scholar
    • Export Citation
  • GoumansMJLiuZten DijkeP 2009 TGF-beta signaling in vascular biology and dysfunction. Cell Research 116127. (https://doi.org/10.1038/cr.2008.326)

    • Search Google Scholar
    • Export Citation
  • GuerreroPAMcCartyJH 2017 TGF-beta activation and signaling in AngiogenesisPhysiologic and Pathologic Angiogenesis. In Signaling Mechanisms and Targeted Therapy. D Simionescu A Simionescu (Eds) pp323. IntechOpen. (https://doi.org/10.5772/66405)

    • Search Google Scholar
    • Export Citation
  • HeCChenX 2005 Transcription regulation of the vegf gene by the BMP/Smad pathway in the angioblast of zebrafish embryos. Biochemical and Biophysical Research Communications 324330. (https://doi.org/10.1016/j.bbrc.2005.01.133)

    • Search Google Scholar
    • Export Citation
  • JaradMKuczynskiEAMorrisonJViloria-PetitAMCoomberBL 2017 Release of endothelial cell associated VEGFR2 during TGF-beta modulated angiogenesis in vitro. BMC Cell Biology 10. (https://doi.org/10.1186/s12860-017-0127-y)

    • Search Google Scholar
    • Export Citation
  • JiangJYCheungCKMWangYFTsangBK 2003 Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia. Frontiers in Bioscience-Landmark D222D237a. (https://doi.org/10.2741/949)

    • Search Google Scholar
    • Export Citation
  • JuengelJLMcNattyKP 2005 The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Human Reproduction Update 143160. (https://doi.org/10.1093/humupd/dmh061)

    • Search Google Scholar
    • Export Citation
  • JuengelJLBibbyAHReaderKLLunSQuirkeLDHaydonLJMcNattyKP 2004 The role of transforming growth factor-beta (TGF-beta) during ovarian follicular development in sheep. Reproductive Biology and Endocrinology: RB&E 78. (https://doi.org/10.1186/1477-7827-2-78)

    • Search Google Scholar
    • Export Citation
  • KaneRGodsonCO’BrienC 2008 Chordin-like 1, a bone morphogenetic protein-4 antagonist, is upregulated by hypoxia in human retinal pericytes and plays a role in regulating angiogenesis. Molecular Vision 11381148.

    • Search Google Scholar
    • Export Citation
  • KayaniARGlisterCKnightPG 2009 Evidence for an inhibitory role of bone morphogenetic protein(s) in the follicular-luteal transition in cattle. Reproduction 6778. (https://doi.org/10.1530/REP-08-0198)

    • Search Google Scholar
    • Export Citation
  • KnightPGGlisterC 2006 TGF-beta superfamily members and ovarian follicle development. Reproduction 191206. (https://doi.org/10.1530/rep.1.01074)

    • Search Google Scholar
    • Export Citation
  • KozawaOMatsunoHUematsuT 2001 Involvement of p70 S6 kinase in bone morphogenetic protein signaling: vascular endothelial growth factor synthesis by bone morphogenetic protein-4 in osteoblasts. Journal of Cellular Biochemistry 430436. (https://doi.org/10.1002/1097-4644(20010601)81:3<430::aid-jcb1056>3.0.co;2-g)

    • Search Google Scholar
    • Export Citation
  • KuoSWKeFCChangGDLeeMTHwangJJ 2011 Potential role of follicle-stimulating hormone (FSH) and transforming growth factor (TGFbeta1) in the regulation of ovarian angiogenesis. Journal of Cellular Physiology 16081619. (https://doi.org/10.1002/jcp.22491)

    • Search Google Scholar
    • Export Citation
  • LivakKJSchmittgenTD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 402408. (https://doi.org/10.1006/meth.2001.1262)

    • Search Google Scholar
    • Export Citation
  • MaJWangQFeiTHanJDJChenYG 2007 MCP-1 mediates TGF-beta-induced angiogenesis by stimulating vascular smooth muscle cell migration. Blood 987994. (https://doi.org/10.1182/blood-2006-07-036400)

    • Search Google Scholar
    • Export Citation
  • MaroniDDavisJS 2011 TGFB1 disrupts the angiogenic potential of microvascular endothelial cells of the corpus luteum. Journal of Cell Science 25012510. (https://doi.org/10.1242/jcs.084558)

    • Search Google Scholar
    • Export Citation
  • MustafaDADekkerLJStinglCKremerAStoopMSillevis SmittPAKrosJMLuiderTM 2012 A proteome comparison between physiological angiogenesis and angiogenesis in glioblastoma. Molecular and Cellular Proteomics M111.008466. (https://doi.org/10.1074/mcp.M111.008466)

    • Search Google Scholar
    • Export Citation
  • Nio-KobayashiJTrendellJGiakoumelouSBoswellLNicolLKudoMSakuragiNIwanagaTDuncanWC 2015 Bone morphogenetic proteins are mediators of luteolysis in the human corpus luteum. Endocrinology 14941503. (https://doi.org/10.1210/en.2014-1704)

    • Search Google Scholar
    • Export Citation
  • OhSPSekiTGossKAImamuraTYiYDonahoePKLiLMiyazonoKten DijkePKimS 2000 Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. PNAS 26262631. (https://doi.org/10.1073/pnas.97.6.2626)

    • Search Google Scholar
    • Export Citation
  • OrlovaVVLiuZGoumansMJten DijkeP 2011 Controlling angiogenesis by two unique TGF-beta type I receptor signaling pathways. Histology and Histopathology 12191230. (https://doi.org/10.14670/HH-26.1219)

    • Search Google Scholar
    • Export Citation
  • PepperMSVassalliJDOrciLMontesanoR 1993 Biphasic effect of transforming growth factor-beta 1 on in vitro angiogenesis. Experimental Cell Research 356363. (https://doi.org/10.1006/excr.1993.1043)

    • Search Google Scholar
    • Export Citation
  • PeshavariyaHMChanECLiuGSJiangFDustingGJ 2014 Transforming growth factor-beta 1 requires NADPH oxidase 4 for angiogenesis in vitro and in vivo. Journal of Cellular and Molecular Medicine 11721183. (https://doi.org/10.1111/jcmm.12263)

    • Search Google Scholar
    • Export Citation
  • RenRQCharlesPCZhangCLWuYXWangHPattersonC 2007 Gene expression profiles identify a role for cyclooxygenase 2-dependent prostanoid generation in BMP6-induced angiogenic responses. Blood 28472853. (https://doi.org/10.1182/blood-2006-08-039743)

    • Search Google Scholar
    • Export Citation
  • RobinsonRSHammondAJMannGEHunterMG 2008 A novel physiological culture system that mimics luteal angiogenesis. Reproduction 405413. (https://doi.org/10.1530/REP-07-0370)

    • Search Google Scholar
    • Export Citation
  • RobinsonRSWoadKJHammondAJLairdMHunterMGMannGE 2009 Angiogenesis and vascular function in the ovary. Reproduction 869881. (https://doi.org/10.1530/REP-09-0283)

    • Search Google Scholar
    • Export Citation
  • SanvitaleCEKerrGChaikuadARamelMCMohedasAHReichertSWangYTriffittJTCunyGDYuPB 2013 A new class of small molecule inhibitor of BMP signaling. PLoS ONE e62721. (https://doi.org/10.1371/journal.pone.0062721)

    • Search Google Scholar
    • Export Citation
  • ScharpfeneckerMvan DintherMLiuZvan BezooijenRLZhaoQPukacLLowikCWten DijkeP 2007 BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. Journal of Cell Science 964972. (https://doi.org/10.1242/jcs.002949)

    • Search Google Scholar
    • Export Citation
  • ShaoESLinLYaoYBoströmKI 2009 Expression of vascular endothelial growth factor is coordinately regulated by the activin-like kinase receptors 1 and 5 in endothelial cells. Blood 21972206. (https://doi.org/10.1182/blood-2009-01-199166)

    • Search Google Scholar
    • Export Citation
  • ShimasakiSMooreRKOtsukaFEricksonGF 2004 The bone morphogenetic protein system in mammalian reproduction. Endocrine Reviews 72101. (https://doi.org/10.1210/er.2003-0007)

    • Search Google Scholar
    • Export Citation
  • SmithMFMcIntushEWRickeWAKojimaFNSmithGW 1999 Regulation of ovarian extracellular matrix remodelling by metalloproteinases and their tissue inhibitors: effects on follicular development, ovulation and luteal function. Journal of Reproduction and Fertility: Supplement 367381. (https://doi.org/10.1530/biosciprocs.4.029)

    • Search Google Scholar
    • Export Citation
  • ten DijkePArthurHM 2007 Extracellular control of TGF beta signalling in vascular development and disease. Nature Reviews: Molecular Cell Biology 857869. (https://doi.org/10.1038/nrm2262)

    • Search Google Scholar
    • Export Citation
  • ValdimarsdottirGGoumansMJRosendahlABrugmanMItohSLebrinFSiderasPten DijkeP 2002 Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation 22632270. (https://doi.org/10.1161/01.cir.0000033830.36431.46)

    • Search Google Scholar
    • Export Citation
  • VinalsFPouyssegurJ 2001 Transforming growth factor beta1 (TGF-beta1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-alpha signaling. Molecular and Cellular Biology 72187230. (https://doi.org/10.1128/MCB.21.21.7218-7230.2001)

    • Search Google Scholar
    • Export Citation
  • VogtJTraynorRSapkotaGP 2011 The specificities of small molecule inhibitors of the TGF beta and BMP pathways. Cellular Signalling 18311842. (https://doi.org/10.1016/j.cellsig.2011.06.019)

    • Search Google Scholar
    • Export Citation
  • WoadKJRobinsonRS 2016 Luteal angiogenesis and its control. Theriogenology 221228. (https://doi.org/10.1016/j.theriogenology.2016.04.035)

    • Search Google Scholar
    • Export Citation
  • WoadKJHammondAJHunterMMannGEHunterMGRobinsonRS 2009 Temporal regulation of luteal angiogenesis by FGF2 in vitro. Biology of Reproduction 81 552552. (https://doi.org/10.1093/biolreprod/81.s1.552)

    • Search Google Scholar
    • Export Citation
  • WoadKJHunterMGMannGELairdMHammondAJRobinsonRS 2012 Fibroblast growth factor 2 is a key determinant of vascular sprouting during bovine luteal angiogenesis. Reproduction 3543. (https://doi.org/10.1530/REP-11-0277)

    • Search Google Scholar
    • Export Citation
  • WulffCDicksonSEDuncanWCFraserHM 2001 Angiogenesis in the human corpus luteum: simulated early pregnancy by HCG treatment is associated with both angiogenesis and vessel stabilization. Human Reproduction 25152524. (https://doi.org/10.1093/humrep/16.12.2515)

    • Search Google Scholar
    • Export Citation
  • WulffCWilsonHWiegandSJRudgeJSFraserHM 2002 Prevention of thecal angiogenesis, antral follicular growth, and ovulation in the primate by treatment with vascular endothelial growth factor trap R1R2. Endocrinology 27972807. (https://doi.org/10.1210/endo.143.7.8886)

    • Search Google Scholar
    • Export Citation
  • YamashitaHKamadaDShirasunaKMatsuiMShimizuTKidaKBerishaBSchamsDMiyamotoA 2008 Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow. Molecular Reproduction and Development 14491456. (https://doi.org/10.1002/mrd.20878)

    • Search Google Scholar
    • Export Citation
  • YangMYFortuneJE 2007 Vascular endothelial growth factor stimulates the primary to secondary follicle transition in bovine follicles in vitro. Molecular Reproduction and Development 10951104. (https://doi.org/10.1002/mrd.20633)

    • Search Google Scholar
    • Export Citation