ETV2-null porcine embryos survive to post-implantation following incomplete enucleation

in Reproduction
Authors:
Geunho Maeng Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA

Search for other papers by Geunho Maeng in
Current site
Google Scholar
PubMed
Close
,
Wuming Gong Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA

Search for other papers by Wuming Gong in
Current site
Google Scholar
PubMed
Close
,
Satyabrata Das Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA

Search for other papers by Satyabrata Das in
Current site
Google Scholar
PubMed
Close
,
Demetris Yannopoulos Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA

Search for other papers by Demetris Yannopoulos in
Current site
Google Scholar
PubMed
Close
,
Daniel J Garry Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, Minnesota, USA
NorthStar Genomics, Eagan, Minnesota, USA

Search for other papers by Daniel J Garry in
Current site
Google Scholar
PubMed
Close
, and
Mary G Garry Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, Minnesota, USA
NorthStar Genomics, Eagan, Minnesota, USA

Search for other papers by Mary G Garry in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to M G Garry; Email: garry002@umn.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

Blind enucleation is used in porcine somatic cell nuclear transfer (SCNT) to remove the metaphase II (MII) spindle from the oocyte. Deviation of the MII spindle location, however, leads to incomplete enucleation (IE). Here, we report that the rate of complete enucleation (CE) using the blind method was 80.2 ± 1.7%, although this significantly increased when the polar body-MII deviation was minimized (≦45°). While it is established that IE embryos will not survive to full term, the effect of IE on early stage development is unknown. We have previously demonstrated in mice and pigs that ETV2 deletion results in embryonic lethality due to the lack of hematoendothelial lineages. We observed that ETV2-null cloned embryos derived from blindly and incompletely enucleated oocytes had both WT and mutant sequences at E18 and, using FISH analysis, we observed triploidy. We also compared SCNT embryos generated from either CE or intentionally IE oocytes using the spindle viewer system. We observed a higher in vitro blastocyst rate in the IE versus the CE-SCNT embryos (31.9 ± 3.2% vs 21.0 ± 2.1%). Based on known processes in normal fertilization, we infer that the IE-SCNT embryos extruded the haploid second PB after fusion with donor fibroblasts and formed a near-triploid aneuploid nucleus in each blastomere. These studies demonstrate the peri-implantation survival of residual haploid nuclei following IE and emphasize the need for complete enucleation especially for the analysis of SCNT embryos in the peri-implantation stage and will, further, impact the field of reverse xenotransplantation.

 

  • Collapse
  • Expand
  • Behrens AN, Zierold C, Shi X, Ren Y, Koyano-Nakagawa N, Garry DJ & Martin CM 2014 Sox7 is regulated by ETV2 during cardiovascular development. Stem Cells and Development 23 20042013. (https://doi.org/10.1089/scd.2013.0525)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bureau WS, Bordignon V, Léveillée C, Smith LC & King WA 2003 Assessment of chromosomal abnormalities in bovine nuclear transfer embryos and in their donor cells. Cloning and Stem Cells 5 123132. (https://doi.org/10.1089/153623003322234722)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Caamaño JN, Maside C, Gil MA, Muñoz M, Cuello C, Díez C, Sánchez-Osorio JR, Martín D, Gomis J & Vazquez JM et al.2011 Use of polarized light microscopy in porcine reproductive technologies. Theriogenology 76 669677. (https://doi.org/10.1016/j.theriogenology.2011.03.020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chan SS-K, Shi X, Toyama A, Arpke RW, Dandapat A, Iacovino M, Kang J, Le G, Hagen HR & Garry DJ et al.2013 Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner. Cell Stem Cell 12 587601. (https://doi.org/10.1016/j.stem.2013.03.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Das S, Koyano-Nakagawa N, Gafni O, Maeng G, Singh BN, Rasmussen T, Pan X, Choi K-D, Mickelson D & Gong W et al.2020 Generation of human endothelium in pig embryos deficient in ETV2. Nature Biotechnology. In press (https://doi.org/10.1038/s41587-019-0373-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fu B, Liu D, Ma H, Guo ZH, Wang L, Li ZQ, Peng FG & Bai J 2016 Development of porcine tetraploid somatic cell nuclear transfer embryos is influenced by oocyte nuclei. Cell Biology International 40 214222. (https://doi.org/10.1002/cbin.10554)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garry DJ 2016 Etv2 is a master regulator of hematoendothelial lineages. Transactions of the American Clinical and Climatological Association 127 212223.

  • Gong W, Rasmussen TL, Singh BN, Koyano-Nakagawa N, Pan W & Garry DJ 2017 Dpath software reveals hierarchical haemato-endothelial lineages of Etv2 progenitors based on single-cell transcriptome analysis. Nature Communications 8 14362. (https://doi.org/10.1038/ncomms14362)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iuso D, Czernik M, Zacchini F, Ptak G & Loi P 2013 A simplified approach for oocyte enucleation in mammalian cloning. Cellular Reprogramming 15 490494. (https://doi.org/10.1089/cell.2013.0051)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jeon RH, Maeng GH, Lee WJ, Kim TH, Lee YM, Lee JH, Kumar BM, Lee SL & Rho GJ 2012 Removal of cumulus cells before oocyte nuclear maturation enhances enucleation rates without affecting the developmental competence of porcine cloned embryos. Japanese Journal of Veterinary Research 60 191203. (https://doi.org/10.14943/jjvr.60.4.191)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koyano-Nakagawa N & Garry DJ 2017 Etv2 as an essential regulator of mesodermal lineage development. Cardiovascular Research 113 12941306. (https://doi.org/10.1093/cvr/cvx133)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koyano-Nakagawa N, Kweon J, Iacovino M, Shi X, Rasmussen TL, Borges L, Zirbes KM, Li T, Perlingeiro RCR & Kyba M et al.2012 Etv2 is expressed in the yolk sac hematopoietic and endothelial progenitors and regulates Lmo2 gene expression. Stem Cells 30 16111623. (https://doi.org/10.1002/stem.1131)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koyano-Nakagawa N, Shi X, Rasmussen TL, Das S, Walter CA & Garry DJ 2015 Feedback mechanisms regulate ets variant 2 (Etv2) gene expression and hematoendothelial lineages. Journal of Biological Chemistry 290 2810728119. (https://doi.org/10.1074/jbc.M115.662197)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A & Day BN et al.2002 Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295 10891092. (https://doi.org/10.1126/science.1068228)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lai L & Prather RS 2003 Production of cloned pigs by using somatic cells as donors. Cloning and Stem Cells 5 233241. (https://doi.org/10.1089/153623003772032754)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li GP, White KL & Bunch TD 2004 Review of enucleation methods and procedures used in animal cloning: state of the art. Cloning and Stem Cells 6 513. (https://doi.org/10.1089/15362300460743781)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li Y, Liu J, Dai J, Xing F, Fang Z, Zhang T, Shi Z, Zhang D & Chen X 2010 Production of cloned miniature pigs by enucleation using the spindle view system. Reproduction in Domestic Animals 45 608613. (https://doi.org/10.1111/j.1439-0531.2008.01311.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lin T, Diao YF, Choi HS, Oqani RK, Kang JW, Lee JE & Jin DIl 2015 Procedure used for denuding pig oocytes influences oocyte damage, and development of in vitro and nuclear transfer embryos. Animal Reproduction Science 152 6576. (https://doi.org/10.1016/j.anireprosci.2014.11.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McFadden DE & Robinson WP 2006 Phenotype of triploid embryos. Journal of Medical Genetics 43 609612. (https://doi.org/10.1136/jmg.2005.037747)

  • Moon JH, Hyun CS, Lee SW, Son WY, Yoon SH & Lim JH 2003 Visualization of the metaphase II meiotic spindle in living human oocytes using the polscope enables the prediction of embryonic developmental competence after ICSI. Human Reproduction 18 817820. (https://doi.org/10.1093/humrep/deg165)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rasmussen TL, Shi X, Wallis A, Kweon J, Zirbes KM, Koyano-Nakagawa N & Garry DJ 2012 VEGF/Flk1 signaling cascade transactivates Etv2 gene expression. PLoS ONE 7 e50103. (https://doi.org/10.1371/journal.pone.0050103)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rasmussen TL, Martin CM, Walter CA, Shi X, Perlingeiro R, Koyano-Nakagawa N & Garry DJ 2013 Etv2 rescues Flk1 mutant embryoid bodies. Genesis 51 471480. (https://doi.org/10.1002/dvg.22396)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rienzi L, Martinez F, Ubaldi F, Minasi MG, Iacobelli M, Tesarik J & Greco E 2004 Polscope analysis of meiotic spindle changes in living metaphase II human oocytes during the freezing and thawing procedures. Human Reproduction 19 655659. (https://doi.org/10.1093/humrep/deh101)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Singh BN, Kawakami Y, Akiyama R, Rasmussen TL, Garry MG, Gong W, Das S, Shi X, Koyano-Nakagawa N & Garry DJ 2015 The Etv2-miR-130a network regulates mesodermal specification. Cell Reports 13 915923. (https://doi.org/10.1016/j.celrep.2015.09.060)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smith LC 1993 Membrane and intracellular effects of ultraviolet irradiation with hoechst 33342 on bovine secondary oocytes matured in vitro. Journal of Reproduction and Fertility 99 3944. (https://doi.org/10.1530/jrf.0.0990039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, Samuel MS, Mao J, O’Gorman C & Walters EM et al.2014 Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biology of Reproduction 91 78. (https://doi.org/10.1095/biolreprod.114.121723)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wilmut I, Schnieke AE, McWhir J, Kind AJ & Campbell KH 1997 Viable offspring derived from fetal and adult mammalian cells. Nature 385 810813. (https://doi.org/10.1038/385810a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wramsby H & Liedholm P 1984 A gradual fixation method for chromosomal preparations of human oocytes. Fertility and Sterility 41 736738. (https://doi.org/10.1016/S0015-0282(16)47841-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamagata K, Iwamoto D, Terashita Y, Li C, Wakayama S, Hayashi-Takanaka Y, Kimura H, Saeki K & Wakayama T 2012 Fluorescence cell imaging and manipulation using conventional halogen lamp microscopy. PLoS ONE 7 e31638. (https://doi.org/10.1371/journal.pone.0031638)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yuan Y, Spate LD, Redel BK, Tian Y, Zhou J, Prather RS & Roberts RM 2017 Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation. PNAS 114 E5796E5804. (https://doi.org/10.1073/pnas.1703998114)

    • PubMed
    • Search Google Scholar
    • Export Citation