Synergism between albumin, bicarbonate and cAMP upregulation for cholesterol efflux from ram sperm

in Reproduction
Authors:
Naomi C Bernecic School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, New South Wales, Australia

Search for other papers by Naomi C Bernecic in
Current site
Google Scholar
PubMed
Close
,
Bart M Gadella Department of Biochemistry & Cell Biology, Utrecht University, Utrecht, The Netherlands
Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands

Search for other papers by Bart M Gadella in
Current site
Google Scholar
PubMed
Close
,
Simon P de Graaf School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, New South Wales, Australia

Search for other papers by Simon P de Graaf in
Current site
Google Scholar
PubMed
Close
, and
Tamara Leahy School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, New South Wales, Australia

Search for other papers by Tamara Leahy in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to N C Bernecic; Email: Naomi.Bernecic@ul.ie
Restricted access
Rent on DeepDyve

Sign up for journal news

Compared to other mammalian species, ram spermatozoa are difficult to capacitate in vitro. Dibutyryl cAMP (db-cAMP) and the phosphodiesterase (PDE) inhibitors, caffeine and theophylline (cAMP up-regulators), must be added to traditional capacitation media (containing bicarbonate, calcium and BSA) to elicit a capacitation response. In this exploratory study, we assessed whether bicarbonate was still required for ram spermatozoa if cAMP is up-regulated by the addition of db-cAMP and PDE inhibitors and what role BSA plays in cholesterol efflux under these conditions. In this study, the validated BODIPY-cholesterol assay was used for the first time in ram spermatozoa to quantify cholesterol efflux by tracking the loss of BODIPY-cholesterol from the sperm plasma membrane using flow cytometry. The results show that under cAMP up-regulated conditions, an increase in membrane fluidity and tyrosine phosphorylation of sperm proteins remain as bicarbonate-dependent processes. In fact, the supplementation of bicarbonate under these conditions was necessary to further enhance cAMP production in ram spermatozoa, which correlated with the presence of these capacitation-related processes. When BSA was supplemented with cAMP up-regulators (as well as bicarbonate), there was a loss of approximately 20–23% of BODIPY-cholesterol (79.5 ± 30.5% to 76.9 ± 12.3% remaining from 10 min), indicating that BSA is essential for mediating cholesterol efflux in ram spermatozoa as measured by the BODIPY-cholesterol assay. The current study identifies the functional relationship between bicarbonate, BSA and cAMP up-regulators that is required to support capacitation-related processes in ram spermatozoa, specifically cholesterol efflux.

Supplementary Materials

    • Supplementary Table 1. Motility and kinematic parameters assessed using computer-assisted sperm analysis (CASA) following exposure to media with or without bicarbonate and cAMP-regulators (BSA present in all conditions) for up to 3 h (180 min).
    • Supplementary Table 2. Motility and kinematic parameters assessed using computer-assisted sperm analysis (CASA) following exposure to media with or without BSA and cAMP-regulators (bicarbonate present in all conditions) for up to 3 h (180 min).
    • Supplementary Figure 1. The percentage of PI- and PI+ acrosome intact (A and B) and PI+ acrosome reacted (C) spermatozoa following exposure to conditions with or without bicarbonate and cAMP up-regulators (db-cAMP, caffeine and theophylline) for up to 3h (180 min). Membrane and acrosome integrity were assessed with flow cytometry using propidium iodide and PNA-FITC, respectively. Data correspond to mean ± S.D. (A and C) or geometric mean ± 95% confidence interval (B) for ten independent samples. **P<0.01 and ***P<0.001 indicate significant differences from TALP (bicarbonate and BSA)
    • Supplementary Figure 2. The percentage of PI- and PI+ acrosome intact (A and B) and PI+ acrosome reacted (C) spermatozoa following exposure to conditions with or without BSA and cAMP up-regulators (db-cAMP, caffeine and theophylline) for up to 3h (180 min). Membrane and acrosome integrity were assessed with flow cytometry using propidium iodide and PNA-FITC, respectively. Data correspond to mean ± S.D. (A and C) or geometric mean ± 95% confidence interval (B) for seven independent samples. *P<0.05, **P<0.01 and ***P<0.001 indicate significant differences from TALP (bicarbonate and BSA).
    • Supplementary Figure 3. The percentage of Yo-Pro-1- spermatozoa with high (A) and low (B) membrane fluidity following exposure to conditions with or without bicarbonate and cAMP up-regulators (db-cAMP, caffeine and theophylline) for up to 3h (180 min). Membrane fluidity and integrity were assessed with flow cytometry using merocyanine 540 (M540) and Yo-Pro, respectively. Data correspond to geometric mean ± 95% confidence interval (A) or mean ± S.D. (B) for ten independent samples. ***P<0.001 indicate significant differences from TALP (bicarbonate and BSA).
    • Supplementary Figure 4. The percentage of Yo-Pro-1- spermatozoa with high (A) and low (B) membrane fluidity following exposure to conditions with or without BSA and cAMP up-regulators (db-cAMP, caffeine and theophylline) for up to 3h (180 min). Membrane fluidity and integrity were assessed with flow cytometry using merocyanine 540 (M540) and Yo-Pro, respectively. Data correspond to geometric mean ± 95% confidence interval (A) or mean ± S.D. (B) for seven independent samples. *P<0.05 and ***P<0.001 indicate significant differences from TALP (bicarbonate and BSA).

 

  • Collapse
  • Expand
  • Aitken RJ & Nixon B 2013 Sperm capacitation: a distant landscape glimpsed but unexplored. Molecular Human Reproduction 19 785793. (https://doi.org/10.1093/molehr/gat067)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alonso CAI, Osycka-Salut CE, Castellano L, Cesari A, Di Siervi N, Mutto A, Johannisson A, Morrell JM, Davio C & Perez-Martinez S 2017 Extracellular cAMP activates molecular signalling pathways associated with sperm capacitation in bovines. Molecular Human Reproduction 23 521534. (https://doi.org/10.1093/molehr/gax030)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arnoult C, Kazam IG, Visconti PE, Kopf GS, Villaz M & Florman HM 1999 Control of the low voltage-activated calcium channel of mouse sperm by egg ZP3 and by membrane hyperpolarization during capacitation. PNAS 96 67576762. (https://doi.org/10.1073/pnas.96.12.6757)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Austin CR 1951 Observations on the penetration of the sperm in the mammalian egg. Australian Journal of Scientific Research B 4 581596. (https://doi.org/10.1071/bi9510581)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bailey JL 2010 Factors regulating sperm capacitation. Systems Biology in Reproductive Medicine 56 334348. (https://doi.org/10.3109/19396368.2010.512377)

  • Bajpai M, Fiedler SE, Huang Z, Vijayaraghavan S, Olson GE, Livera G, Conti M & Carr DW 2006 AKAP3 selectively binds PDE4A isoforms in bovine spermatozoa. Biology of Reproduction 74 109118. (https://doi.org/10.1095/biolreprod.105.043588)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Battistone MA, Da Ros VG, Salicioni AM, Navarrete FA, Krapf D, Visconti PE & Cuasnicu PS 2013 Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases. Molecular Human Reproduction 19 570580. (https://doi.org/10.1093/molehr/gat033)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Baxendale RW & Fraser LR 2005 Mammalian sperm phosphodiesterases and their involvement in receptor-mediated cell signaling important for capacitation. Molecular Reproduction and Development 71 495508. (https://doi.org/10.1002/mrd.20265)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bergeron A, Aragon JP, Guillemette C, Hébert A, Sullivan R, Blondin P & Richard FJ 2016 Characterization of cAMP-phosphodiesterase activity in bovine seminal plasma. Andrology 4 11231130. (https://doi.org/10.1111/andr.12267)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bernecic NC, Zhang M, Gadella BM, Brouwers JFHM, Jansen JWA, Arkesteijn GJA, de Graaf SP & Leahy T 2019 BODIPY-cholesterol can be reliably used to monitor cholesterol efflux from capacitating mammalian spermatozoa. Scientific Reports 9 9804. (https://doi.org/10.1038/s41598-019-45831-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bromfield EG, Aitken RJ, Gibb Z, Lambourne SR & Nixon B 2014 Capacitation in the presence of methyl-beta-cyclodextrin results in enhanced zona pellucida-binding ability of stallion spermatozoa. Reproduction 147 153166. (https://doi.org/10.1530/REP-13-0393)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Buffone MG, Wertheimer EV, Visconti PE & Krapf D 2014 Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochimica et Biophysica Acta 1842 26102620. (https://doi.org/10.1016/j.bbadis.2014.07.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chang MC 1951 Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168 697698. (https://doi.org/10.1038/168697b0)

  • Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR & Buck J 2000 Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289 625628. (https://doi.org/10.1126/science.289.5479.625)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Colas C, James P, Howes L, Jones R, Cebrian-Perez JA & Muiño-Blanco T 2008 Cyclic-AMP initiates protein tyrosine phosphorylation independent of cholesterol efflux during ram sperm capacitation. Reproduction, Fertility, and Development 20 649658. (https://doi.org/10.1071/RD08023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dacheux JL & Dacheux F 2014 New insights into epididymal function in relation to sperm maturation. Reproduction 147 R27R42. (https://doi.org/10.1530/REP-13-0420)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Darin-Bennett A & White IG 1977 Influence of the cholesterol content of mammalian spermatozoa on susceptibility to cold-shock. Cryobiology 14 466470. (https://doi.org/10.1016/0011-2240(77)90008-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • de Vries KJ, Wiedmer T, Sims PJ & Gadella BM 2003 Caspase-independent exposure of aminophospholipids and tyrosine phosphorylation in bicarbonate responsive human sperm cells. Biology of Reproduction 68 21222134. (https://doi.org/10.1095/biolreprod.102.012500)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Demarco IA, Espinosa F, Edwards J, Sosnik J, De la Vega-Beltrán JL, Hockensmith JW, Kopf GS, Darszon A & Visconti PE 2003 Involvement of a Na+/HCO3 – cotransporter in mouse sperm capacitation. Journal of Biological Chemistry 278 70017009. (https://doi.org/10.1074/jbc.M206284200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dimitriadis F, Giannakis D, Pardalidis N, Zikopoulos K, Paraskevaidis E, Giotitsas N, Kalaboki V, Tsounapi P, Baltogiannis D & Georgiou I et al.2008 Effects of phosphodiesterase 5 inhibitors on sperm parameters and fertilizing capacity. Asian Journal of Andrology 10 115133. (https://doi.org/10.1111/j.1745-7262.2008.00373.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Evans G 1987 Salamon’s Artificial Insemination of Sheep and Goats. Sydney: Butterworths.

  • Fisch JD, Behr B & Conti M 1998 Enhancement of motility and acrosome reaction in human spermatozoa: differential activation by type-specific phosphodiesterase inhibitors. Human Reproduction 13 12481254. (https://doi.org/10.1093/humrep/13.5.1248)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Flesch FM, Brouwers JFHM, Nievelstein PFEM, Verkleij AJ, van Golde LMG, Colenbrander B & Gadella BM 2001 Bicarbonate stimulated phospholipid scrambling induces cholesterol redistribution and enables cholesterol depletion in the sperm plasma membrane. Journal of Cell Science 114 35433555.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gadella BM & Harrison RAP 2000 The capacitating agent bicarbonate induces protein kinase A-dependent changes in phospholipid transbilayer behavior in the sperm plasma membrane. Development 127 24072420.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gadella BM & Harrison RAP 2002 Capacitation induces cyclic adenosine 3′,5′-monophosphate-dependent, but apoptosis-unrelated, exposure of aminophospholipids at the apical head plasma membrane of boar sperm cells. Biology of Reproduction 67 340350. (https://doi.org/10.1095/biolreprod67.1.340)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gadella BM, Tsai PS, Boerke A & Brewis IA 2008 Sperm head membrane reorganisation during capacitation. International Journal of Developmental Biology 52 473480. (https://doi.org/10.1387/ijdb.082583bg)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galantino-Homer HL, Visconti PE & Kopf GS 1997 Regulation of protein tyrosine phosphorylation during bovine sperm capacitation by a cyclic adenosine 3',5'-monophosphate-dependent pathway. Biology of Reproduction 56 707719. (https://doi.org/10.1095/biolreprod56.3.707)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galantino-Homer HL, Florman HM, Storey BT, Dobrinski I & Kopf GS 2004 Bovine sperm capacitation: assessment of phosphodiesterase activity and intracellular alkalinization on capacitation-associated protein tyrosine phosphorylation. Molecular Reproduction and Development 67 487500. (https://doi.org/10.1002/mrd.20034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grasa P, Cebrián-Pérez JA & Muiño-Blanco T 2006 Signal transduction mechanisms involved in ram sperm capacitation. Reproduction 132 721732. (https://doi.org/10.1530/rep.1.00770)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grasa P, Perez-Pe R, Baguena O, Forcada F, Abecia A, Cebrian-Perez JA & Muino-Blanco T 2004 Ram sperm selection by a dextran/swim-up procedure increases fertilization rates following intrauterine insemination in superovulated ewes. Journal of Andrology 25 982990. (https://doi.org/10.1002/j.1939-4640.2004.tb03171.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harrison RAP & Gadella BM 2005 Bicarbonate-induced membrane processing in sperm capacitation. Theriogenology 63 342351. (https://doi.org/10.1016/j.theriogenology.2004.09.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harrison RAP & Miller NGA 2000 cAMP-dependent protein kinase control of plasma membrane lipid architecture in boar sperm. Molecular Reproduction and Development 55 220228. (https://doi.org/10.1002/(SICI)1098-2795(200002)55:2<220::AID-MRD12>3.0.CO;2-I)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harrison RAP, Ashworth PJC & Miller NGA 1996 Bicarbonate/CO2, an effector of capacitation, induces a rapid and reversible change in the lipid architecture of boar sperm plasma membranes. Molecular Reproduction and Development 45 378391. (https://doi.org/10.1002/(SICI)1098-2795(199611)45:3<378::AID-MRD16>3.0.CO;2-V)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hess KC, Jones BH, Marquez B, Chen Y, Ord TS, Kamenetsky M, Miyamoto C, Zippin JH, Kopf GS & Suarez SS et al.2005 The ‘soluble’ adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Developmental Cell 9 249259. (https://doi.org/10.1016/j.devcel.2005.06.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hölttä-Vuori M, Uronen RL, Repakova J, Salonen E, Vattulainen I, Panula P, Li Z, Bittman R & Ikonen E 2008 BODIPY-cholesterol: a new tool to visualize sterol trafficking in living cells and organisms. Traffic 9 18391849. (https://doi.org/10.1111/j.1600-0854.2008.00801.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kerns K, Zigo M, Drobnis EZ, Sutovsky M & Sutovsky P 2018 Zinc ion flux during mammalian sperm capacitation. Nature Communications 9 2061. (https://doi.org/10.1038/s41467-018-04523-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leahy T & Gadella BM 2015 New insights into the regulation of cholesterol efflux from the sperm membrane. Asian Journal of Andrology 17 561567. (https://doi.org/10.4103/1008-682X.153309)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leahy T, Rickard JP, Aitken RJ & de Graaf SP 2016 Penicillamine prevents ram sperm agglutination in media that support capacitation. Reproduction 151 167177. (https://doi.org/10.1530/REP-15-0413)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leclerc P, de Lamirande E & Gagnon C 1996 Cyclic adenosine 3',5'monophosphate-dependent regulation of protein tyrosine phosphorylation in relation to human sperm capacitation and motility. Biology of Reproduction 55 684692. (https://doi.org/10.1095/biolreprod55.3.684)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leemans B, Stout TAE, De Schauwer C, Heras S, Nelis H, Hoogewijs M, Van Soom A & Gadella BM 2019 Update on mammalian sperm capacitation: how much does the horse differ from other species? Reproduction 157 R181R197. (https://doi.org/10.1530/REP-18-0541)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lefievre L, de Lamirande E & Gagnon C 2000 The cyclic GMP-specific phosphodiesterase inhibitor, sildenafil, stimulates human sperm motility and capacitation but not acrosome reaction. Journal of Andrology 21 929937. (https://doi.org/10.1002/j.1939-4640.2000.tb03424.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Monks NJ & Fraser LR 1987 Phosphodiesterase activity of mouse sperm incubated under conditions that modulate fertilizing potential in vitro. Gamete Research 18 8596. (https://doi.org/10.1002/mrd.1120180110)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • MyAssays Ltd. 2018 ‘Four parameter logistic curve’ online analysis tool. (available at: http://www.myassays.com/four-parameter-logistic-curve.assay)

  • Okamura N, Tajima Y, Soejima A, Masuda H & Sugita Y 1985 Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. Journal of Biological Chemistry 260 96999705.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Osheroff JE, Visconti PE, Valenzuela JP, Travis AJ, Alvarez J & Kopf GS 1999 Regulation of human sperm capacitation by a cholesterol efflux- stimulated signal transduction pathway leading to protein kinase A-mediated up-regulation of protein tyrosine phosphorylation. Molecular Human Reproduction 5 10171026. (https://doi.org/10.1093/molehr/5.11.1017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Osycka-Salut CE, Diez F, Burdet J, Gervasi MG, Franchi A, Bianciotti LG, Davio C & Perez-Martinez S 2014 Cyclic AMP efflux, via MRPs and A I adenosine receptors, is critical for bovine sperm capacitation. Molecular Human Reproduction 20 8999. (https://doi.org/10.1093/molehr/gat053)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parrish JJ, Susko-Parrish JL, Winer MA & First NL 1988 Capacitation of bovine sperm by heparin. Biology of Reproduction 38 11711180. (https://doi.org/10.1095/biolreprod38.5.1171)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parrish JJ, Susko-Parrish JL & Graham JK 1999 In vitro capacitation of bovine spermatozoa: role of intracellular calcium. Theriogenology 51 461472. (https://doi.org/10.1016/S0093-691X(98)00240-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pérez-Pé R, Grasa P, Fernández-Juan M, Peleato ML, Cebrián-Pérez JA & Muiño-Blanco T 2002 Seminal plasma proteins reduce protein tyrosine phosphorylation in the plasma membrane of cold-shocked ram spermatozoa. Molecular Reproduction and Development 61 226233. (https://doi.org/10.1002/mrd.1152)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pini T, de Graaf SP, Druart X, Tsikis G, Labas V, Teixeira-Gomes AP, Gadella BM & Leahy T 2018 Binder of sperm proteins 1 and 5 have contrasting effects on the capacitation of ram spermatozoa. Biology of Reproduction 98 765775. (https://doi.org/10.1093/biolre/ioy032)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Richter W, Dettmer D & Glander HJ 1999 Detection of mRNA transcripts of cyclic nucleotide phosphodiesterase subtypes in ejaculated human spermatozoa. Molecular Human Reproduction 5 732736. (https://doi.org/10.1093/molehr/5.8.732)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sankaranarayanan S, Kellner-Weibel G, De La Llera-Moya M, Phillips MC, Asztalos BF, Bittman R & Rothblat GH 2011 A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol. Journal of Lipid Research 52 23322340. (https://doi.org/10.1194/jlr.D018051)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shadan S, James PS, Howes EA & Jones R 2004 Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar spermatozoa. Biology of Reproduction 71 253265. (https://doi.org/10.1095/biolreprod.103.026435)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Soriano-Úbeda C, Romero-Aguirregomezcorta J, Matás C, Visconti PE & García-Vázquez FA 2019 Manipulation of bicarbonate concentration in sperm capacitation media improves in vitro fertilisation output in porcine species. Journal of Animal Science and Biotechnology 10 19. (https://doi.org/10.1186/s40104-019-0324-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Suarez SS & Dai X 1995 Intracellular calcium reaches different levels of elevation in hyperactivated and acrosome-reacted hamster sperm. Molecular Reproduction and Development 42 325333. (https://doi.org/10.1002/mrd.1080420310)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Suarez SS, Varosi SM & Dai X 1993 Intracellular calcium increases with hyperactivation in intact, moving hamster sperm and oscillates with the flagellar beat cycle. PNAS 90 46604664. (https://doi.org/10.1073/pnas.90.10.4660)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takeo T, Hoshii T, Kondo Y, Toyodome H, Arima H, Yamamura K-i, Irie T & Nakagata N 2008 Methyl-beta-cyclodextrin improves fertilizing ability of C57BL/6 mouse sperm after freezing and thawing by facilitating cholesterol efflux from the cells. Biology of Reproduction 78 546551. (https://doi.org/10.1095/biolreprod.107.065359)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tash JS 1976 Investigations on adenosine 3',5'-monophosphate phosphodiesterase in ram semen and initial characterization of a sperm specific isoenzyme. Journal of Reproduction and Fertility 47 6372. (https://doi.org/10.1530/jrf.0.0470063)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • van Gestel RA, Brewis IA, Ashton PR, Helms JB, Brouwers JFHM & Gadella BM 2005 Capacitation-dependent concentration of lipid rafts in the apical ridge head area of porcine sperm cells. Molecular Human Reproduction 11 583590. (https://doi.org/10.1093/molehr/gah200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P & Kopf GS 1995a Capacitation of mouse spermatozoa. 1. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 121 11291137.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, Olds-Clarke P & Kopf GS 1995b Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121 11391150.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Visconti PE, Ning X, Fornés MW, Alvarez JG, Stein P, Connors SA & Kopf GS 1999 Cholesterol efflux-mediated signal transduction in mammalian sperm: cholesterol release signals an increase in protein tyrosine phosphorylation during mouse sperm capacitation. Developmental Biology 214 429443. (https://doi.org/10.1006/dbio.1999.9428)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xie F, Garcia MA, Carlson AE, Schuh SM, Babcock DF, Jaiswal BS, Gossen JA, Esposito G, van Duin M & Conti M 2006 Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. Developmental Biology 296 353362. (https://doi.org/10.1016/j.ydbio.2006.05.038)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yanagimachi R 1994 Mammalian fertilization. In The Physiology of Reproduction, pp. 189317. Eds Knobil E & Neill JD. New York: Raven Press.

  • Yanagimachi R 2011 Mammalian sperm acrosome reaction: where does it begin before fertilization? Biology of Reproduction 85 45. (https://doi.org/10.1095/biolreprod.111.092601)

    • PubMed
    • Search Google Scholar
    • Export Citation