Glucose concentration during equine in vitro maturation alters mitochondrial function

in Reproduction

Correspondence should be addressed to N Lewis; Email: n.lewis@liverpool.ac.uk

*(K Hinrichs is now at Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, PA, USA)

(C McGregor Argo is now at Scotland’s Rural College (SRUC), Northern Faculty, Craibstone Campus, Aberdeen, Scotland)

Restricted access

The use of in vitro embryo production in the horse is increasing in clinical and research settings; however, protocols are yet to be optimised. Notably, the two most commonly used base media for in vitro maturation (IVM) supply glucose at markedly different concentrations: physiological (5.6 mM, M199) or supraphysiological (17 mM, DMEM/F-12). Exposure to high glucose has detrimental effects on oocytes and early embryos in many mammalian species, but the impact has not yet been examined in the horse. To address this, we compared the energy metabolism of equine COCs matured in M199-based maturation medium containing either 5.6 or 17 mM glucose, as well as expression of key genes in oocytes and cumulus cells. Oocytes were fertilised by ICSI and cultured. Analysis of spent medium revealed that COC glucose consumption and production of lactate and pyruvate were similar between treatments. However, the glycolytic index was decreased at 17 mM and analysis of mitochondrial function of COCs revealed that IVM in 17 mM glucose was associated with decreased ATP-coupled respiration and increased non-mitochondrial respiration compared to that for 5.6 mM glucose. We also found that the metabolic enzyme lactate dehydrogenase-A (LDHA) was downregulated in cumulus cells of oocytes that completed IVM in 17 mM glucose. There was no difference in maturation or blastocyst rates. These data indicate that COC mitochondrial function and gene expression are altered by high glucose concentration during IVM. Further work is needed to determine if these changes are associated with developmental changes in the resulting offspring.

Supplementary Materials

    • Supplementary information Table 1: Primer sequences used for gene expression study

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 669 669 669
Full Text Views 11 11 11
PDF Downloads 8 8 8
  • AgarwalAAponte-MelladoAPremkumarBJShamanAGuptaS 2012 The effects of oxidative stress on female reproduction: a review. Reproductive Biology and Endocrinology 10 49. (https://doi.org/10.1186/1477-7827-10-49)

    • Search Google Scholar
    • Export Citation
  • AsplinKECurlewisJDMcgowanCMPollittCCSillenceMN 2011 Glucose transport in the equine hoof. Equine Veterinary Journal 43 196201. (https://doi.org/10.1111/j.2042-3306.2010.00127.x)

    • Search Google Scholar
    • Export Citation
  • BanrezesBSainte-BeuveTCanonESchultzRMCancelaJOzilJP 2011 Adult body weight is programmed by a redox-regulated and energy-dependent process during the pronuclear stage in mouse. PLoS ONE 6 e29388. (https://doi.org/10.1371/journal.pone.0029388)

    • Search Google Scholar
    • Export Citation
  • BloorDJMetcalfeADRutherfordABrisonDRKimberSJ 2002 Expression of cell adhesion molecules during human preimplantation embryo development. Molecular Human Reproduction 8 237245. (https://doi.org/10.1093/molehr/8.3.237)

    • Search Google Scholar
    • Export Citation
  • BradyGIscoveNN 1993 Construction of cDNA libraries from single cells. Methods in Enzymology 225 611623. (https://doi.org/10.1016/0076-6879(93)25039-5)

    • Search Google Scholar
    • Export Citation
  • Brom-de-LunaJGSalgadoRMCanesinHSDiawMHinrichsK 2019 Equine blastocyst production under different incubation temperatures and different CO2 concentrations during early cleavage. Reproduction Fertility and Development 31 18231829. (https://doi.org/10.1071/RD19211)

    • Search Google Scholar
    • Export Citation
  • ChangASChiMMMoleyKH 2004 Maternal hyperglycaemia adversly affects pre-ovulatory oocyte metabolism. Fertility and Sterility 82 S269. (https://doi.org/10.1016/j.fertnstert.2004.07.719)

    • Search Google Scholar
    • Export Citation
  • ChangASDaleANMoleyKH 2005 Maternal diabetes adversely affects preovulatory oocyte maturation, development, and granulosa cell apoptosis. Endocrinology 146 24452453. (https://doi.org/10.1210/en.2004-1472)

    • Search Google Scholar
    • Export Citation
  • ChatotCLZiomekCABavisterBDLewisJLTorresI 1989 An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. Journal of Reproduction and Fertility 86 679688. (https://doi.org/10.1530/jrf.0.0860679)

    • Search Google Scholar
    • Export Citation
  • ChoiYHVarnerDDHartmanDLHinrichsK 2006 Blastocyst production from equine oocytes fertilized by intracytoplasmic injection of lyophilized sperm. Animal Reproduction Science 94 307308. (https://doi.org/10.1016/j.anireprosci.2006.03.085)

    • Search Google Scholar
    • Export Citation
  • ChoiYHHardingHDHartmanDLObermillerADKurosakaSMcLaughlinKJHinrichsK 2009 The uterine environment modulates trophectodermal POU5F1 levels in equine blastocysts. Reproduction 138 589599. (https://doi.org/10.1530/REP-08-0394)

    • Search Google Scholar
    • Export Citation
  • ChoiYHRossPVelezICMacías-GarcíaBRieraFLHinrichsK 2015 Cell lineage allocation in equine blastocysts produced in vitro under varying glucose concentrations. Reproduction 150 3141. (https://doi.org/10.1530/REP-14-0662)

    • Search Google Scholar
    • Export Citation
  • ClaesACuervo-ArangoJvan den BroekJGalliCColleoniSLazzariGDeelenCBeitsmaMStoutTA 2019 Factors affecting the likelihood of pregnancy and embryonic loss after transfer of cryopreserved in vitro produced equine embryos. Equine Veterinary Journal 51446450. (https://doi.org/10.1111/evj.13028)

    • Search Google Scholar
    • Export Citation
  • CollinsAPalmerEBézardJBurkeJDuchampGBuckleyT 1997 A comparison of the biochemical composition of equine follicular fluid and serum at four different stages of the follicular cycle. Equine Veterinary Journal: Supplement 25 1216. (https://doi.org/10.1111/j/2042-3306.1997.tb05092.x)

    • Search Google Scholar
    • Export Citation
  • ColtonSAHumphersonPGLeeseHJDownsSM 2003 Physiological changes in oocyte-cumulus cell complexes from diabetic mice that potentially influence meiotic regulation. Biology of Reproduction 69 761770. (https://doi.org/10.1095/biolreprod.102.013649)

    • Search Google Scholar
    • Export Citation
  • CuiYXuXBiHZhuQWuJXiaXRenQHoPCP 2006 Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose: the role of reactive oxygen species in diabetic retinopathy. Experimental Eye Research 83 807816. (https://doi.org/10.1016/j.exer.2006.03.024)

    • Search Google Scholar
    • Export Citation
  • DumollardRMarangosPFitzharrisGSwannKDuchenMCarrollJ 2004 Sperm-triggered [Ca2+] oscillations and Ca2+ homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production. Development 131 30573067. (https://doi.org/10.1242/dev.01181)

    • Search Google Scholar
    • Export Citation
  • El HajjNHaafT 2013 Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertility and Sterility 99 632641. (https://doi.org/10.1016/j.fertnstert.2012.12.044)

    • Search Google Scholar
    • Export Citation
  • FlemingTPWatkinsAJVelazquezMAMathersJCPrenticeAMStephensonJBarkerMSafferyRYajnikCSEckertJJ 2018 Origins of lifetime health around the time of conception : causes and consequences. Lancet 391 18421852. (https://doi.org/10.1016/S0140-6736(18)30312-X)

    • Search Google Scholar
    • Export Citation
  • FrankLASutton-mcdowallMLGilchristRBThompsonJG 2014 The effect of peri-conception hyperglycaemia and the involvement of the hexosamine biosynthesis pathway in mediating oocyte and embryo developmental competence. Molecular Reproduction and Development 81 391408. (https://doi.org/10.1002/mrd.22299)

    • Search Google Scholar
    • Export Citation
  • FurnusCCde MatosDGMartinezAMatkovicM 1997 Effect of glucose on embryo quality and post-thaw viability of in-vitro-produced bovine embryos. Theriogenology 47 481490. (https://doi.org/10.1016/s0093-691x(97)00006-x)

    • Search Google Scholar
    • Export Citation
  • GalliCColleoniSDuchiRLagutinaILazzariG 2007 Developmental competence of equine oocytes and embryos obtained by in vitro procedures ranging from in vitro maturation and ICSI to embryo culture, cryopreservation and somatic cell nuclear transfer. Animal Reproduction Science 98 3955. (https://doi.org/10.1016/j.anireprosci.2006.10.011)

    • Search Google Scholar
    • Export Citation
  • GuerifFMcKeeganPLeeseHJSturmeyRG 2013 A simple approach for COnsumption and RElease (CORE) analysis of metabolic activity in single mammalian embryos. PLoS ONE 8 e67834. (https://doi.org/10.1371/journal.pone.0067834)

    • Search Google Scholar
    • Export Citation
  • HashimotoSMinamiNTakakuraRYamadaMImaiHKashimaN 2000 Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus-oocyte complexes. Molecular Reproduction and Development 57 353360. (https://doi.org/10.1002/1098-2795(200012)57:4<353::AID-MRD7>3.0.CO;2-R)

    • Search Google Scholar
    • Export Citation
  • HendriksWKParisDBBPColleoniSGalliCColenbranderBStoutTAE 2019 Mitochondrial DNA replication is initiated at blastocyst formation in equine embryos. Reproduction Fertility and Development 31 570578. (https://doi.org/10.1071/RD17387)

    • Search Google Scholar
    • Export Citation
  • HinrichsKDiGiorgioLM 1991 Embryonic development after intra-follicular transfer of horse oocytes. Journal of Reproduction and Fertility. Supplement 44 369374.

    • Search Google Scholar
    • Export Citation
  • HinrichsKChoiYHLoveLBVarnerDDLoveCCWalckenaerBE 2005 Chromatin configuration within the germinal vesicle of horse oocytes: changes post mortem and relationship to meiotic and developmental competence. Biology of Reproduction 72 11421150. (https://doi.org/10.1095/biolreprod.104.036012)

    • Search Google Scholar
    • Export Citation
  • HinrichsKChoiYHWalckenaerBEVarnerDDHartmanDL 2007 In vitro-produced equine embryos: production of foals after transfer, assessment by differential staining and effect of medium calcium concentrations during culture. Theriogenology 68 521529. (https://doi.org/10.1016/j.theriogenology.2007.04.046)

    • Search Google Scholar
    • Export Citation
  • HinrichsKChoiYHNorrisJDLoveLBBedford-guausSJ 2010 Use of intracytoplasmic sperm injection and in vitro culture to the blastocyst stage for clinical production of foals from mares post mortem. Animal Reproduction Science 121 239240. (https://doi.org/10.1016/j.anireprosci.2010.04.046)

    • Search Google Scholar
    • Export Citation
  • HinrichsKChoiYHLoveCCSpacekS 2014 Use of in vitro maturation of oocytes, intracytoplasmic sperm injection and in vitro culture to the blastocyst stage in a commercial equine assisted reproduction program. Journal of Equine Veterinary Science 34 176. (https://doi.org/10.1016/j.jevs.2013.10.129)

    • Search Google Scholar
    • Export Citation
  • HollisARBostonRCCorleyKTT 2007 Blood glucose in horses with acute abdominal disease. Journal of Veterinary Internal Medicine 21 10991103. (https://doi.org/10.1892/0891-6640(2007)21[1099:bgihwa]2.0.co;2)

    • Search Google Scholar
    • Export Citation
  • JacobsonCCChoiYHHaydenSSHinrichsK 2010 Recovery of mare oocytes on a fixed biweekly schedule, and resulting blastocyst formation after intracytoplasmic sperm injection. Theriogenology 73 11161126. (https://doi.org/10.1016/j.theriogenology.2010.01.013)

    • Search Google Scholar
    • Export Citation
  • KozielASobierajIJarmuszkiewiczW 2015 Increased activity of mitochondrial uncoupling protein 2 improves stress resistance in cultured endothelial cells exposed in vitro to high glucose levels. American Journal of Physiology: Heart and Circulatory Physiology 309 H147H156. (https://doi.org/10.1152/ajpheart.00759.2014)

    • Search Google Scholar
    • Export Citation
  • LeeseHJGuerifFAllgarVBrisonDRLundinKSturmeyRG 2016 Biological optimization , the goldilocks principle, and how much is lagom in the preimplantation embryo. Molecular Reproduction and Development 83 748754. (https://doi.org/10.1002/mrd.22684)

    • Search Google Scholar
    • Export Citation
  • LewisNLHinrichsKSchnaufferKMorgantiMMcG. ArgoC 2016 Effect of oocyte source and transport time on rates of equine oocyte maturation and cleavage after fertilisation by ICSI, with a note on the validation of equine embryo morphological classification. Clinical Theriogenology 8 2943.

    • Search Google Scholar
    • Export Citation
  • LewisNSchnaufferKHinrichsKMorgantiMTroupSArgoC 2019 Morphokinetics of early equine embryo development in vitro using time-lapse imaging, and use in selecting blastocysts for transfer. Reproduction Fertility and Development 31 18511861. (https://doi.org/10.1071/RD19225)

    • Search Google Scholar
    • Export Citation
  • LewisNHinrichsKLeeseHJArgoCMBrisonDRSturmeyR 2020 Energy metabolism of the equine cumulus oocyte complex during in vitro maturation. Scientific Reports 10 3493. (https://doi.org/10.1038/s41598-020-60624-z)

    • Search Google Scholar
    • Export Citation
  • MorganRKeenJMcgowanC 2015 Equine metabolic syndrome. Veterinary Record 177 173179. (https://doi.org/10.1136/vr.103226)

  • MullerBLewisNAdeniyiTLeeseHJBrisonDRSturmeyRG 2019 Application of extracellular flux analysis for determining mitochondrial function in mammalian oocytes and early embryos. Scientific Reports 9 16778. (https://doi.org/10.1038/s41598-019-53066-9)

    • Search Google Scholar
    • Export Citation
  • PalmeiraCMRoloAPBerthiaumeJBjorkJAWallaceKB 2007 Hyperglycemia decreases mitochondrial function : the regulatory role of mitochondrial biogenesis. Toxicology and Applied Pharmacology 225 214220. (https://doi.org/10.1016/j.taap.2007.07.015)

    • Search Google Scholar
    • Export Citation
  • RatchfordAMEsguerraCRMoleyKH 2008 Decreased oocyte-granulosa cell gap junction communication and connexin expression in a Type 1 diabetic mouse model. Molecular Endocrinology 22 26432654. (https://doi.org/10.1210/me.2007-0495)

    • Search Google Scholar
    • Export Citation
  • RoloAPPalmeiraCM 2006 Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicology and Applied Pharmacology 212 167178. (https://doi.org/10.1016/j.taap.2006.01.003)

    • Search Google Scholar
    • Export Citation
  • RoseboomTJ 2018 Developmental plasticity and its relevance to assisted human reproduction. Human Reproduction 33 546552. (https://doi.org/10.1093/humrep/dey034)

    • Search Google Scholar
    • Export Citation
  • RoserJFMeyers-BrownG 2012 Superovulation in the mare: a work in progress. Journal of Equine Veterinary Science 32 376386. (https://doi.org/10.1016/j.jevs.2012.05.055)

    • Search Google Scholar
    • Export Citation
  • SalgadoRMBrom-de-LunaJGResendeHLCanesinHSHinrichsK 2018 Lower blastocyst quality after conventional vs. Piezo ICSI in the horse reflects delayed sperm component remodeling and oocyte activation. Journal of Assisted Reproduction and Genetics 35 825840. (https://doi.org/10.1007/s10815-018-1174-9)

    • Search Google Scholar
    • Export Citation
  • SchmittgenTDLivakKJ 2008 Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3 11011108. (https://doi.org/10.1038/nprot.2008.73)

    • Search Google Scholar
    • Export Citation
  • SeshagiriPBBavisterBD 1989 Glucose inhibits of hamster 8-cell embryos in vitro. Biology of Reproduction 40 599606. (https://doi.org/10.1095/biolreprod40.3.599)

    • Search Google Scholar
    • Export Citation
  • SmitsKGovaereJ 2010 Birth of the first ICSI foal in the Benelux. Vlaams Diergeneeskundig Tijdschrift 12 134138.

  • SpravchikovNSizyakovGGartsbeinMAcciliDTennenbaumTWertheimerE 2001 Glucose effects on skin keratinocytes : implications for diabetes skin complications. Diabetes 50 16271635. (https://doi.org/10.2337/diabetes.50.7.1627)

    • Search Google Scholar
    • Export Citation
  • SturmeyRGLeeseHJ 2003 Energy metabolism in pig oocytes and early embryos. Reproduction 126 197204. (https://doi.org/10.1530/rep.0.1260197)

    • Search Google Scholar
    • Export Citation
  • SuttonMLCeticaPDBeconiMTKindKLGilchristRBThompsonJG 2003 Influence of oocyte-secreted factors and culture duration on the metabolic activity of bovine cumulus cell complexes. Reproduction 126 2734. (https://doi.org/10.1530/rep.0.1260027)

    • Search Google Scholar
    • Export Citation
  • Sutton-McDowallMLGilchristRBThompsonJG 2010 The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 139 685695. (https://doi.org/10.1530/REP-09-0345)

    • Search Google Scholar
    • Export Citation
  • ThompsonJGSimpsonACPughPATervitHR 1992 Requirement for glucose during in vitro culture of sheep preimplantation embryos. Molecular Reproduction and Development 31 253257. (https://doi.org/10.1002/mrd.1080310405)

    • Search Google Scholar
    • Export Citation
  • ValenzuelaOACouturier-TarradeAChoiYHAubrièreMCRitthalerJChavatte-PalmerPHinrichsK 2018 Impact of equine assisted reproductive technologies (standard embryo transfer or intracytoplasmic sperm injection (ICSI) with in vitro culture and embryo transfer) on placenta and foal morphometry and placental gene expression. Reproduction Fertility and Development 30 371379. (https://doi.org/10.1071/RD16536)

    • Search Google Scholar
    • Export Citation
  • WalterJHuwilerFFortesCGrossmannJRoschitzkiBHuJNaegeliHLaczkoEBleulU 2019 Analysis of the equine ‘cumulome’ reveals major metabolic aberrations after maturation in vitro. BMC Genomics 20 588. (https://doi.org/10.1186/s12864-019-5836-5)

    • Search Google Scholar
    • Export Citation
  • WangQFrolovaAIPurcellSAdastraKSchoellerEChiMMMoleyKH 2010 Mitochondrial dysfunction and apoptosis in cumulus cells of Type I diabetic mice. PLoS ONE 5 111.

    • Search Google Scholar
    • Export Citation
  • WangQChiMMMoleyKH 2012 Live imaging reveals the link between decreased glucose uptake in ovarian cumulus cells and impaired oocyte quality in female diabetic mice. Endocrinology 153 19841989. (https://doi.org/10.1210/en.2011-1815)

    • Search Google Scholar
    • Export Citation
  • WatkinsAJWilkinsACunninghamCPerryVHSeetMJOsmondCEckertJJTorrensCCagampangFRAClealJ 2008 Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring. Journal of Physiology 586 22312244. (https://doi.org/10.1113/jphysiol.2007.149229)

    • Search Google Scholar
    • Export Citation
  • ZhangJJBoyleMSAllenWRGalliC 1989 Recent studies on in vivo fertilisation of in vitro matured horse oocytes. Equine Veterinary Journal 21 101104. (https://doi.org/10.1111/j.2042-3306.1989.tb04691.x)

    • Search Google Scholar
    • Export Citation