IFNT-independent effects of intrauterine extracellular vesicles (EVs) in cattle

in Reproduction

Correspondence should be addressed to K Kusama; Email: kusamak@toyaku.ac.jp
Restricted access

Extracellular vesicles (EVs) present in uterine lumen are involved in conceptus-endometrial interactions during the pre-implantation period. Despite numerous studies conducted on interferon tau (IFNT), a major protein of maternal recognition of pregnancy, the effect of intrauterine EVs on the endometrium during pre-implantation periods has not been well-characterized. To characterize conceptus-derived intrauterine EVs independent of IFNT, transcripts found from RNA-seq analysis in RNAs extracted from primary bovine endometrial epithelial cells (EECs) treated with cyclic day 17 (C17) EVs, pregnant day 17 (P17) EVs or IFNT were analyzed. These analyses identified 82 transcripts uniquely induced by IFNT-independent P17 EVs, of which a large number of transcripts were associated with ‘the TNF signaling pathway’ and ‘Inflammatory response’. Moreover, high expression of CD40L, a member of the TNF superfamily, and its receptor CD40 were found in P17 EVs and in EECs, respectively. Furthermore, the expression of TNF signaling pathway-related genes was up-regulated by the treatment with P17 EVs, but these increases were down-regulated by NF-kB signaling inhibitor. These findings suggest that P17 EVs could induce a pro-inflammatory response in the endometrium, independent of IFNT, to regulate uterine receptivity, facilitating conceptus implantation.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 556 556 379
Full Text Views 37 37 19
PDF Downloads 19 19 12
  • BaiRLatifiZKusamaKNakamuraKShimadaMImakawaK 2018 Induction of immune-related gene expression by seminal exosomes in the porcine endometrium. Biochemical and Biophysical Research Communications 495 10941101. (https://doi.org/10.1016/j.bbrc.2017.11.100)

    • Search Google Scholar
    • Export Citation
  • BauersachsSUlbrichSEReichenbachHDReichenbachMBüttnerMMeyerHHSpencerTEMintenMSaxGWinterG et al. 2012 Comparison of the effects of early pregnancy with human interferon, alpha 2 (IFNA2), on gene expression in bovine endometrium. Biology of Reproduction 86 46. (https://doi.org/10.1095/biolreprod.111.094771)

    • Search Google Scholar
    • Export Citation
  • BazerFWThatcherWW 2017 Chronicling the discovery of interferon tau. Reproduction 154 F11F20. (https://doi.org/10.1530/REP-17-0257)

  • BurnsGBrooksKWildungMNavakanitworakulRChristensonLKSpencerTE 2014 Extracellular vesicles in luminal fluid of the ovine uterus. PLoS ONE 9 e90913. (https://doi.org/10.1371/journal.pone.0090913)

    • Search Google Scholar
    • Export Citation
  • BurnsGWBrooksKESpencerTE 2016 Extracellular vesicles originate from the conceptus and uterus during early pregnancy in sheep. Biology of Reproduction 94 56. (https://doi.org/10.1095/biolreprod.115.134973)

    • Search Google Scholar
    • Export Citation
  • BurnsGWBrooksKEO’NeilEVHagenDEBehuraSKSpencerTE 2018 Progesterone effects on extracellular vesicles in the sheep uterus. Biology of Reproduction 98 612622. (https://doi.org/10.1093/biolre/ioy011)

    • Search Google Scholar
    • Export Citation
  • ChengZChauhanLBarryATAbudureyimuAOguejioforCFChenXWathesDC 2017 Acute bovine viral diarrhea virus infection inhibits expression of interferon tau-stimulated genes in bovine endometrium. Biology of Reproduction 96 11421153. (https://doi.org/10.1093/biolre/iox056)

    • Search Google Scholar
    • Export Citation
  • CleysERHalleranJLMcWhorterEHergenrederJEnriquezVAda SilveiraJCBruemmerJEWingerQABoumaGJ 2014 Identification of microRNAs in exosomes isolated from serum and umbilical cord blood, as well as placentomes of gestational day 90 pregnant sheep. Molecular Reproduction and Development 81 983993. (https://doi.org/10.1002/mrd.22420)

    • Search Google Scholar
    • Export Citation
  • EalyADWooldridgeLK 2017 The evolution of interferon-tau. Reproduction 154 F1F10. (https://doi.org/10.1530/REP-17-0292)

  • FordeNLonerganP 2017 Interferon-tau and fertility in ruminants. Reproduction 154 F33F43. (https://doi.org/10.1530/REP-17-0432)

  • FordeNCarterFSpencerTEBazerFWSandraOMansouri-AttiaNOkumuLAMcGettiganPAMehtaJPMcBrideR et al. 2011 Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant? Biology of Reproduction 85 144156. (https://doi.org/10.1095/biolreprod.110.090019)

    • Search Google Scholar
    • Export Citation
  • FordeNMcGettiganPAMehtaJPO’HaraLMamoSBazerFWSpencerTELonerganP 2014 Proteomic analysis of uterine fluid during the pre-implantation period of pregnancy in cattle. Reproduction 147 575587. (https://doi.org/10.1530/REP-13-0010)

    • Search Google Scholar
    • Export Citation
  • FordeNBazerFWSpencerTELonerganP 2015 ‘Conceptualizing’ the endometrium: identification of conceptus-derived proteins during early pregnancy in cattle. Biology of Reproduction 92 156. (https://doi.org/10.1095/biolreprod.115.129296)

    • Search Google Scholar
    • Export Citation
  • GnainskyYGranotIAldoPBBarashAOrYSchechtmanEMorGDekelN 2010 Local injury of the endometrium induces an inflammatory response that promotes successful implantation. Fertility and Sterility 94 20302036. (https://doi.org/10.1016/j.fertnstert.2010.02.022)

    • Search Google Scholar
    • Export Citation
  • GranotIGnainskyYDekelN 2012 Endometrial inflammation and effect on implantation improvement and pregnancy outcome. Reproduction 144 661668. (https://doi.org/10.1530/REP-12-0217)

    • Search Google Scholar
    • Export Citation
  • HennVSlupskyJRGräfeMAnagnostopoulosIFörsterRMüller-BerghausGKroczekRA 1998 CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391 591594. (https://doi.org/10.1038/35393)

    • Search Google Scholar
    • Export Citation
  • HostagerBSBishopGA 2013 CD40-mediated activation of the NF-κB2 pathway. Frontiers in Immunology 4 376. (https://doi.org/10.3389/fimmu.2013.00376)

    • Search Google Scholar
    • Export Citation
  • IdetaAUrakawaMAoyagiYSaekiK 2007 Early development in utero of bovine nuclear transfer embryos using early G1 and G0 phase cells. Cloning and Stem Cells 9 571580. (https://doi.org/10.1089/clo.2007.0017)

    • Search Google Scholar
    • Export Citation
  • KellyRWKingAECritchleyHO 2001 Cytokine control in human endometrium. Reproduction 121 319. (https://doi.org/10.1530/rep.0.1210003)

  • KusamaKBaiRIdetaAAoyagiYOkudaKImakawaK 2016 Regulation of epithelial to mesenchymal transition in bovine conceptuses through the interaction between follistatin and activin A. Molecular and Cellular Endocrinology 434 8192. (https://doi.org/10.1016/j.mce.2016.06.017)

    • Search Google Scholar
    • Export Citation
  • KusamaKBaiRNakamuraKOkadaSYasudaJImakawaK 2017 Endometrial factors similarly induced by IFNT2 and IFNTc1 through transcription factor FOXS1. PLoS ONE 12 e0171858. (https://doi.org/10.1371/journal.pone.0171858)

    • Search Google Scholar
    • Export Citation
  • KusamaKNakamuraKBaiRNagaokaKSakuraiTImakawaK 2018a Intrauterine exosomes are required for bovine conceptus implantation. Biochemical and Biophysical Research Communications 495 13701375. (https://doi.org/10.1016/j.bbrc.2017.11.176)

    • Search Google Scholar
    • Export Citation
  • KusamaKBaiRImakawaK 2018b Regulation of human trophoblast cell syncytialization by transcription factors STAT5B and NR4A3. Journal of Cellular Biochemistry 119 49184927. (https://doi.org/10.1002/jcb.26721)

    • Search Google Scholar
    • Export Citation
  • MamoSMehtaJPMcGettiganPFairTSpencerTEBazerFWLonerganP 2011 RNA sequencing reveals novel gene clusters in bovine conceptuses associated with maternal recognition of pregnancy and implantation. Biology of Reproduction 85 11431151. (https://doi.org/10.1095/biolreprod.111.092643)

    • Search Google Scholar
    • Export Citation
  • Mansouri-AttiaNAubertJReinaudPGiraud-DelvilleCTaghoutiGGalioLEvertsREDegrelleSRichardCHueI et al. 2009 Gene expression profiles of bovine caruncular and intercaruncular endometrium at implantation. Physiological Genomics 39 1427. (https://doi.org/10.1152/physiolgenomics.90404.2008)

    • Search Google Scholar
    • Export Citation
  • MathewDJLucyMCD GeisertR 2016 Interleukins, interferons, and establishment of pregnancy in pigs. Reproduction 151 111122. (https://doi.org/10.1530/REP-16-0047)

    • Search Google Scholar
    • Export Citation
  • MathewDJSánchezJMPassaroCCharpignyGBehuraSKSpencerTELonerganP 2019 Interferon tau-dependent and independent effects of the bovine conceptus on the endometrial transcriptome. Biology of Reproduction 100 365380. (https://doi.org/10.1093/biolre/ioy199)

    • Search Google Scholar
    • Export Citation
  • MellishoEAVelásquezAENuñezMJCabezasJGCuetoJAFaderCCastroFORodríguez-ÁlvarezL 2017 Identification and characteristics of extracellular vesicles from bovine blastocysts produced in vitro. PLoS ONE 12 e0178306. (https://doi.org/10.1371/journal.pone.0178306)

    • Search Google Scholar
    • Export Citation
  • MorGCardenasIAbrahamsVGullerS 2011 Inflammation and pregnancy: the role of the immune system at the implantation site. Annals of the New York Academy of Sciences 1221 8087. (https://doi.org/10.1111/j.1749-6632.2010.05938.x)

    • Search Google Scholar
    • Export Citation
  • NakamuraKKusamaKBaiRSakuraiTIsuzugawaKGodkinJDSudaYImakawaK 2016 Induction of IFNT-stimulated genes by conceptus-derived exosomes during the attachment period. PLoS ONE 11 e0158278. (https://doi.org/10.1371/journal.pone.0158278)

    • Search Google Scholar
    • Export Citation
  • NakamuraKKusamaKBaiRIshikawaSFukushimaSSudaYImakawaK 2017 Increase in complement iC3b is associated with anti-inflammatory cytokine expression during late pregnancy in mice. PLoS ONE 12 e0178442. (https://doi.org/10.1371/journal.pone.0178442)

    • Search Google Scholar
    • Export Citation
  • NguyenHPSimpsonRJSalamonsenLAGreeningDW 2016 Extracellular vesicles in the intrauterine environment: challenges and potential functions. Biology of Reproduction 95 109. (https://doi.org/10.1095/biolreprod.116.143503)

    • Search Google Scholar
    • Export Citation
  • PiehlLLFischmanMLHellmanUCisaleHMirandaPV 2013 Boar seminal plasma exosomes: effect on sperm function and protein identification by sequencing. Theriogenology 79 10711082. (https://doi.org/10.1016/j.theriogenology.2013.01.028)

    • Search Google Scholar
    • Export Citation
  • PrunottoMFarinaALaneLPerninASchifferliJHochstrasserDFLescuyerPMollS 2013 Proteomic analysis of podocyte exosome-enriched fraction from normal human urine. Journal of Proteomics 82 193229. (https://doi.org/10.1016/j.jprot.2013.01.012)

    • Search Google Scholar
    • Export Citation
  • QianYZhaoZJiangZLiX 2002 Role of NF kappa B activator Act1 in CD40-mediated signaling in epithelial cells. PNAS 99 93869391. (https://doi.org/10.1073/pnas.142294499)

    • Search Google Scholar
    • Export Citation
  • RobertsRM 2017 30 years on from the molecular cloning of interferon-tau. Reproduction 154 E1E2. (https://doi.org/10.1530/REP-17-0585)

    • Search Google Scholar
    • Export Citation
  • Ruiz-GonzálezIXuJWangXBurghardtRCDunlapKABazerFW 2015 Exosomes, endogenous retroviruses and toll-like receptors: pregnancy recognition in ewes. Reproduction 149 281291. (https://doi.org/10.1530/REP-14-0538)

    • Search Google Scholar
    • Export Citation
  • SakuraiTBaiHBaiRAraiMIwazawaMZhangJKonnoTGodkinJDOkudaKImakawaK 2012 Coculture system that mimics in vivo attachment processes in bovine trophoblast cells. Biology of Reproduction 87 60. (https://doi.org/10.1095/biolreprod.112.100180)

    • Search Google Scholar
    • Export Citation
  • SánchezJMMathewDJBehuraSKPassaroCCharpignyGButlerSTSpencerTELonerganP 2019 Bovine endometrium responds differentially to age-matched short and long conceptuses. Biology of Reproduction 101 2639. (https://doi.org/10.1093/biolre/ioz060)

    • Search Google Scholar
    • Export Citation
  • SimintirasCASánchezJMMcDonaldMMartinsTBinelliMLonerganP 2019a Biochemical characterization of progesterone-induced alterations in bovine uterine fluid amino acid and carbohydrate composition during the conceptus elongation window. Biology of Reproduction 100 672685. (https://doi.org/10.1093/biolre/ioy234)

    • Search Google Scholar
    • Export Citation
  • SimintirasCASánchezJMMcDonaldMLonerganP 2019b Progesterone alters the bovine uterine fluid lipidome during the period of elongation. Reproduction 157 399411. (https://doi.org/10.1530/REP-18-0615)

    • Search Google Scholar
    • Export Citation
  • SimintirasCASánchezJMMcDonaldMLonerganP 2019c The influence of progesterone on bovine uterine fluid energy, nucleotide, vitamin, cofactor, peptide, and xenobiotic composition during the conceptus elongation-initiation window. Scientific Reports 9 7716. (https://doi.org/10.1038/s41598-019-44040-6)

    • Search Google Scholar
    • Export Citation
  • SpencerTEFordeNDorniakPHansenTRRomeroJJLonerganP 2013 Conceptus-derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants. Reproduction 146 377387. (https://doi.org/10.1530/REP-13-0165)

    • Search Google Scholar
    • Export Citation
  • ThéryCWitwerKWAikawaEAlcarazMJAndersonJDAndriantsitohainaRAntoniouAArabTArcherFAtkin-SmithGK et al. 2018 Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for extracellular vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles 7 1535750. (https://doi.org/10.1080/20013078.2018.1535750)

    • Search Google Scholar
    • Export Citation
  • WalkerCGMeierSLittlejohnMDLehnertKRocheJRMitchellMD 2010 Modulation of the maternal immune system by the pre-implantation embryo. BMC Genomics 11 474. (https://doi.org/10.1186/1471-2164-11-474)

    • Search Google Scholar
    • Export Citation
  • WiltbankMCBaezGMGarcia-GuerraAToledoMZMonteiroPLMeloLFOchoaJCSantosJESartoriR 2016 Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology 86 239253. (https://doi.org/10.1016/j.theriogenology.2016.04.037)

    • Search Google Scholar
    • Export Citation