The follicular microenvironment in low (++) and high (I+B+) ovulation rate ewes

in Reproduction
Authors:
Zaramasina L Clark School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand

Search for other papers by Zaramasina L Clark in
Current site
Google Scholar
PubMed
Close
,
Derek A Heath School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand

Search for other papers by Derek A Heath in
Current site
Google Scholar
PubMed
Close
,
Anne R O’Connell AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand

Search for other papers by Anne R O’Connell in
Current site
Google Scholar
PubMed
Close
,
Jennifer L Juengel AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand

Search for other papers by Jennifer L Juengel in
Current site
Google Scholar
PubMed
Close
,
Kenneth P McNatty School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand

Search for other papers by Kenneth P McNatty in
Current site
Google Scholar
PubMed
Close
, and
Janet L Pitman School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand

Search for other papers by Janet L Pitman in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to J L Pitman; Email: janet.pitman@vuw.ac.nz
Restricted access
Rent on DeepDyve

Sign up for journal news

Ewes with single copy mutations in GDF9, BMP15 or BMPR1B have smaller preovulatory follicles containing fewer granulosa cells (GC), while developmental competency of the oocyte appears to be maintained. We hypothesised that similarities and/or differences in follicular maturation events between WT (++) ewes and mutant ewes with single copy mutations in BMP15 and BMPR1B (I+B+) are key to the attainment of oocyte developmental competency and for increasing ovulation rate (OR) without compromising oocyte quality. Developmental competency of oocytes from I+B+ animals was confirmed following embryo transfer to recipient ewes. The microenvironment of both growing and presumptive preovulatory (PPOV) follicles from ++ and I+B+ ewes was investigated. When grouped according to gonadotropin-responsiveness, PPOV follicles from I+B+ ewes had smaller mean diameters with fewer GC than equivalent follicles in ++ ewes (OR = 4.4 ± 0.7 and 1.7 ± 0.2, respectively; P < 0.001). Functional differences between these genotypes included differential gonadotropin-responsiveness of GC, follicular fluid composition and expression levels of cumulus cell-derived VCAN, PGR, EREG and BMPR2 genes. A unique microenvironment was characterised in I+B+ follicles as they underwent maturation. Our evidence suggests that GC were less metabolically active, resulting in increased follicular fluid concentrations of amino acids and metabolic substrates, potentially protecting the oocyte from ROS. Normal expression levels of key genes linked to oocyte quality and embryo survival in I+B+ follicles support the successful lambing percentage of transferred I+B+ oocytes. In conclusion, these I+B+ oocytes develop normally, despite radical changes in follicular size and GC number induced by these combined heterozygous mutations.

Supplementary Materials

    • Supplementary Data 1: Experiment 1: Determination of embryo viability in ewes heterozygous for the Inverdale (I) and Booroola (B) gene mutations
    • Supplementary Table 1: Summary of data collected from each animal.
    • Supplementary Table 2: Sequence information (NCBI accession numbers) and optimized concentration (nM) of primers and TaqMan probes
    • Supplementary Table 3: Mean ± SEM availability, per million granulosa cells (GC), of constituents in follicular fluid extracted from individual growing and PPOV follicles of ++ and I+B+ ewes.

 

  • Collapse
  • Expand
  • Bierkamp C, Luxey M, Metchat A, Audouard C, Dumollard R & Christians E 2010 Lack of maternal heat shock factor 1 results in multiple cellular and developmental defects, including mitochondrial damage and altered redox homeostasis, and leads to reduced survival of mammalian oocytes and embryos. Developmental Biology 339 338353. (https://doi.org/10.1016/j.ydbio.2009.12.037)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bilodeau-Goeseels S 2007 Effects of manipulating the nitric oxide/cyclic GMP pathway on bovine oocyte meiotic resumption in vitro. Theriogenology 68 693701. (https://doi.org/10.1016/j.theriogenology.2007.05.063)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blondin P, Coenen K, Guilbault LA & Sirard MA 1996 Superovulation can reduce the developmental competence of bovine embryos. Theriogenology 46 11911203. (https://doi.org/10.1016/s0093-691x(96)00290-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bloomfield FH, van Zijl PL, Bauer MK & Harding JE 2002 Effects of intrauterine growth restriction and intraamniotic insulin-like growth factor-I treatment on blood and amniotic fluid concentrations and on fetal gut uptake of amino acids in late-gestation ovine fetuses. Journal of Pediatric Gastroenterology and Nutrition 35 287297. (https://doi.org/10.1097/00005176-200209000-00010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boland MP, Gordon I & Kelleher DL 1978 The effect of treatment by prostaglandin analogue (ICI–80, 996) or progestagen (SC-9880) on ovulation and fertilization in cyclic ewes. Journal of Agricultural Science 91 727730. (https://doi.org/10.1017/S0021859600060123)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boland NI, Humpherson PG, Leese HJ & Gosden RG 1994 Characterization of follicular energy metabolism. Human Reproduction 9 604609. (https://doi.org/10.1093/oxfordjournals.humrep.a138557)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bottiglieri T 2002 S-adenosyl-l-methionine (SAMe): from the bench to the bedside – molecular basis of a pleiotrophic molecule. American Journal of Clinical Nutrition 76 1151S1157S. (https://doi.org/10.1093/ajcn/76/5.1151S)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brannian J, Eyster K, Mueller BA, Bietz MG & Hansen K 2010 Differential gene expression in human granulosa cells from recombinant FSH versus human menopausal gonadotropin ovarian stimulation protocols. Reproductive Biology and Endocrinology 8 25. (https://doi.org/10.1186/1477-7827-8-25)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Calder MD, Caveney AN, Smith LC & Watson AJ 2003 Responsiveness of bovine cumulus-oocyte-complexes (COC) to porcine and recombinant human FSH, and the effect of COC quality on gonadotropin receptor and Cx43 marker gene mRNAs during maturation in vitro. Reproductive Biology and Endocrinology 1 14. (https://doi.org/10.1186/1477-7827-1-14)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Campbell BK, Souza CJH, Skinner AJ, Webb R & Baird DT 2006 Enhanced response of granulosa and theca cells from sheep carriers of the FecB mutation in vitro to gonadotropins and bone morphogenic protein-2, -4, and -6. Endocrinology 147 16081620. (https://doi.org/10.1210/en.2005-0604)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen AQ, Yu SD, Wang ZG, Xu ZR & Yang ZG 2009 Stage-specific expression of bone morphogenetic protein type I and type II receptor genes: effects of follicle-stimulating hormone on ovine antral follicles. Animal Reproduction Science 111 391399. (https://doi.org/10.1016/j.anireprosci.2008.03.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Christians E, Davis AA, Thomas SD & Benjamin IJ 2000 Maternal effect of Hsf1 on reproductive success. Nature 407 693694. (https://doi.org/10.1038/35037669)

  • Chu T, Dufort I & Sirard MA 2012 Effect of ovarian stimulation on oocyte gene expression in cattle. Theriogenology 77 19281938. (https://doi.org/10.1016/j.theriogenology.2012.01.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cotterill M, Catt SL & Picton HM 2012 Characterisation of the cellular and molecular responses of ovine oocytes and their supporting somatic cells to pre-ovulatory levels of LH and FSH during in vitro maturation. Reproduction 144 195207. (https://doi.org/10.1530/REP-12-0031)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Crawford JL, Heath DA, Reader KL, Quirke LD, Hudson NL, Juengel JL & McNatty KP 2011 Oocytes in sheep homozygous for a mutation in bone morphogenetic protein receptor 1B express lower mRNA levels of bone morphogenetic protein 15 but not growth differentiation factor 9. Reproduction 142 5361. (https://doi.org/10.1530/REP-10-0485)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davis GH, Dodds KG & Bruce GD 1999 Combined effect of the Inverdale and Booroola prolificacy genes on ovulation rate in sheep Proceedings of the Association of the Advancement of Animal Breeding and Genetics 13 7477.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Downs SM & Utecht AM 1999 Metabolism of radiolabeled glucose by mouse oocytes and oocyte-cumulus cell complexes. Biology of Reproduction 60 14461452. (https://doi.org/10.1095/biolreprod60.6.1446)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dutta DJ, Raj H & Dev AH 2016 Polyadenylated tail length variation pattern in ultra-rapid vitrified bovine oocytes. Veterinary World 9 10701074. (https://doi.org/10.14202/vetworld.2016.1070-1074)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Edwards RG 1970 Are oocytes formed and used sequentially in the mammalian ovary? [and Discussion]. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences 259 103105. (https://doi.org/10.1098/rstb.1970.0049)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eppig JJ 2001 Oocyte control of ovarian follicular development and function in mammals. Reproduction 122 829838. (https://doi.org/10.1530/rep.0.1220829)

  • Fabre S, Pierre A, Mulsant P, Bodin L, Di Pasquale E, Persani L, Monget P & Monniaux D 2006 Regulation of ovulation rate in mammals: contribution of sheep genetic models. Reproductive Biology and Endocrinology 4 20. (https://doi.org/10.1186/1477-7827-4-20)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feary ES, Juengel JL, Smith P, French MC, O’Connell AR, Lawrence SB, Galloway SM, Davis GH & McNatty KP 2007 Patterns of expression of messenger RNAs encoding GDF9, BMP15, TGFBR1, BMPR1B, and BMPR2 during follicular development and characterization of ovarian follicular populations in ewes carrying the Woodlands FecX2W mutation. Biology of Reproduction 77 990998. (https://doi.org/10.1095/biolreprod.107.062752)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fülöp C, Salustri A & Hascall VC 1997 Coding sequence of a hyaluronan synthase homologue expressed during expansion of the mouse cumulus–oocyte complex. Archives of Biochemistry and Biophysics 337 261266. (https://doi.org/10.1006/abbi.1996.9793)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galloway SM, McNatty KP, Cambridge LM, Laitinen MPE, Juengel JL, Jokiranta TS, McLaren RJ, Luiro K, Dodds KG & Montgomery GW et al. 2000 Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nature Genetics 25 279283. (https://doi.org/10.1038/77033)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gao LL, Zhou CX, Zhang XL, Liu P, Jin Z, Zhu GY, Ma Y, Li J, Yang ZX & Zhang D 2017 ZP3 is required for germinal vesicle breakdown in mouse oocyte meiosis. Scientific Reports 7 41272. (https://doi.org/10.1038/srep41272)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gilchrist RB & Thompson JG 2007 Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro. Theriogenology 67 615. (https://doi.org/10.1016/j.theriogenology.2006.09.027)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gilchrist RB, Lane M & Thompson JG 2008 Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Human Reproduction Update 14 159177. (https://doi.org/10.1093/humupd/dmm040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gilchrist RB, Luciano AM, Richani D, Zeng HT, Wang X, Vos MD, Sugimura S, Smitz J, Richard FJ & Thompson JG 2016 Oocyte maturation and quality: role of cyclic nucleotides. Reproduction 152 R143R157. (https://doi.org/10.1530/REP-15-0606)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Green MP, Ledgard AM, Beaumont SE, Berg MC, McNatty KP, Peterson AJ & Back PJ 2011 Long-term alteration of follicular steroid concentrations in relation to subclinical endometritis in postpartum dairy cows. Journal of Animal Science 89 35513560. (https://doi.org/10.2527/jas.2011-3958)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guo X, Wang X, Di R, Liu Q, Hu W, He X, Yu J, Zhang X, Zhang J & Broniowska K et al. 2018 Metabolic effects of FecB gene on follicular fluid and ovarian vein serum in sheep (Ovis aries). International Journal of Molecular Sciences 19 5366. (https://doi.org/10.3390/ijms19020539)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, Powell R & Galloway SM 2004 Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biology of Reproduction 70 900909. (https://doi.org/10.1095/biolreprod.103.023093)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harris SE, Adriaens I, Leese HJ, Gosden RG & Picton HM 2007 Carbohydrate metabolism by murine ovarian follicles and oocytes grown in vitro. Reproduction 134 415424. (https://doi.org/10.1530/REP-07-0061)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Henderson KM, Kieboom LE, McNatty KP, Lun S & Heath D 1985 Gonadotrophin-stimulated cyclic AMP production by granulosa cells from Booroola × Romney ewes with and without a fecundity gene. Journal of Reproduction and Fertility 75 111120. (https://doi.org/10.1530/jrf.0.0750111)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Henderson KM, McNatty KP, O’Keeffe LE, Lun S, Heath DA & Prisk MD 1987 Differences in gonadotrophin-stimulated cyclic AMP production by granulosa cells from Booroola × Merino ewes which were homozygous, heterozygous or non-carriers of a fecundity gene influencing their ovulation rate. Journal of Reproduction and Fertility 81 395402. (https://doi.org/10.1530/jrf.0.0810395)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hudson NL, Berg MC, Green MP, Back PJ, Thorstensen EB, Peterson AJ, Pitman JL & McNatty KP 2014 The microenvironment of the ovarian follicle in the postpartum dairy cow: effects on reagent transfer from cumulus cells to oocytes in vitro. Theriogenology 82 563573. (https://doi.org/10.1016/j.theriogenology.2014.05.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hussein TS, Thompson JG & Gilchrist RB 2006 Oocyte-secreted factors enhance oocyte developmental competence. Developmental Biology 296 514521. (https://doi.org/10.1016/j.ydbio.2006.06.026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jayawardana BC, Shimizu T, Nishimoto H, Kaneko E, Tetsuka M & Miyamoto A 2006 Hormonal regulation of expression of growth differentiation factor-9 receptor type I and II genes in the bovine ovarian follicle. Reproduction 131 545553. (https://doi.org/10.1530/rep.1.00885)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jeppesen JV, Kristensen SG, Nielsen ME, Humaidan P, Dal Canto M, Fadini R, Schmidt KT, Ernst E & Yding Andersen C 2012 LH-receptor gene expression in human granulosa and cumulus cells from antral and preovulatory follicles. Journal of Clinical Endocrinology and Metabolism 97 E1524E1531. (https://doi.org/10.1210/jc.2012-1427)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jolly PD, Tisdall DJ, De’ath G, Heath DA, Lun S, Hudson NL & McNatty KP 1997 Granulosa cell apoptosis, aromatase activity, cyclic adenosine 3′,5′-monophosphate response to gonadotropins, and follicular fluid steroid levels during spontaneous and induced follicular atresia in ewes. Biology of Reproduction 56 830836. (https://doi.org/10.1095/biolreprod56.4.830)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Juengel JL 2018 How the quest to improve sheep reproduction provided insight into oocyte control of follicular development. Journal of the Royal Society of New Zealand 48 143163. (https://doi.org/10.1080/03036758.2017.1421238)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Juengel JL, Bodensteiner KJ, Heath DA, Hudson NL, Moeller CL, Smith P, Galloway SM, Davis GH, Sawyer HR & McNatty KP 2004 Physiology of GDF9 and BMP15 signalling molecules. Animal Reproduction Science 82–83 447460. (https://doi.org/10.1016/j.anireprosci.2004.04.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Juengel JL, Davis GH & McNatty KP 2013 Using sheep lines with mutations in single genes to better understand ovarian function. Reproduction 146 R111R123. (https://doi.org/10.1530/REP-12-0509)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Juengel JL, French MC, Quirke LD, Kauff A, Smith GW & Johnstone PD 2017 Differential expression of CART in ewes with differing ovulation rates. Reproduction 153 471479. (https://doi.org/10.1530/REP-16-0657)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kwon NS, Nathan CF, Gilker C, Griffith OW, Matthews DE & Stuehr DJ 1990 L-citrulline production from L-arginine by macrophage nitric oxide synthase. The ureido oxygen derives from dioxygen. Journal of Biological Chemistry 265 1344213445.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • LeBaron RG, Zimmermann DR & Ruoslahti E 1992 Hyaluronate binding properties of versican. Journal of Biological Chemistry 267 1000310010.

  • Li P & Wu G 2018 Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 50 2938. (https://doi.org/10.1007/s00726-017-2490-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li SH, Lin MH, Hwu YM, Lu CH, Yeh LY, Chen YJ & Lee RK-K 2015 Correlation of cumulus gene expression of GJA1, PRSS35, PTX3, and SERPINE2 with oocyte maturation, fertilization, and embryo development. Reproductive Biology and Endocrinology 13 93. (https://doi.org/10.1186/s12958-015-0091-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Livak KJ & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25 402408. (https://doi.org/10.1006/meth.2001.1262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Logan KA, Juengel JL & McNatty KP 2002 Onset of steroidogenic enzyme gene expression during ovarian follicular development in sheep. Biology of Reproduction 66 906916. (https://doi.org/10.1095/biolreprod66.4.906)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA, Shyamala G, Conneely OM & O’Malley BW 1995 Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes and Development 9 22662278. (https://doi.org/10.1101/gad.9.18.2266)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mattson MP & Shea TB 2003 Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends in Neurosciences 26 137146. (https://doi.org/10.1016/S0166-2236(03)00032-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McNatty KP, Smith DM, Makris A, Osathanondh R & Ryan KJ 1979 The microenvironment of the human antral follicle: interrelationships among the steroid levels in antral fluid, the population of granulosa cells, and the status of the oocyte in vivo and in vitro. Journal of Clinical Endocrinology and Metabolism 49 851860. (https://doi.org/10.1210/jcem-49-6-851)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McNatty KP, Heath DA, Henderson KM, Lun S, Hurst PR, Ellis LM, Montgomery GW, Morrison L & Thurley DC 1984 Some aspects of thecal and granulosa cell function during follicular development in the bovine ovary. Journal of Reproduction and Fertility 72 3953. (https://doi.org/10.1530/jrf.0.0720039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McNatty KP, Lun S, Heath DA, Ball K, Smith P, Hudson NL, McDiarmid J, Gibb M & Henderson KM 1986 Differences in ovarian activity between Booroola × Merino ewes which were homozygous, heterozygous and non-carriers of a major gene influencing their ovulation rate. Journal of Reproduction and Fertility 77 193205. (https://doi.org/10.1530/jrf.0.0770193)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McNatty KP, Lun S, Hudson NL & Forbes S 1990 Effects of follicle stimulating hormone, cholera toxin, pertussis toxin and forskolin on adenosine cyclic 3′,5′-monophosphate output by granulosa cells from Booroola ewes with or without the F gene. Journal of Reproduction and Fertility 89 553563. (https://doi.org/10.1530/jrf.0.0890553)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McNatty KP, Smith P, Moore LG, Reader K, Lun S, Hanrahan JP, Groome NP, Laitinen M, Ritvos O & Juengel JL 2005 Oocyte-expressed genes affecting ovulation rate. Molecular and Cellular Endocrinology 234 5766. (https://doi.org/10.1016/j.mce.2004.08.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McNatty KP, Heath DA, Hudson NL, Lun S, Juengel JL & Moore LG 2009 Gonadotrophin-responsiveness of granulosa cells from bone morphogenetic protein 15 heterozygous mutant sheep. Reproduction 138 545551. (https://doi.org/10.1530/REP-09-0154)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McNatty KP, Heath DA, Hudson NL, Reader KL, Quirke L, Lun S & Juengel JL 2010 The conflict between hierarchical ovarian follicular development and superovulation treatment. Reproduction 140 287294. (https://doi.org/10.1530/REP-10-0165)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McNatty K, Pitman J & Juengel J 2014 Oocyte-somatic cell interactions and ovulation rate: effects on oocyte quality and embryo yield. Reproductive Biology Insights 7 18. (https://doi.org/10.4137/RBI.S12146)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McNatty KP, Heath DA, Clark Z, Reader KL, Juengel JL & Pitman J 2016 Ovarian follicular characteristics in sheep with multiple fecundity genes. Reproduction 153 233240.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mehlmann LM 2005 Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction 130 791799. (https://doi.org/10.1530/rep.1.00793)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moor RM, Hay MF & Seamark RF 1975 The sheep ovary: regulation of steroidogenic, haemodynamic and structural changes in the largest follicle and adjacent tissue before ovulation. Journal of Reproduction and Fertility 45 595604. (https://doi.org/10.1530/jrf.0.0450595)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moore LG, Ng-Chie W, Lun S, Lawrence SB, Young W & McNatty KP 1997 Follicle-stimulating hormone in the brushtail Possum (Trichosurus vulpecula): purification, characterization, and radioimmunoassay. General and Comparative Endocrinology 106 3038. (https://doi.org/10.1006/gcen.1996.6847)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moore RK, Otsuka F & Shimasaki S 2003 Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. Journal of Biological Chemistry 278 304310. (https://doi.org/10.1074/jbc.M207362200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mulsant P, Lecerf F, Fabre S, Schibler L, Monget P, Lanneluc I, Pisselet C, Riquet J, Monniaux D & Callebaut I et al. 2001 Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes. PNAS 98 51045109. (https://doi.org/10.1073/pnas.091577598)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nio-Kobayashi J, Trendell J, Giakoumelou S, Boswell L, Nicol L, Kudo M, Sakuragi N, Iwanaga T & Duncan WC 2015 Bone morphogenetic proteins are mediators of luteolysis in the human corpus luteum. Endocrinology 156 14941503. (https://doi.org/10.1210/en.2014-1704)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Niswender GD, McNatty KP, Smith P, Niswender KD, Farin CE & Sawyer HR 1990 Numbers of steroidogenic luteal cells in Booroola Merino ewes. Journal of Reproduction and Fertility 90 185190. (https://doi.org/10.1530/jrf.0.0900185)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Otsuka F, Yamamoto S, Erickson GF & Shimasaki S 2001 Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. Journal of Biological Chemistry 276 1138711392. (https://doi.org/10.1074/jbc.M010043200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paradis F, Novak S, Murdoch GK, Dyck MK, Dixon WT & Foxcroft GR 2009 Temporal regulation of BMP2, BMP6, BMP15, GDF9, BMPR1A, BMPR1B, BMPR2 and TGFBR1 mRNA expression in the oocyte, granulosa and theca cells of developing preovulatory follicles in the pig. Reproduction 138 115129. (https://doi.org/10.1530/REP-08-0538)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park OK & Mayo KE 1991 Transient expression of progesterone receptor messenger RNA in ovarian granulosa cells after the preovulatory luteinizing hormone surge. Molecular Endocrinology 5 967978. (https://doi.org/10.1210/mend-5-7-967)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park JY, Su YQ, Ariga M, Law E, Jin SL & Conti M 2004 EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 303 682684. (https://doi.org/10.1126/science.1092463)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patrizio P & Sakkas D 2009 From oocyte to baby: a clinical evaluation of the biological efficiency of in vitro fertilization. Fertility and Sterility 91 10611066. (https://doi.org/10.1016/j.fertnstert.2008.01.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Regan SLP, Knight PG, Yovich JL, Stanger JD, Leung Y, Arfuso F, Dharmarajan A & Almahbobi G 2016 Dysregulation of granulosal bone morphogenetic protein receptor 1B density is associated with reduced ovarian reserve and the age-related decline in human fertility. Molecular and Cellular Endocrinology 425 8493. (https://doi.org/10.1016/j.mce.2016.01.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Richard FJ, Tsafriri A & Conti M 2001 Role of phosphodiesterase type 3A in rat oocyte maturation. Biology of Reproduction 65 14441451. (https://doi.org/10.1095/biolreprod65.5.1444)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Robker RL, Russell DL, Espey LL, Lydon JP, O’Malley BW & Richards JS 2000 Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. PNAS 97 46894694. (https://doi.org/10.1073/pnas.080073497)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Russell DL, Ochsner SA, Hsieh M, Mulders S & Richards JS 2003 Hormone-regulated expression and localization of versican in the rodent ovary. Endocrinology 144 10201031. (https://doi.org/10.1210/en.2002-220434)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sawyer HR, Smith P, Heath DA, Juengel JL, Wakefield SJ & McNatty KP 2002 Formation of ovarian follicles during fetal development in sheep. Biology of Reproduction 66 11341150. (https://doi.org/10.1095/biolreprod66.4.1134)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scaramuzzi RJ, Brown HM & Dupont J 2010 Nutritional and metabolic mechanisms in the ovary and their role in mediating the effects of diet on folliculogenesis: a perspective. Reproduction in Domestic Animals 45 (Supplement 3) 3241. (https://doi.org/10.1111/j.1439-0531.2010.01662.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shackell GH, Hudson NL, Heath DA, Lun S, Shaw L, Condell L, Blay LR & McNatty KP 1993 Plasma gonadotropin concentrations and ovarian characteristics in Inverdale ewes that are heterozygous for a major gene (FecX1) on the X chromosome that influences ovulation rate. Biology of Reproduction 48 11501156. (https://doi.org/10.1095/biolreprod48.5.1150)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Su YQ, Sugiura K, Wigglesworth K, O’Brien MJ, Affourtit JP, Pangas SA, Matzuk MM & Eppig JJ 2008 Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 135 111121. (https://doi.org/10.1242/dev.009068)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sugiura K, Pendola FL & Eppig JJ 2005 Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Developmental Biology 279 2030. (https://doi.org/10.1016/j.ydbio.2004.11.027)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sugiura K, Su YQ & Eppig JJ 2009 Targeted suppression of Has2 mRNA in mouse cumulus cell-oocyte complexes by adenovirus-mediated short-hairpin RNA expression. Molecular Reproduction and Development 76 537547. (https://doi.org/10.1002/mrd.20971)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sugimura S, Ritter LJ, Rose RD, Thompson JG, Smitz J, Mottershead DG & Gilchrist RB 2015 Promotion of EGF receptor signaling improves the quality of low developmental competence oocytes. Developmental Biology 403 139149. (https://doi.org/10.1016/j.ydbio.2015.05.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sutton-McDowall ML, Gilchrist RB & Thompson JG 2010 The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 139 685695. (https://doi.org/10.1530/REP-09-0345)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Telfer EE & Zelinski MB 2013 Ovarian follicle culture: advances and challenges for human and nonhuman primates. Fertility and Sterility 99 15231533. (https://doi.org/10.1016/j.fertnstert.2013.03.043)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thorstensen EB, Derraik JGB, Oliver MH, Jaquiery AL, Bloomfield FH & Harding JE 2012 Effects of periconceptional undernutrition on maternal taurine concentrations in sheep. British Journal of Nutrition 107 466472. (https://doi.org/10.1017/S0007114511003266)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vitt UA, Mazerbourg S, Klein C & Hsueh AJW 2002 Bone morphogenetic protein receptor type II is a receptor for growth differentiation factor-9. Biology of Reproduction 67 473480. (https://doi.org/10.1095/biolreprod67.2.473)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Washington JM, Rathjen J, Felquer F, Lonic A, Bettess MD, Hamra N, Semendric L, Tan BSN, Lake JA & Keough RA et al. 2010 L-proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. American Journal of Physiology: Cell Physiology 298 C982C992. (https://doi.org/10.1152/ajpcell.00498.2009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Webb R & England BG 1982 Identification of the ovulatory follicle in the ewe: associated changes in follicular size, thecal and granulosa cell luteinizing hormone receptors, antral fluid steroids, and circulating hormones during the preovulatory period. Endocrinology 110 873881. (https://doi.org/10.1210/endo-110-3-873)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang Y & Li Z 2005 Roles of heat shock protein gp96 in the ER quality control: redundant or unique function? Molecules and Cells 20 173182.

  • Yoshino O, McMahon HE, Sharma S & Shimasaki S 2006 A unique preovulatory expression pattern plays a key role in the physiological functions of BMP-15 in the mouse. PNAS 103 1067810683. (https://doi.org/10.1073/pnas.0600507103)

    • PubMed
    • Search Google Scholar
    • Export Citation