Uterine infection alters the transcriptome of the bovine reproductive tract three months later

in Reproduction
Authors:
Anthony D Horlock Swansea University Medical School, Swansea University, Swansea, UK

Search for other papers by Anthony D Horlock in
Current site
Google Scholar
PubMed
Close
,
Rachel L Piersanti Department of Animal Sciences, University of Florida

Search for other papers by Rachel L Piersanti in
Current site
Google Scholar
PubMed
Close
,
Rosabel Ramirez-Hernandez Department of Animal Sciences, University of Florida

Search for other papers by Rosabel Ramirez-Hernandez in
Current site
Google Scholar
PubMed
Close
,
Fahong Yu Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA

Search for other papers by Fahong Yu in
Current site
Google Scholar
PubMed
Close
,
Zhengxin Ma Department of Animal Sciences, University of Florida

Search for other papers by Zhengxin Ma in
Current site
Google Scholar
PubMed
Close
,
KwangCheol C Jeong Department of Animal Sciences, University of Florida

Search for other papers by KwangCheol C Jeong in
Current site
Google Scholar
PubMed
Close
,
Martin J D Clift Swansea University Medical School, Swansea University, Swansea, UK

Search for other papers by Martin J D Clift in
Current site
Google Scholar
PubMed
Close
,
Jeremy Block Department of Animal Sciences, University of Florida

Search for other papers by Jeremy Block in
Current site
Google Scholar
PubMed
Close
,
José E P Santos Department of Animal Sciences, University of Florida

Search for other papers by José E P Santos in
Current site
Google Scholar
PubMed
Close
,
John J Bromfield Department of Animal Sciences, University of Florida

Search for other papers by John J Bromfield in
Current site
Google Scholar
PubMed
Close
, and
I Martin Sheldon Swansea University Medical School, Swansea University, Swansea, UK

Search for other papers by I Martin Sheldon in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to I M Sheldon; Email: i.m.sheldon@swansea.ac.uk
Restricted access
Rent on DeepDyve

Sign up for journal news

Infection of the postpartum uterus with pathogenic bacteria is associated with infertility months later in dairy cattle. However, it is unclear whether these bacterial infections lead to long-term changes in the reproductive tract that might help explain this infertility. Here we tested the hypothesis that infusion of pathogenic bacteria into the uterus leads to changes in the transcriptome of the reproductive tract 3 months later. We used virgin Holstein heifers to avoid potential confounding effects of periparturient problems, lactation, and negative energy balance. Animals were infused intrauterine with endometrial pathogenic bacteria Escherichia coli and Trueperella pyogenes (n = 4) and compared with control animals (n = 6). Three months after infusion, caruncular and intercaruncular endometrium, isthmus and ampulla of the oviduct, and granulosa cells from ovarian follicles >8 mm diameter were profiled by RNA sequencing. Bacterial infusion altered the transcriptome of all the tissues when compared with control. Most differentially expressed genes were tissue specific, with 109 differentially expressed genes unique to caruncular endometrium, 57 in intercaruncular endometrium, 65 in isthmus, 298 in ampulla, and 83 in granulosa cells. Surprisingly, despite infusing bacteria into the uterus, granulosa cells had more predicted upstream regulators of differentially expressed genes than all the other tissues combined. In conclusion, there were changes in the transcriptome of the endometrium, oviduct and even granulosa cells, 3 months after intrauterine infusion of pathogenic bacteria. These findings imply that long-term changes throughout the reproductive tract could contribute to infertility after bacterial infections of the uterus.

Supplementary Materials

    • Supplemental Figure 1. Gene expression comparison. In tissues collected from animals 3 onths after intrauterine infusion of either control medium or pathogenic bacteria, gene expression determined y RNAseq was confirmed by real time RT-PCR. Gene expression of CD38 in granulosa cells (A), NXPE3 n isthmus tissue (B) and CTTN in ampulla tissue (C) was evaluated by real time RT-PCR (●) and compared to expression patterns obtained by RNAseq (○). Pearson correlations between relative fold change from real time RT-PCR and read number obtained by RNAseq is presented for CD38 (D), NXPE3 (E), and CTTN (F).
    • Supplemental Table 1. Read mapping summary. The read mapping summary from the RNAseq data in tissues from control (orange) and bacteria-infused (purple) animals.
    • Supplemental Table 2. DEGs. Differentially expressed genes (DEGs) are provided for the top five up and down DEGs, and DEGs of interest, in the tissues of bacteria-infused compared with control animals. Base mean values determined by RNAseq read number.
    • Supplemental Table 3. Gene networks. Gene networks enriched by differentially expressed genes in tissues from bacteria-infused compared with control animals. Genes are indicated in bold. Enriched gene networks determined by Ingenuity Pathway analysis using significantly differentiated expressed genes only. Network score is derived from P value and indicates the likelihood of the genes in a given network being found together due to random chance alone. A network score of 2 or higher gives a 99% confidence the network and genes not being generated by random chance alone.

 

  • Collapse
  • Expand
  • Adams GP 1999 Comparative patterns of follicle development and selection in ruminants. Journal of Reproduction and Fertility Supplement 54 1732.

  • Amos MR, Healey GD, Goldstone RJ, Mahan SM, Duvel A, Schuberth HJ, Sandra O, Zieger P, Dieuzy-Labaye I & Smith DG et al. 2014 Differential endometrial cell sensitivity to a cholesterol-dependent cytolysin links Trueperella pyogenes to uterine disease in cattle. Biology of Reproduction 90 54. (https://doi.org/10.1095/biolreprod.113.115972)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arai M, Yoshioka S, Tasaki Y & Okuda K 2013 Remodeling of bovine endometrium throughout the estrous cycle. Animal Reproduction Science 142 19. (https://doi.org/10.1016/j.anireprosci.2013.08.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ayliffe TR & Noakes DE 1982 Effects of exogenous oestrogen and experimentally induced endometritis on absorption of sodium benzylpenicillin from the cow’s uterus. Veterinary Record 110 9698. (http://dx.doi.org/10.1136/vr.110.5.96)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A & Wishart DS 2016 Heatmapper: web-enabled heat mapping for all. Nucleic Acids Research 44 W147W153. (https://doi.org/10.1093/nar/gkw419)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bardou P, Mariette J, Escudié F, Djemiel C & Klopp C 2014 jvenn: an interactive Venn diagram viewer. BMC Bioinformatics 15 293. (https://doi.org/10.1186/1471-2105-15-293)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bicalho RC, Machado VS, Bicalho ML, Gilbert RO, Teixeira AG, Caixeta LS & Pereira RV 2010 Molecular and epidemiological characterization of bovine intrauterine Escherichia coli. Journal of Dairy Science 93 58185830. (https://doi.org/10.3168/jds.2010-3550)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bonnett BN, Martin SW, Gannon VP, Miller RB & Etherington WG 1991 Endometrial biopsy in Holstein-Friesian dairy cows. III. Bacteriological analysis and correlations with histological findings. Canadian Journal of Veterinary Research 55 168173.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Borsberry S & Dobson H 1989 Periparturient diseases and their effect on reproductive performance in five dairy herds. Veterinary Record 124 217219. (https://doi.org/10.1136/vr.124.9.217)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Britt JH, Cushman RA, Dechow CD, Dobson H, Humblot P, Hutjens MF, Jones GA, Ruegg PS, Sheldon IM & Stevenson JS 2018 Invited review: Learning from the future-a vision for dairy farms and cows in 2067. Journal of Dairy Science 101 37223741. (https://doi.org/10.3168/jds.2017-14025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bromfield JJ & Sheldon IM 2011 Lipopolysaccharide initiates inflammation in bovine granulosa cells via the TLR4 pathway and perturbs oocyte meiotic progression in vitro. Endocrinology 152 50295040. (https://doi.org/10.1210/en.2011-1124)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bromfield JJ & Sheldon IM 2013 Lipopolysaccharide reduces the primordial follicle pool in the bovine ovarian cortex ex vivo and in the murine ovary in vivo. Biology of Reproduction 88 98. (https://doi.org/10.1095/biolreprod.112.106914)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bromfield JJ, Santos JE, Block J, Williams RS & Sheldon IM 2015 PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Uterine infection: linking infection and innate immunity with infertility in the high-producing dairy cow. Journal of Animal Science 93 20212033. (https://doi.org/10.2527/jas.2014-8496)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cerri RLA, Thompson IM, Kim IH, Ealy AD, Hansen PJ, Staples CR, Li JL, Santos JEP & Thatcher WW 2012 Effects of lactation and pregnancy on gene expression of endometrium of Holstein cows at day 17 of the estrous cycle or pregnancy. Journal of Dairy Science 95 56575675. (https://doi.org/10.3168/jds.2011-5114)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chagas LM, Bass JJ, Blache D, Burke CR, Kay JK, Lindsay DR, Lucy MC, Martin GB, Meier S & Rhodes FM et al. 2007 Invited review: New perspectives on the roles of nutrition and metabolic priorities in the subfertility of high-producing dairy cows. Journal of Dairy Science 90 40224032. (https://doi.org/10.3168/jds.2006-852)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chapwanya A, Meade KG, Foley C, Narciandi F, Evans AC, Doherty ML, Callanan JJ & O’Farrelly C 2012 The postpartum endometrial inflammatory response: a normal physiological event with potential implications for bovine fertility. Reproduction Fertility and Development 24 10281039. (https://doi.org/10.1071/RD11153)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Corcoran LM, Hasbold J, Dietrich W, Hawkins E, Kallies A, Nutt SL, Tarlinton DM, Matthias P & Hodgkin PD 2005 Differential requirement for OBF-1 during antibody-secreting cell differentiation. Journal of Experimental Medicine 201 13851396. (https://doi.org/10.1084/jem.20042325)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cronin JG, Turner ML, Goetze L, Bryant CE & Sheldon IM 2012 Toll-like receptor 4 and MYD88-dependent signaling mechanisms of the innate immune system are essential for the response to lipopolysaccharide by epithelial and stromal cells of the bovine endometrium. Biology of Reproduction 86 51. (https://doi.org/10.1095/biolreprod.111.092718)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fischer C, Drillich M, Odau S, Heuwieser W, Einspanier R & Gabler C 2010 Selected pro-inflammatory factor transcripts in bovine endometrial epithelial cells are regulated during the oestrous cycle and elevated in case of subclinical or clinical endometritis. Reproduction Fertility and Development 22 818829. (https://doi.org/10.1071/RD09120)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foley C, Chapwanya A, Creevey CJ, Narciandi F, Morris D, Kenny EM, Cormican P, Callanan JJ, O’Farrelly C & Meade KG 2012 Global endometrial transcriptomic profiling: transient immune activation precedes tissue proliferation and repair in healthy beef cows. BMC Genomics 13 489. (https://doi.org/10.1186/1471-2164-13-489)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foley C, Chapwanya A, Callanan JJ, Whiston R, Miranda-CasoLuengo R, Lu J, Meijer WG, Lynn DJ, O’Farrelly C & Meade KG 2015 Integrated analysis of the local and systemic changes preceding the development of post-partum cytological endometritis. BMC Genomics 16 811. (https://doi.org/10.1186/s12864-015-1967-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fung TK & Poon RYC 2005 A roller coaster ride with the mitotic cyclins. Seminars in Cell and Developmental Biology 16 335342. (https://doi.org/10.1016/j.semcdb.2005.02.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gabler C, Fischer C, Drillich M, Einspanier R & Heuwieser W 2010 Time-dependent mRNA expression of selected pro-inflammatory factors in the endometrium of primiparous cows postpartum. Reproductive Biology and Endocrinology 8 152. (https://doi.org/10.1186/1477-7827-8-152)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gilbert RO 2019 Symposium review: Mechanisms of disruption of fertility by infectious diseases of the reproductive tract. Journal of Dairy Science 102 37543765. (https://doi.org/10.3168/jds.2018-15602)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Girard A, Dufort I & Sirard M-A 2015 The effect of energy balance on the transcriptome of bovine granulosa cells at 60 days postpartum. Theriogenology 84 13501361. (https://doi.org/10.1016/j.theriogenology.2015.07.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goldstone RJ, Amos M, Talbot R, Schuberth HJ, Sandra O, Sheldon IM & Smith DG 2014a Draft genome sequence of Trueperella pyogenes, isolated from the infected uterus of a postpartum cow with metritis. Genome Announcements 2 e00194-14. (https://doi.org/10.1128/genomeA.00194-14)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goldstone RJ, Talbot R, Schuberth HJ, Sandra O, Sheldon IM & Smith DG 2014b Draft genome sequence of Escherichia coli MS499, isolated from the infected uterus of a postpartum cow with metritis. Genome Announcements 2 e00217-14. (https://doi.org/10.1128/genomeA.00217-14)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Griffin JFT, Hartigan PJ & Nunn WR 1974 Non-specific uterine infection and bovine fertility. I. Infection patterns and endometritis during the first seven weeks post-partum. Theriogenology 1 91106. (https://doi.org/10.1016/0093-691x(74)90052-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hatzirodos N, Irving-Rodgers HF, Hummitzsch K, Harland ML, Morris SE & Rodgers RJ 2014 Transcriptome profiling of granulosa cells of bovine ovarian follicles during growth from small to large antral sizes. BMC Genomics 15 24. (https://doi.org/10.1186/1471-2164-15-24)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Healy LL, Cronin JG & Sheldon IM 2014 Endometrial cells sense and react to tissue damage during infection of the bovine endometrium via interleukin 1. Scientific Reports 4 7060. (https://doi.org/10.1038/srep07060)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Herath S, Fischer DP, Werling D, Williams EJ, Lilly ST, Dobson H, Bryant CE & Sheldon IM 2006 Expression and function of Toll-like receptor 4 in the endometrial cells of the uterus. Endocrinology 147 562570. (https://doi.org/10.1210/en.2005-1113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Herath S, Williams EJ, Lilly ST, Gilbert RO, Dobson H, Bryant CE & Sheldon IM 2007 Ovarian follicular cells have innate immune capabilities that modulate their endocrine function. Reproduction 134 683693. (https://doi.org/10.1530/REP-07-0229)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Herath S, Lilly ST, Santos NR, Gilbert RO, Goetze L, Bryant CE, White JO, Cronin J & Sheldon IM 2009 Expression of genes associated with immunity in the endometrium of cattle with disparate postpartum uterine disease and fertility. Reproductive Biology and Endocrinology 7 55. (https://doi.org/10.1186/1477-7827-7-55)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hess AP, Talbi S, Hamilton AE, Baston-Buest DM, Nyegaard M, Irwin JC, Barragan F, Kruessel JS, Germeyer A & Giudice LC 2013 The human oviduct transcriptome reveals an anti-inflammatory, anti-angiogenic, secretory and matrix-stable environment during embryo transit. Reproductive Biomedicine Online 27 423435. (https://doi.org/10.1016/j.rbmo.2013.06.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hine BC, Cartwright SL & Mallard BA 2011 Effect of age and pregnancy status on adaptive immune responses of Canadian Holstein replacement heifers. Journal of Dairy Science 94 981991. (https://doi.org/10.3168/jds.2010-3329)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hsu YM, Zhang Y, You Y, Wang D, Li H, Duramad O, Qin XF, Dong C & Lin X 2007 The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nature Immunology 8 198205. (https://doi.org/10.1038/ni1426)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huszenicza G, Fodor M, Gacs M, Kulcsar M, Dohmen MJW, Vamos M, Porkolab L, Legl T, Bartyik J & Lohuis JACM et al. 1991 Uterine bacteriology, resumption of cyclic ovarian activity and fertility in postpartum cows kept in large-scale dairy herds. Reproduction in Domestic Animals 34 237245. (https://doi.org/10.1111/j.1439-0531.1999.tb01246.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ibrahim S, Salilew-Wondim D, Rings F, Hoelker M, Neuhoff C, Tholen E, Looft C, Schellander K & Tesfaye D 2015 Expression pattern of inflammatory response genes and their regulatory microRNAs in bovine oviductal cells in response to lipopolysaccharide: implication for early embryonic development. PLoS ONE 10 e0119388. (https://doi.org/10.1371/journal.pone.0119388)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karsch FJ, Battaglia DF, Breen KM, Debus N & Harris TG 2002 Mechanisms for ovarian cycle disruption by immune/inflammatory stress. Stress 5 101112. (https://doi.org/10.1080/10253890290027868)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Keating N & Quinlan LR 2012 Small conductance potassium channels drive ATP-activated chloride secretion in the oviduct. American Journal of Physiology: Cell Physiology 302 C100C109. (https://doi.org/10.1152/ajpcell.00503.2010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kojima Y, Sasaki K, Yokobayashi S, Sakai Y, Nakamura T, Yabuta Y, Nakaki F, Nagaoka S, Woltjen K & Hotta A et al. 2017 Evolutionarily distinctive transcriptional and signaling programs drive human germ cell lineage specification from pluripotent stem cells. Cell Stem Cell 21 517532. (https://doi.org/10.1016/j.stem.2017.09.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kong B-W, Hudson N, Seo D, Lee S, Khatri B, Lassiter K, Cook D, Piekarski A, Dridi S & Anthony N et al. 2017 RNA sequencing for global gene expression associated with muscle growth in a single male modern broiler line compared to a foundational Barred Plymouth Rock chicken line. BMC Genomics 18 82. (https://doi.org/10.1186/s12864-016-3471-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kowsar R, Hambruch N, Liu J, Shimizu T, Pfarrer C & Miyamoto A 2013 Regulation of innate immune function in bovine oviduct epithelial cells in culture: the homeostatic role of epithelial cells in balancing Th1/Th2 response. Journal of Reproduction and Development 59 470478. (https://doi.org/10.1262/jrd.2013-036)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krämer A, Green J, Pollard J & Tugendreich S 2014 Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30 523530. (https://doi.org/10.1093/bioinformatics/btt703)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Langmead B & Salzberg SL 2012 Fast gapped-read alignment with Bowtie 2. Nature Methods 9 357359. (https://doi.org/10.1038/nmeth.1923)

  • LeBlanc SJ 2012 Interactions of metabolism, inflammation, and reproductive tract health in the postpartum period in dairy cattle. Reproduction in Domestic Animals 47 (Supplement 5) 1830. (https://doi.org/10.1111/j.1439-0531.2012.02109.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • LeBlanc SJ, Duffield TF, Leslie KE, Bateman KG, Keefe GP, Walton JS & Johnson WH 2002 Defining and diagnosing postpartum clinical endometritis and its impact on reproductive performance in dairy cows. Journal of Dairy Science 85 22232236. (https://doi.org/10.3168/jds.S0022-0302(02)74302-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R & 1000 Genome Project Data Processing Subgroup 2009 The sequence alignment/map format and SAMtools. Bioinformatics 25 20782079. (https://doi.org/10.1093/bioinformatics/btp352)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lima FS, Ribeiro ES, Bisinotto RS, Greco LF, Martinez N, Amstalden M, Thatcher WW & Santos JE 2013 Hormonal manipulations in the 5-day timed artificial insemination protocol to optimize estrous cycle synchrony and fertility in dairy heifers. Journal of Dairy Science 96 70547065. (https://doi.org/10.3168/jds.2013-7093)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lima FS, Greco LF, Bisinotto RS, Ribeiro ES, Martinez NM, Thatcher WW, Santos JEP, Reinhard MK & Galvão KN 2015 Effects of intrauterine infusion of Trueperella pyogenes on endometrial mRNA expression of proinflammatory cytokines and luteolytic cascade genes and their association with luteal life span in dairy cows. Theriogenology 84 12631272. (http://dx.doi.org/10.1016/j.theriogenology.2015.07.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Locatelli Y, Forde N, Blum H, Graf A, Piégu B, Mermillod P, Wolf E, Lonergan P & Saint-Dizier M 2019 Relative effects of location relative to the corpus luteum and lactation on the transcriptome of the bovine oviduct epithelium. BMC Genomics 20 233. (https://doi.org/10.1186/s12864-019-5616-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maillo V, de Frutos C, O’Gaora P, Forde N, Burns GW, Spencer TE, Gutierrez-Adan A, Lonergan P & Rizos D 2016 Spatial differences in gene expression in the bovine oviduct. Reproduction 152 3746. (https://doi.org/10.1530/REP-16-0074)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marcel M 2011 Cutadapt removes adapter sequences from high-throughput sequence reads. EMBnet.journal 17 1012. (https://doi.org/10.14806/ej.17.1.200)

  • Metsalu T & Vilo J 2015 ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Research 43 W566W570. (https://doi.org/10.1093/nar/gkv468)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mittaz L, Russell DL, Wilson T, Brasted M, Tkalcevic J, Salamonsen LA, Hertzog PJ & Pritchard MA 2004 Adamts-1 is essential for the development and function of the urogenital system. Biology of Reproduction 70 10961105. (https://doi.org/10.1095/biolreprod.103.023911)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moresco EM, LaVine D & Beutler B 2011 Toll-like receptors. Current Biology 21 R488R493. (https://doi.org/10.1016/j.cub.2011.05.039)

  • Niklaus AL & Pollard JW 2006 Mining the mouse transcriptome of receptive endometrium reveals distinct molecular signatures for the luminal and glandular epithelium. Endocrinology 147 33753390. (https://doi.org/10.1210/en.2005-1665)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ota Y, Shimoya K, Zhang Q, Moriyama A, Chin R, Tenma K, Kimura T, Koyama M, Azuma C & Murata Y 2002 The expression of secretory leukocyte protease inhibitor (SLPI) in the Fallopian tube: SLPI protects the acrosome reaction of sperm from inhibitory effects of elastase. Human Reproduction 17 25172522. (https://doi.org/10.1093/humrep/17.10.2517)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pahl HL 1999 Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18 68536866. (https://doi.org/10.1038/sj.onc.1203239)

  • Peter AT, Bosu WT & DeDecker RJ 1989 Suppression of preovulatory luteinizing hormone surges in heifers after intrauterine infusions of Escherichia coli endotoxin. American Journal of Veterinary Research 50 368373.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Piersanti RL, Horlock AD, Block J, Santos JEP, Sheldon IM & Bromfield JJ 2019a Persistent effects on bovine granulosa cell transcriptome after resolution of uterine disease. Reproduction 158 3546. (https://doi.org/10.1530/REP-19-0037)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Piersanti RL, Zimpel R, Molinari PCC, Dickson MJ, Ma Z, Jeong KC, Santos JEP, Sheldon IM & Bromfield JJ 2019b A model of clinical endometritis in Holstein heifers using pathogenic Escherichia coli and Trueperella pyogenes. Journal of Dairy Science 102 26862697. (https://doi.org/10.3168/jds.2018-15595)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Price JC & Sheldon IM 2013 Granulosa cells from emerged antral follicles of the bovine ovary initiate inflammation in response to bacterial pathogen-associated molecular patterns via Toll-like receptor pathways. Biology of Reproduction 89 119. (https://doi.org/10.1095/biolreprod.113.110965)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Price JC, Bromfield JJ & Sheldon IM 2013 Pathogen-associated molecular patterns initiate inflammation and perturb the endocrine function of bovine granulosa cells from ovarian dominant follicles via TLR2 and TLR4 pathways. Endocrinology 154 33773386. (https://doi.org/10.1210/en.2013-1102)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Quackenbush J 2001 Computational analysis of microarray data. Nature Reviews Genetics 2 418427. (https://doi.org/10.1038/35076576)

  • Ribeiro ES, Gomes G, Greco LF, Cerri RLA, Vieira-Neto A, Monteiro PLJ, Lima FS, Bisinotto RS, Thatcher WW & Santos JEP 2016 Carryover effect of postpartum inflammatory diseases on developmental biology and fertility in lactating dairy cows. Journal of Dairy Science 99 22012220. (https://doi.org/10.3168/jds.2015-10337)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Robker RL, Russell DL, Espey LL, Lydon JP, O’Malley BW & Richards JS 2000 Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. PNAS 97 46894694. (https://doi.org/10.1073/pnas.080073497)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rosnet O, Blanco-Betancourt C, Grivel K, Richter K & Schiff C 2004 Binding of free immunoglobulin light chains to VpreB3 inhibits their maturation and secretion in chicken B cells. Journal of Biological Chemistry 279 1022810236. (https://doi.org/10.1074/jbc.M312169-A200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rowson LEA, Lamming GE & Fry RM 1953 The relationship between ovarian hormones and uterine infection. Veterinary Record 65 335340.

  • Ruland J 2008 CARD9 signaling in the innate immune response. Annals of the New York Academy of Sciences 1143 3544. (https://doi.org/10.1196/annals.1443.024)

  • Sanchez JM, Passaro C, Forde N, Browne JA, Behura SK, Fernandez-Fuertes B, Mathew DJ, Kelly AK, Butler ST & Spencer TE et al. 2019 Do differences in the endometrial transcriptome between uterine horns ipsilateral and contralateral to the corpus luteum influence conceptus growth to day 14 in cattle? Biology of Reproduction 100 86100. (https://doi.org/10.1093/biolre/ioy185)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saut JP, Healey GD, Borges AM & Sheldon IM 2014 Ovarian steroids do not affect bovine endometrial cytokine or chemokine responses to Escherichia coli or LPS in vitro. Reproduction 148 593606. (https://doi.org/10.1530/rep-14-0230)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Semambo DK, Ayliffe TR, Boyd JS & Taylor DJ 1991 Early abortion in cattle induced by experimental intrauterine infection with pure cultures of Actinomyces pyogenes. Veterinary Record 129 1216. (https://doi.org/10.1136/vr.129.1.12)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sheldon IM 2020 Diagnosing postpartum endometritis in dairy cattle. Veterinary Record 186 8890. (https://doi.org/10.1136/vr.m222)

  • Sheldon IM, Noakes DE, Rycroft AN, Pfeiffer DU & Dobson H 2002 Influence of uterine bacterial contamination after parturition on ovarian dominant follicle selection and follicle growth and function in cattle. Reproduction 123 837845. (https://doi.org/10.1530/rep.0.1230837)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sheldon IM, Lewis GS, LeBlanc S & Gilbert RO 2006 Defining postpartum uterine disease in cattle. Theriogenology 65 15161530. (https://doi.org/10.1016/j.theriogenology.2005.08.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sheldon IM, Cronin J, Goetze L, Donofrio G & Schuberth HJ 2009 Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biology of Reproduction 81 10251032. (https://doi.org/10.1095/biolreprod.109.077370)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sheldon IM, Rycroft AN, Dogan B, Craven M, Bromfield JJ, Chandler A, Roberts MH, Price SB, Gilbert RO & Simpson KW 2010 Specific strains of Escherichia coli are pathogenic for the endometrium of cattle and cause pelvic inflammatory disease in cattle and mice. PLoS One 5 e9192. (https://doi.org/10.1371/journal.pone.0009192)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sheldon IM, Cronin JG & Bromfield JJ 2019 Tolerance and innate immunity shape the development of postpartum uterine disease and the impact of endometritis in dairy cattle. Annual Review of Animal Biosciences 7 361384. (https://doi.org/10.1146/annurev-animal-020518-115227)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shimizu K, Sato Y, Kawamura M, Nakazato H, Watanabe T, Ohara O & Fujii SI 2019 Eomes transcription factor is required for the development and differentiation of invariant NKT cells. Communications Biology 2 150. (https://doi.org/10.1038/s42003-019-0389-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shozu M, Minami N, Yokoyama H, Inoue M, Kurihara H, Matsushima K & Kuno K 2005 ADAMTS-1 is involved in normal follicular development, ovulatory process and organization of the medullary vascular network in the ovary. Journal of Molecular Endocrinology 35 343355. (https://doi.org/10.1677/jme.1.01735)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Spencer TE, Kelleher AM & Bartol FF 2019 Development and function of uterine glands in domestic animals. Annual Review of Animal Biosciences 7 125147. (https://doi.org/10.1146/annurev-animal-020518-115321)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Suzuki K, Watanabe T, Sakurai S, Ohtake K, Kinoshita T, Araki A, Fujita T, Takei H, Takeda Y & Sato Y et al. 1999 A novel glycosylphosphatidyl inositol-anchored protein on human leukocytes: a possible role for regulation of neutrophil adherence and migration. Journal of Immunology 162 42774284.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turner ML, Cronin JG, Healey GD & Sheldon IM 2014 Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology 155 14531465. (https://doi.org/10.1210/en.2013-1822)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wathes DC, Cheng Z, Chowdhury W, Fenwick MA, Fitzpatrick R, Morris DG, Patton J & Murphy JJ 2009 Negative energy balance alters global gene expression and immune responses in the uterus of postpartum dairy cows. Physiological Genomics 39 113. (https://doi.org/10.1152/physiolgenomics.00064.2009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wathes DC, Cheng Z, Fenwick MA, Fitzpatrick R & Patton J 2011 Influence of energy balance on the somatotrophic axis and matrix metalloproteinase expression in the endometrium of the postpartum dairy cow. Reproduction 141 269281. (https://doi.org/10.1530/REP-10-0177)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Westermann S, Drillich M, Kaufmann TB, Madoz LV & Heuwieser W 2010 A clinical approach to determine false positive findings of clinical endometritis by vaginoscopy by the use of uterine bacteriology and cytology in dairy cows. Theriogenology 74 12481255. (https://doi.org/10.1016/j.theriogenology.2010.05.028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yao JQ & Yu F 2011 DEB: a web interface for RNA-seq digital gene expression analysis. Bioinformation 7 4445. (https://doi.org/10.6026/97320630007044)