Hormonally controlled ILC antigen presentation potential is reduced during pregnancy

in Reproduction
Authors:
Rebekka Einenkel Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany

Search for other papers by Rebekka Einenkel in
Current site
Google Scholar
PubMed
Close
,
Jens Ehrhardt Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany

Search for other papers by Jens Ehrhardt in
Current site
Google Scholar
PubMed
Close
,
Kristin Hartmann Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany

Search for other papers by Kristin Hartmann in
Current site
Google Scholar
PubMed
Close
,
Diana Krüger Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany

Search for other papers by Diana Krüger in
Current site
Google Scholar
PubMed
Close
,
Damián Oscar Muzzio Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany

Search for other papers by Damián Oscar Muzzio in
Current site
Google Scholar
PubMed
Close
, and
Marek Zygmunt Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany

Search for other papers by Marek Zygmunt in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to D O Muzzio; Email: damian.muzzio@med.uni-greifswald.de
Restricted access
Rent on DeepDyve

Sign up for journal news

Strategically located in mucosal barriers, innate lymphoid cells (ILCs) are relevant in local containment and tolerance of commensal microflora. ILCs have been recently described at the fetomaternal interface, where the development of a semi-allogeneic fetus can only succeed in a well-controlled immune environment. We postulate that ILCs adapt their antigen presentation capacity to protect pregnancy from excessive immune responses. Human ILCs were studied in deciduae of term pregnancies, peripheral blood and in in vitro generated ILCs. Fresh isolated lymphocytes or cells treated with pregnancy-related factors were investigated. The fetal antigen rejection-based CBA/J × DBA/2J mouse model (poor outcome pregnant mice; POPM) was used to characterize ILC antigen presentation potential in normal and immunologically disturbed pregnancies. ILC antigen presentation potential was characterized by flow cytometry and qPCR. We discovered that the distribution of ILC subsets changed during both human and murine pregnancy. Moreover, the pregnancy was accompanied by reduced MHCII expression in splenic ILCs during normal pregnancy (CBA/J × BALB/c; good outcome pregnant mice; GOPM) but increased in splenic and intestinal ILCs of CBA/J × DBA/2J mice. In vitro, splenic ILCs from pregnant mice increased MHCII expression after stimulation with IL-1β and IL-23. In contrast, uterine ILCs displayed lower MHCII expression, which remained unchanged after stimulation. Finally, pregnancy-related factors and hormones present in the uterine environment reduced antigen presentation potential of human ILCs in vitro. Together, these data indicate that, during pregnancy, peripheral and especially uterine ILCs adapt their antigen presenting potential to maintain a level of tolerance and support pregnancy.

Supplementary Materials

    • Supplementary Figure 1. Flow cytometry plots show the gating strategy of ex vivo analyzed samples from murine (A) spleen (SPL), thymus (Thy), peritoneal cavity (PerC) and uterus (see analysis in Figure 1A) or (B) spleen (see analysis in Figure 2A). (C) In vitro generated ILC3s, derived from human umbilical cord blood CD34+ stem cells, were sorted (lin-NKp44+), stimulated as indicated and analyzed for phenotypic characteristics. Grey areas show the FMOs and overlapping histograms the stained samples.

 

  • Collapse
  • Expand
  • Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J & Versalovic J 2014 The placenta harbors a unique microbiome. Science Translational Medicine 6 237ra65. (https://doi.org/10.1126/scitranslmed.3008599)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aghaeepour N, Ganio EA, McIlwain D, Tsai AS, Tingle M, Van Gassen S, Gaudilliere DK, Baca Q, McNeil L & Okada R et al. 2017 An immune clock of human pregnancy. Science Immunology 2 eaan2946. (https://doi.org/10.1126/sciimmunol.aan2946)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ahmed A, Singh J, Khan Y, Seshan SV & Girardi G 2010 A new mouse model to explore therapies for preeclampsia. PLoS ONE 5 e13663. (https://doi.org/10.1371/journal.pone.0013663)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Amirchaghmaghi E, Taghavi SA, Shapouri F, Saeidi S, Rezaei A & Aflatoonian R 2013 The role of toll like receptors in pregnancy. International Journal of Fertility and Sterility 7 147154.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arruvito L, Payaslian F, Baz P, Podhorzer A, Billordo A, Pandolfi J, Semeniuk G, Arribalzaga E & Fainboim L 2014 Identification and clinical relevance of naturally occurring human CD8+HLA-DR+ regulatory T cells. Journal of Immunology 193 44694476. (https://doi.org/10.4049/jimmunol.1401490)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bartemes K, Chen CC, Iijima K, Drake L & Kita H 2018 IL-33-responsive group 2 innate lymphoid cells are regulated by female sex hormones in the uterus. Journal of Immunology 200 229236. (https://doi.org/10.4049/jimmunol.1602085)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bartmann C, Segerer SE, Rieger L, Kapp M, Sutterlin M & Kammerer U 2014 Quantification of the predominant immune cell populations in decidua throughout human pregnancy. American Journal of Reproductive Immunology 71 109119. (https://doi.org/10.1111/aji.12185)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bauché D & Marie JC 2017 Transforming growth factor beta: a master regulator of the gut microbiota and immune cell interactions. Clinical and Translational Immunology 6 e136. (https://doi.org/10.1038/cti.2017.9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bernink JH, Peters CP, Munneke M, te Velde AA, Meijer SL, Weijer K, Hreggvidsdottir HS, Heinsbroek SE, Legrand N & Buskens CJ et al. 2013 Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nature Immunology 14 221229. (https://doi.org/10.1038/ni.2534)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bonney EA & Brown SA 2014 To drive or be driven: the path of a mouse model of recurrent pregnancy loss. Reproduction 147 R153R167. (https://doi.org/10.1530/REP-13-0583)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chaouat G, Assal Meliani A, Martal J, Raghupathy R, Elliott JF, Mosmann T & Wegmann TG 1995 IL-10 prevents naturally occurring fetal loss in the CBA x DBA/2 mating combination, and local defect in IL-10 production in this abortion-prone combination is corrected by in vivo injection of IFN-tau. Journal of Immunology 154 42614268. (https://doi.org/10.4049/jimmunol.175.5.3447-d)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clark DA, McDermott MR & Szewczuk MR 1980 Impairment of host-versus-graft reaction in pregnant mice. II. Selective suppression of cytotoxic T-cell generation correlates with soluble suppressor activity and with successful allogeneic pregnancy. Cellular Immunology 52 106118. (https://doi.org/10.1016/0008-8749(80)90404-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clark DA, Chaput A & Tutton D 1986 Active suppression of host-vs-graft reaction in pregnant mice. VII. Spontaneous abortion of allogeneic CBA/J x DBA/2 fetuses in the uterus of CBA/J mice correlates with deficient non-T suppressor cell activity. Journal of Immunology 136 16681675.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clark DA, Chaouat G & Gorczynski RM 2002 Thinking outside the box: mechanisms of environmental selective pressures on the outcome of the materno-fetal relationship. American Journal of Reproductive Immunology 47 275282. (https://doi.org/10.1034/j.1600-0897.2002.01093.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clark DA, Manuel J, Lee L, Chaouat G, Gorczynski RM & Levy GA 2004 Ecology of danger-dependent cytokine-boosted spontaneous abortion in the CBA x DBA/2 mouse model. I. Synergistic effect of LPS and (TNF-alpha + IFN-gamma) on pregnancy loss. American Journal of Reproductive Immunology 52 370378. (https://doi.org/10.1111/j.1600-0897.2004.00237.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clark DA, Rahmati M, Gohner C, Bensussan A, Markert UR & Chaouat G 2013 Seminal plasma peptides may determine maternal immune response that alters success or failure of pregnancy in the abortion-prone CBAxDBA/2 model. Journal of Reproductive Immunology 99 4653. (https://doi.org/10.1016/j.jri.2013.03.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Collado MC, Rautava S, Aakko J, Isolauri E & Salminen S 2016 Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Scientific Reports 6 23129. (https://doi.org/10.1038/srep23129)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Colonna M 2018 Innate lymphoid cells: diversity, plasticity, and unique functions in immunity. Immunity 48 11041117. (https://doi.org/10.1016/j.immuni.2018.05.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Croxatto D, Micheletti A, Montaldo E, Orecchia P, Loiacono F, Canegallo F, Calzetti F, Fulcheri E, Munari E & Zamo A et al. 2016 Group 3 innate lymphoid cells regulate neutrophil migration and function in human decidua. Mucosal Immunology 9 13721383. (https://doi.org/10.1038/mi.2016.10)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diefenbach A, Colonna M & Romagnani C 2017 The ILC world revisited. Immunity 46 327332. (https://doi.org/10.1016/j.immuni.2017.03.008)

  • Dixon ME, Chien EK, Osol G, Callas PW & Bonney EA 2006 Failure of decidual arteriolar remodeling in the CBA/J x DBA/2 murine model of recurrent pregnancy loss is linked to increased expression of tissue inhibitor of metalloproteinase 2 (TIMP-2). American Journal of Obstetrics and Gynecology 194 113119. (https://doi.org/10.1016/j.ajog.2005.06.063)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Doisne JM, Balmas E, Boulenouar S, Gaynor LM, Kieckbusch J, Gardner L, Hawkes DA, Barbara CF, Sharkey AM & Brady HJ et al. 2015 Composition, development, and function of uterine innate lymphoid cells. Journal of Immunology 195 39373945. (https://doi.org/10.4049/jimmunol.1500689)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Doyle RM, Alber DG, Jones HE, Harris K, Fitzgerald F, Peebles D & Klein N 2014 Term and preterm labour are associated with distinct microbial community structures in placental membranes which are independent of mode of delivery. Placenta 35 10991101. (https://doi.org/10.1016/j.placenta.2014.10.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Erlebacher A, Vencato D, Price KA, Zhang D & Glimcher LH 2007 Constraints in antigen presentation severely restrict T cell recognition of the allogeneic fetus. Journal of Clinical Investigation 117 13991411. (https://doi.org/10.1172/JCI28214)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Evans J 2016 Hyperglycosylated hCG: a unique human implantation and invasion factor. American Journal of Reproductive Immunology 75 333340. (https://doi.org/10.1111/aji.12459)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Girardi G, Yarilin D, Thurman JM, Holers VM & Salmon JE 2006 Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. Journal of Experimental Medicine 203 21652175. (https://doi.org/10.1084/jem.20061022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hamilton MS & Hamilton BL 1987 Environmental influences on immunologically associated spontaneous abortion in CBA/J mice. Journal of Reproductive Immunology 11 237241. (https://doi.org/10.1016/0165-0378(87)90060-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hepworth MR, Monticelli LA, Fung TC, Ziegler CG, Grunberg S, Sinha R, Mantegazza AR, Ma HL, Crawford A & Angelosanto JM et al. 2013 Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498 113117. (https://doi.org/10.1038/nature12240)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ingman WV & Robertson SA 2009 The essential roles of TGFB1 in reproduction. Cytokine and Growth Factor Reviews 20 233239. (https://doi.org/10.1016/j.cytogfr.2009.05.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jiang M, Liu H, Li Z, Wang J, Zhang F, Cao K, Li F & Ding J 2019 ILC2s induce adaptive Th2-type immunity in acute exacerbation of chronic obstructive pulmonary disease. Mediators of Inflammation 2019 3140183. (https://doi.org/10.1155/2019/3140183)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jin LP, Zhou YH, Wang MY, Zhu XY & Li DJ 2005 Blockade of CD80 and CD86 at the time of implantation inhibits maternal rejection to the allogeneic fetus in abortion-prone matings. Journal of Reproductive Immunology 65 133146. (https://doi.org/10.1016/j.jri.2004.08.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jones RL, Stoikos C, Findlay JK & Salamonsen LA 2006 TGF-beta superfamily expression and actions in the endometrium and placenta. Reproduction 132 217232. (https://doi.org/10.1530/rep.1.01076)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kumar P & Magon N 2012 Hormones in pregnancy. Nigerian Medical Journal 53 179183. (https://doi.org/10.4103/0300-1652.107549)

  • Li Y, Lopez GE, Vazquez J, Sun Y, Chavarria M, Lindner PN, Fredrickson S, Karst N & Stanic AK 2018 Decidual-placental immune landscape during syngeneic murine pregnancy. Frontiers in Immunology 9 2087. (https://doi.org/10.3389/fimmu.2018.02087)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lim AI, Li Y, Lopez-Lastra S, Stadhouders R, Paul F, Casrouge A, Serafini N, Puel A, Bustamante J & Surace L et al. 2017 Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168 10861100.e10. (https://doi.org/10.1016/j.cell.2017.02.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Loyon R, Jary M, Salome B, Gomez-Cadena A, Galaine J, Kroemer M, Romero P, Trabanelli S, Adotevi O & Borg C et al. 2019 Peripheral innate lymphoid cells are increased in first line metastatic colorectal carcinoma patients: a negative correlation with Th1 immune responses. Frontiers in Immunology 10 2121. (https://doi.org/10.3389/fimmu.2019.02121)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, Barra CM, Comerma L, Chudnovskiy A & Gentile M et al. 2014 Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nature Immunology 15 354364. (https://doi.org/10.1038/ni.2830)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Male V, Hughes T, McClory S, Colucci F, Caligiuri MA & Moffett A 2010 Immature NK cells, capable of producing IL-22, are present in human uterine mucosa. Journal of Immunology 185 39133918. (https://doi.org/10.4049/jimmunol.1001637)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mao G, Wang J, Kang Y, Tai P, Wen J, Zou Q, Li G, Ouyang H, Xia G & Wang B 2010 Progesterone increases systemic and local uterine proportions of CD4+CD25+ Treg cells during midterm pregnancy in mice. Endocrinology 151 54775488. (https://doi.org/10.1210/en.2010-0426)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McKelvey KJ, Yenson VM, Ashton AW, Morris JM & McCracken SA 2016 Embryonic/fetal mortality and intrauterine growth restriction is not exclusive to the CBA/J sub-strain in the CBA x DBA model. Scientific Reports 6 35138. (https://doi.org/10.1038/srep35138)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mor G, Cardenas I, Abrahams V & Guller S 2011 Inflammation and pregnancy: the role of the immune system at the implantation site. Annals of the New York Academy of Sciences 1221 8087. (https://doi.org/10.1111/j.1749-6632.2010.05938.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mor G, Aldo P & Alvero AB 2017 The unique immunological and microbial aspects of pregnancy. Nature Reviews. Immunology 17 469482. (https://doi.org/10.1038/nri.2017.64)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moretta F, Petronelli F, Lucarelli B, Pitisci A, Bertaina A, Locatelli F, Mingari MC, Moretta L & Montaldo E 2016 The generation of human innate lymphoid cells is influenced by the source of hematopoietic stem cells and by the use of G-CSF. European Journal of Immunology 46 12711278. (https://doi.org/10.1002/eji.201546079)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Munneke JM, Björklund AT, Mjösberg JM, Garming-Legert K, Bernink JH, Blom B, Huisman C, van Oers MH, Spits H & Malmberg KJ et al. 2014 Activated innate lymphoid cells are associated with a reduced susceptibility to graft-versus-host disease. Blood 124 812821. (https://doi.org/10.1182/blood-2013-11-536888)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Muzzio D, Zygmunt M & Jensen F 2014a The role of pregnancy-associated hormones in the development and function of regulatory B cells. Frontiers in Endocrinology 5 39. (https://doi.org/10.3389/fendo.2014.00039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Muzzio DO, Soldati R, Ehrhardt J, Utpatel K, Evert M, Zenclussen AC, Zygmunt M & Jensen F 2014b B cell development undergoes profound modifications and adaptations during pregnancy in mice. Biology of Reproduction 91 115. (https://doi.org/10.1095/biolreprod.114.122366)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Muzzio DO, Soldati R, Rolle L, Zygmunt M, Zenclussen AC & Jensen F 2014c B-1a B cells regulate T cell differentiation associated with pregnancy disturbances. Frontiers in Immunology 5 6. (https://doi.org/10.3389/fimmu.2014.00006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Muzzio DO, Ziegler KB, Ehrhardt J, Zygmunt M & Jensen F 2016 Marginal zone B cells emerge as a critical component of pregnancy well-being. Reproduction 151 2937. (https://doi.org/10.1530/REP-15-0274)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nancy P & Erlebacher A 2014 T cell behavior at the maternal-fetal interface. International Journal of Developmental Biology 58 189198. (https://doi.org/10.1387/ijdb.140054ae)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Napso T, Yong HEJ, Lopez-Tello J & Sferruzzi-Perri AN 2018 The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Frontiers in Physiology 9 1091. (https://doi.org/10.3389/fphys.2018.01091)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oliphant CJ, Hwang YY, Walker JA, Salimi M, Wong SH, Brewer JM, Englezakis A, Barlow JL, Hams E & Scanlon ST et al. 2014 MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41 283295. (https://doi.org/10.1016/j.immuni.2014.06.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • O’Sullivan TE 2019 Dazed and confused: NK cells. Frontiers in Immunology 10 2235. (https://doi.org/10.3389/fimmu.2019.02235)

  • Packhäuser KRH, Roman-Sosa G, Ehrhardt J, Kruger D, Zygmunt M & Muzzio DO 2017 A kinetic study of CD83 reveals an upregulation and higher production of sCD83 in lymphocytes from pregnant mice. Frontiers in Immunology 8 486. (https://doi.org/10.3389/fimmu.2017.00486)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Raghupathy R 1997 Th1-type immunity is incompatible with successful pregnancy. Immunology Today 18 478482. (https://doi.org/10.1016/s0167-5699(97)01127-4)

  • Riley JK & Nelson DM 2010 Toll-like receptors in pregnancy disorders and placental dysfunction. Clinical Reviews in Allergy and Immunology 39 185193. (https://doi.org/10.1007/s12016-009-8178-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Robinette ML & Colonna M 2016 Innate lymphoid cells and the MHC. HLA 87 511. (https://doi.org/10.1111/tan.12723)

  • Romero R, Gotsch F, Pineles B & Kusanovic JP 2007 Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutrition Reviews 65 S194S202. (https://doi.org/10.1111/j.1753-4887.2007.tb00362.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Satokari R, Gronroos T, Laitinen K, Salminen S & Isolauri E 2009 Bifidobacterium and Lactobacillus DNA in the human placenta. Letters in Applied Microbiology 48 812. (https://doi.org/10.1111/j.1472-765X.2008.02475.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scifres CM & Nelson DM 2009 Intrauterine growth restriction, human placental development and trophoblast cell death. Journal of Physiology 587 34533458. (https://doi.org/10.1113/jphysiol.2009.173252)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Slutsky R, Romero R, Xu Y, Galaz J, Miller D, Done B, Tarca AL, Gregor S, Hassan SS & Leng Y et al. 2019 Exhausted and senescent T cells at the maternal-fetal interface in preterm and term labor. Journal of Immunology Research 2019 3128010. (https://doi.org/10.1155/2019/3128010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Solders M, Gorchs L, Gidlof S, Tiblad E, Lundell AC & Kaipe H 2017 Maternal adaptive immune cells in decidua parietalis display a more activated and coinhibitory phenotype compared to decidua basalis. Stem Cells International 2017 8010961. (https://doi.org/10.1155/2017/8010961)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Steel JH, Malatos S, Kennea N, Edwards AD, Miles L, Duggan P, Reynolds PR, Feldman RG & Sullivan MH 2005 Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor. Pediatric Research 57 404411. (https://doi.org/10.1203/01.PDR.0000153869.96337.90)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stout MJ, Conlon B, Landeau M, Lee I, Bower C, Zhao Q, Roehl KA, Nelson DM, Macones GA & Mysorekar IU 2013 Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. American Journal of Obstetrics and Gynecology 208 226.e1226.e7. (https://doi.org/10.1016/j.ajog.2013.01.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sykes L, MacIntyre DA, Yap XJ, Teoh TG & Bennett PR 2012 The Th1:th2 dichotomy of pregnancy and preterm labour. Mediators of Inflammation 2012 967629. (https://doi.org/10.1155/2012/967629)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ugolini M, Gerhard J, Burkert S, Jensen KJ, Georg P, Ebner F, Volkers SM, Thada S, Dietert K & Bauer L et al. 2018 Recognition of microbial viability via TLR8 drives TFH cell differentiation and vaccine responses. Nature Immunology 19 386396. (https://doi.org/10.1038/s41590-018-0068-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vacca P, Montaldo E, Croxatto D, Loiacono F, Canegallo F, Venturini PL, Moretta L & Mingari MC 2015 Identification of diverse innate lymphoid cells in human decidua. Mucosal Immunology 8 254264. (https://doi.org/10.1038/mi.2014.63)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vazquez J, Chavarria M, Li Y, Lopez GE & Stanic AK 2018 Computational flow cytometry analysis reveals a unique immune signature of the human maternal-fetal interface. American Journal of Reproductive Immunology 79. (https://doi.org/10.1111/aji.12774)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vazquez J, Chasman DA, Lopez GE, Tyler CT, Ong IM & Stanic AK 2019 Transcriptional and functional programming of decidual innate lymphoid cells. Frontiers in Immunology 10 3065. (https://doi.org/10.3389/fimmu.2019.03065)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Viant C, Rankin LC, Girard-Madoux MJ, Seillet C, Shi W, Smyth MJ, Bartholin L, Walzer T, Huntington ND & Vivier E et al. 2016 Transforming growth factor-beta and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate lymphoid cells. Science Signaling 9 ra46. (https://doi.org/10.1126/scisignal.aaf2176)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • von Burg N, Chappaz S, Baerenwaldt A, Horvath E, Bose Dasgupta S, Ashok D, Pieters J, Tacchini-Cottier F, Rolink A & Acha-Orbea H et al. 2014 Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses. PNAS 111 1283512840. (https://doi.org/10.1073/pnas.1406908111)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • von Burg N, Turchinovich G & Finke D 2015 Maintenance of immune homeostasis through ILC/T cell interactions. Frontiers in Immunology 6 416. (https://doi.org/10.3389/fimmu.2015.00416)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Walker RW, Clemente JC, Peter I & Loos RJF 2017 The prenatal gut microbiome: are we colonized with bacteria in utero? Pediatric Obesity 12 (Supplement 1) 317. (https://doi.org/10.1111/ijpo.12217)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whitley GS & Cartwright JE 2009 Trophoblast-mediated spiral artery remodelling: a role for apoptosis. Journal of Anatomy 215 2126. (https://doi.org/10.1111/j.1469-7580.2008.01039.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Withers DR 2016 Innate lymphoid cell regulation of adaptive immunity. Immunology 149 123130. (https://doi.org/10.1111/imm.12639)

  • Xiong T & Turner JE 2018 Innate lymphoid cells in autoimmunity and chronic inflammatory diseases. Seminars in Immunopathology 40 393406. (https://doi.org/10.1007/s00281-018-0670-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu Y, Plazyo O, Romero R, Hassan SS & Gomez-Lopez N 2015 Isolation of leukocytes from the human maternal-fetal interface. Journal of Visualized Experiments 52863 e52863. (https://doi.org/10.3791/52863)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu Y, Romero R, Miller D, Silva P, Panaitescu B, Theis KR, Arif A, Hassan SS & Gomez-Lopez N 2018 Innate lymphoid cells at the human maternal-fetal interface in spontaneous preterm labor. American Journal of Reproductive Immunology 79 e12820. (https://doi.org/10.1111/aji.12820)

    • PubMed
    • Search Google Scholar
    • Export Citation