Association between LH receptor regulation and ovarian hyperstimulation syndrome in a rodent model

in Reproduction

Correspondence should be addressed to K M J Menon; Email: kmjmenon@umich.edu

(C Zheng is now at Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China)

Restricted access

Ovarian hyperstimulation syndrome (OHSS) is a common complication of ovarian stimulation associated with the administration of human chorionic gonadotropin (hCG) during assisted reproduction. We have determined the expression of luteinizing hormone receptor (Lhcgr) mRNA, vascular endothelial growth factor (VEGF), and its transcription factor, HIF1α, during the periovulatory period in a rodent model of OHSS and compared these results with normal ovulatory periods. These results showed that the downregulation of Lhcgr mRNA in response to conditions that mimic preovulatory LH surge was significantly impaired in the OHSS group compared to the complete downregulation seen in the control group. Most importantly, the downregulation of luteinizing hormone receptor mRNA expression following hCG administration was sustained in the control group up to 48 h, whereas it remained at significantly higher levels in the OHSS group. This impairment of hCG-induced Lhcgr downregulation in the OHSS group was accompanied by significantly elevated levels of VEGF and its transcription factor, HIF1α. Furthermore, the downregulation of Lhcgr that occurs in response to a preovulatory LH surge in normal cycles was accompanied by low levels of VEGF. This study shows that, while downregulation of Lhcgr as well as low VEGF levels are seen in response to a preovulatory LH surge in normal ovarian cycle, impaired Lhcgr downregulation and elevated VEGF levels were found in the OHSS group.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 650 650 552
Full Text Views 38 38 25
PDF Downloads 18 18 13
  • AboulgharMAMansourRT 2003 Ovarian hyperstimulation syndrome: classifications and critical analysis of preventive measures. Human Reproduction Update 9 275289. (https://doi.org/10.1093/humupd/dmg018)

    • Search Google Scholar
    • Export Citation
  • AbramovYBarakVNismanBSchenkerJG 1997 Vascular endothelial growth factor plasma levels correlate to the clinical picture in severe ovarian hyperstimulation syndrome. Fertility and Sterility 67 261265. (https://doi.org/10.1016/S0015-0282(97)81908-5)

    • Search Google Scholar
    • Export Citation
  • AgrawalRTanSLWildSSladkeviciusPEngmannLPayneNBekirJCampbellSConwayGJacobsH 1999 Serum vascular endothelial growth factor concentrations in in vitro fertilization cycles predict the risk of ovarian hyperstimulation syndrome. Fertility and Sterility 71 287293. (https://doi.org/10.1016/s0015-0282(98)00447-6)

    • Search Google Scholar
    • Export Citation
  • AhluwaliaATarnawskiAS 2012 Critical role of hypoxia sensor – HIF-1α in VEGF gene activation. Implications for angiogenesis and tissue injury healing. Current Medicinal Chemistry 19 9097. (https://doi.org/10.2174/092986712803413944)

    • Search Google Scholar
    • Export Citation
  • AjonumaLCTsangLLZhangGHWongCHLauMCHoLSRowlandsDKZhouCXNgCPChenJ 2005 Estrogen-induced abnormally high cystic fibrosis transmembrane conductance regulator expression results in ovarian hyperstimulation syndrome. Molecular Endocrinology 19 30383044. (https://doi.org/10.1210/me.2005-0114)

    • Search Google Scholar
    • Export Citation
  • ArtiniPGFascianiAMontiMLuisiSD'AmbrogioGGenazzaniAR 1998 Changes in vascular endothelial growth factor levels and the risk of ovarian hyperstimulation syndrome in women enrolled in an in vitro fertilization program. Fertility and Sterility 70 560564. (https://doi.org/10.1016/s0015-0282(98)00221-0)

    • Search Google Scholar
    • Export Citation
  • BasiniGBiancoFGrasselliFTirelliMBussolatiSTamaniniC 2004 The effects of reduced oxygen tension on swine granulosa cell. Regulatory Peptides 120 6975. (https://doi.org/10.1016/j.regpep.2004.02.013)

    • Search Google Scholar
    • Export Citation
  • BrinsdenPRWadaITanSLBalenAJacobsHS 1995 Diagnosis, prevention and management of ovarian hyperstimulation syndrome. British Journal of Obstetrics and Gynaecology 102 767772. (https://doi.org/10.1111/j.1471-0528.1995.tb10840.x)

    • Search Google Scholar
    • Export Citation
  • CritchleyHOOseiJHendersonTABoswellLSalesKJJabbourHNHiraniN 2006 Hypoxia-inducible factor-1alpha expression in human endometrium and its regulation by prostaglandin E-series prostanoid receptor 2 (EP2). Endocrinology 147 744753. (https://doi.org/10.1210/en.2005-1153)

    • Search Google Scholar
    • Export Citation
  • DelvigneARozenbergS 2002 Epidemiology and prevention of ovarian hyperstimulation syndrome (OHSS): a review. Human Reproduction Update 8 559577. (https://doi.org/10.1093/humupd/8.6.559)

    • Search Google Scholar
    • Export Citation
  • ElchalalUSchenkerJG 1997 The pathophysiology of ovarian hyperstimulation syndrome – views and ideas. Human Reproduction 12 11291137. (https://doi.org/10.1093/humrep/12.6.1129)

    • Search Google Scholar
    • Export Citation
  • FerraraNKeytB 1997 Vascular endothelial growth factor: basic biology and clinical implications. EXS 79 209232. (https://doi.org/10.1007/978-3-0348-9006-9_9)

    • Search Google Scholar
    • Export Citation
  • GevaEJaffeRB 2000 Role of vascular endothelial growth factor in ovarian physiology and pathology. Fertility and Sterility 74 429438. (https://doi.org/10.1016/s0015-0282(00)00670-1)

    • Search Google Scholar
    • Export Citation
  • GomezRSimonCRemohiJPellicerA 2002 Vascular endothelial growth factor receptor-2 activation induces vascular permeability in hyperstimulated rats, and this effect is prevented by receptor blockade. Endocrinology 143 43394348. (https://doi.org/10.1210/en.2002-220204)

    • Search Google Scholar
    • Export Citation
  • GuimeraMMorales-RuizMJimenezWBalaschJ 2009 LH/HCG stimulation of VEGF and adrenomedullin production by follicular fluid macrophages and luteinized granulosa cells. Reproductive Biomedicine Online 18 743749. (https://doi.org/10.1016/s1472-6483(10)60021-1)

    • Search Google Scholar
    • Export Citation
  • HaradaMPeegelHMenonKMJ 2010 Expression of vascular endothelial growth factor A during ligand-induced down-regulation of luteinizing hormone receptor in the ovary. Molecular and Cellular Endocrinology 328 2833. (https://doi.org/10.1016/j.mce.2010.06.015)

    • Search Google Scholar
    • Export Citation
  • HoffmanYMPeegelHSprockMJZhangQYMenonKMJ 1991 Evidence that human chorionic gonadotropin/luteinizing hormone receptor down-regulation involves decreased levels of receptor messenger ribonucleic acid. Endocrinology 128 388393. (https://doi.org/10.1210/endo-128-1-388)

    • Search Google Scholar
    • Export Citation
  • IshikawaKOhbaTTanakaNIqbalMOkamuraYOkamuraH 2003 Organ-specific production control of vascular endothelial growth factor in ovarian hyperstimulation syndrome-model rats. Endocrine Journal 50 515525. (https://doi.org/10.1507/endocrj.50.515)

    • Search Google Scholar
    • Export Citation
  • KasumM 2010 New insights in mechanisms for development of ovarian hyperstimulation syndrome. Collegium Antropologicum 34 11391143.

  • KitsouCKosmasILazarosLHatziEEuaggelouAMynbaevOTournayeHPrapasNPrapasIZikopoulosK 2014 Ovarian hyperstimulation syndrome inhibition by targeting VEGF, COX-2 and calcium pathways: a preclinical randomized study. Gynecological Endocrinology 30 587592. (https://doi.org/10.3109/09513590.2014.910191)

    • Search Google Scholar
    • Export Citation
  • KumarPSaitSFSharmaAKumarM 2011 Ovarian hyperstimulation syndrome. Journal of Human Reproductive Sciences 4 7075. (https://doi.org/10.4103/0974-1208.86080)

    • Search Google Scholar
    • Export Citation
  • KuriharaTWestenskowPDFriedlanderM 2014 Hypoxia-inducible factor (HIF)/vascular endothelial growth factor (VEGF) signaling in the retina. Advances in Experimental Medicine and Biology 801 275281. (https://doi.org/10.1007/978-1-4614-3209-8_35)

    • Search Google Scholar
    • Export Citation
  • ManauDFabreguesFPenarrubiaJCreusMCarmonaFCasalsGJimenezWBalaschJ 2007 Vascular endothelial growth factor levels in serum and plasma from patients undergoing controlled ovarian hyperstimulation for IVF. Human Reproduction 22 669675. (https://doi.org/10.1093/humrep/del427)

    • Search Google Scholar
    • Export Citation
  • MenonBFranzo-RomainMDamanpourSMenonKMJ 2011 Luteinizing hormone receptor mRNA down-regulation is mediated through ERK-dependent induction of RNA binding protein. Molecular Endocrinology 25 282290. (https://doi.org/10.1210/me.2010-0366)

    • Search Google Scholar
    • Export Citation
  • MooreWTJrWardDN 1980 Pregnant mare serum gonadotropin. An in vitro biological characterization of the lutropin-follitropin dual activity. Journal of Biological Chemistry 255 69306936.

    • Search Google Scholar
    • Export Citation
  • NairAKMenonKMJ 2004 Isolation and characterization of a novel trans-factor for luteinizing hormone receptor mRNA from ovary. Journal of Biological Chemistry 279 1493714944. (https://doi.org/10.1074/jbc.M309484200)

    • Search Google Scholar
    • Export Citation
  • NairAKMenonKMJ 2005 Regulation of luteinizing hormone receptor expression: evidence of translational suppression in vitro by a hormonally regulated mRNA-binding protein and its endogenous association with luteinizing hormone receptor mRNA in the ovary. Journal of Biological Chemistry 280 4280942816. (https://doi.org/10.1074/jbc.M503154200)

    • Search Google Scholar
    • Export Citation
  • NairAKKashJCPeegelHMenonKMJ 2002 Post-transcriptional regulation of luteinizing hormone receptor mRNA in the ovary by a novel mRNA-binding protein. Journal of Biological Chemistry 277 2146821473. (https://doi.org/10.1074/jbc.M111653200)

    • Search Google Scholar
    • Export Citation
  • NairAKYoungMAMenonKMJ 2008 Regulation of luteinizing hormone receptor mRNA expression by mevalonate kinase – role of the catalytic center in mRNA recognition. FEBS Journal 275 33973407. (https://doi.org/10.1111/j.1742-4658.2008.06490.x)

    • Search Google Scholar
    • Export Citation
  • NeulenJYanZRaczekSWeindelKKeckCWeichHAMarmeDBreckwoldtM 1995 Human chorionic gonadotropin-dependent expression of vascular endothelial growth factor/vascular permeability factor in human granulosa cells: importance in ovarian hyperstimulation syndrome. Journal of Clinical Endocrinology and Metabolism 80 19671971. (https://doi.org/10.1210/jcem.80.6.7775647)

    • Search Google Scholar
    • Export Citation
  • PeegelHRandolphJJrMidgleyARMenonKMJ 1994 In situ hybridization of luteinizing hormone/human chorionic gonadotropin receptor messenger ribonucleic acid during hormone-induced down-regulation and the subsequent recovery in rat corpus luteum. Endocrinology 135 10441051. (https://doi.org/10.1210/endo.135.3.8070346)

    • Search Google Scholar
    • Export Citation
  • QuintanaRKopcowLMarconiGYoungEYovanovichCPazDA 2008 Inhibition of cyclooxygenase-2 (COX-2) by meloxicam decreases the incidence of ovarian hyperstimulation syndrome in a rat model. Fertility and Sterility 90 (Supplement) 15111516. (https://doi.org/10.1016/j.fertnstert.2007.09.028)

    • Search Google Scholar
    • Export Citation
  • RizkBAboulgharMSmitzJRon-ElR 1997 The role of vascular endothelial growth factor and interleukins in the pathogenesis of severe ovarian hyperstimulation syndrome. Human Reproduction Update 3 255266. (https://doi.org/10.1093/humupd/3.3.255)

    • Search Google Scholar
    • Export Citation
  • RobinsonRSWoadKJHammondAJLairdMHunterMGMannGE 2009 Angiogenesis and vascular function in the ovary. Reproduction 138 869881. (https://doi.org/10.1530/REP-09-0283)

    • Search Google Scholar
    • Export Citation
  • SaylanAAriozDTKokenTDilekHSaylanFYilmazerM 2010 Prevention of ovarian hyperstimulation syndrome in a rat model: efficacy comparison between cabergoline and meloxicam. Acta Obstetricia et Gynecologica Scandinavica 89 692699. (https://doi.org/10.3109/00016341003592537)

    • Search Google Scholar
    • Export Citation
  • SchenkerJGWeinsteinD 1978 Ovarian hyperstimulation syndrome: a current survey. Fertility and Sterility 30 255268. (https://doi.org/10.1016/s0015-0282(16)43508-9)

    • Search Google Scholar
    • Export Citation
  • SengerDRGalliSJDvorakAMPerruzziCAHarveyVSDvorakHF 1983 Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219 983985. (https://doi.org/10.1126/science.6823562)

    • Search Google Scholar
    • Export Citation
  • UjiokaTMatsuuraKKawanoTOkamuraH 1997 Role of progesterone in capillary permeability in hyperstimulated rats. Human Reproduction 12 16291634. (https://doi.org/10.1093/humrep/12.8.1629)

    • Search Google Scholar
    • Export Citation
  • van de LagemaatRRaafsBCvan KoppenCTimmersCMMuldersSMHanssenRG 2011 Prevention of the onset of ovarian hyperstimulation syndrome (OHSS) in the rat after ovulation induction with a low molecular weight agonist of the LH receptor compared with hCG and rec-LH. Endocrinology 152 43504357. (https://doi.org/10.1210/en.2011-1077)

    • Search Google Scholar
    • Export Citation
  • van den DriescheSMyersMGayEThongKJDuncanWC 2008 HCG up-regulates hypoxia inducible factor-1 alpha in luteinized granulosa cells: implications for the hormonal regulation of vascular endothelial growth factor A in the human corpus luteum. Molecular Human Reproduction 14 455464. (https://doi.org/10.1093/molehr/gan040)

    • Search Google Scholar
    • Export Citation
  • WuLZhangZPanXWangZ 2015 Expression and contribution of the HIF-1alpha/VEGF signaling pathway to luteal development and function in pregnant rats. Molecular Medicine Reports 12 71537159. (https://doi.org/10.3892/mmr.2015.4268)

    • Search Google Scholar
    • Export Citation
  • ZeleznikAJ 2004 The physiology of follicle selection. Reproductive Biology and Endocrinology 2 31. (https://doi.org/10.1186/1477-7827-2-31)

    • Search Google Scholar
    • Export Citation
  • ZhangEYGaoBShiHLHuangLFYangLWuXJWangZT 2017 (S)-Protopanaxadiol enhances angiogenesis via HIF-1alpha-mediated VEGF secretion by activating p70S6 kinase and benefits wound healing in genetically diabetic mice. Experimental and Molecular Medicine 49 e387. (https://doi.org/10.1038/emm.2017.151)

    • Search Google Scholar
    • Export Citation