A translational cellular model for the study of peritubular cells of the testis

in Reproduction

Correspondence should be addressed to A Mayerhofer; Email: mayerhofer@bmc.med.lmu.de

*(N Schmid, A Missel and S Petkov are joint first authors)

†(T Frohlich, R Behr and A Mayerhofer are joint senior authors)

Restricted access

Testicular peritubular cells (TPCs) are smooth muscle-like cells, which form a compartment surrounding the seminiferous tubules. Previous studies employing isolated human testicular peritubular cells (HTPCs) indicated that their roles in the testis go beyond sperm transport and include paracrine and immunological contributions. Peritubular cells from a non-human primate (MKTPCs), the common marmoset monkey, Callithrix jacchus, share a high degree of homology with HTPCs. However, like their human counterparts these cells age in vitro and replicative senescence limits in-depth functional or mechanistic studies. Therefore, a stable cellular model was established. MKTPCs of a young adult animal were immortalized by piggyBac transposition of human telomerase (hTERT), that is, without the expression of viral oncogenes. Immortalized MKTPCs (iMKTPCs) grew without discernable changes for more than 50 passages. An initial characterization revealed typical genes expressed by peritubular cells (androgen receptor (AR), smooth-muscle actin (ACTA2), calponin (CNN1)). A proteome analysis of the primary MKTPCs and the derived immortalized cell line confirmed that the cells almost completely retained their phenotype. To test whether they respond in a similar way as HTPCs, iMKTPCs were challenged with forskolin (FSK) and ATP. As HTPCs, they showed increased expression level of the StAR protein (StAR) after FSK stimulation, indicating steroidogenic capacity. ATP increased the expression of pro-inflammatory factors (e.g. IL1B; CCL7), as it is the case in HTPCs. Finally, we confirmed that iMKTPCs can efficiently be transfected. Therefore, they represent a highly relevant translational model, which allows mechanistic studies for further exploration of the roles of testicular peritubular cells.

Supplementary Materials

    • Supplementary table 1: Proteins identified in MKTPCs and iMKTPCs. Proteins were divided into four abundance quartiles. 1st quartile: high; 2nd and 3rd quartile: medium; 4th quartile: low; N/A: not detected. LFQ intensities are log2 transformed.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 139 139 139
Full Text Views 9 9 9
PDF Downloads 4 4 4
  • AdamMSchwarzerJUKohnFMStraussLPoutanenMMayerhoferA 2011 Mast cell tryptase stimulates production of decorin by human testicular peritubular cells: possible role of decorin in male infertility by interfering with growth factor signaling. Human Reproduction 26 26132625. (https://doi.org/10.1093/humrep/der245)

    • Search Google Scholar
    • Export Citation
  • AlbrechtMRamschRKohnFMSchwarzerJUMayerhoferA 2006 Isolation and cultivation of human testicular peritubular cells: a new model for the investigation of fibrotic processes in the human testis and male infertility. Journal of Clinical Endocrinology and Metabolism 91 19561960. (https://doi.org/10.1210/jc.2005-2169)

    • Search Google Scholar
    • Export Citation
  • BockerWYinZDrosseIHaastersFRossmannOWiererMPopovCLocherMMutschlerWDochevaD 2008 Introducing a single-cell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer. Journal of Cellular and Molecular Medicine 12 13471359. (https://doi.org/10.1111/j.1582-4934.2008.00299.x)

    • Search Google Scholar
    • Export Citation
  • Cardoso-MoreiraMHalbertJVallotonDVeltenBChenCShaoYLiechtiAAscencaoKRummelCOvchinnikovaS 2019 Gene expression across mammalian organ development. Nature 571 505509. (https://doi.org/10.1038/s41586-019-1338-5)

    • Search Google Scholar
    • Export Citation
  • ChemesHEGottliebSEPasqualiniTDomenichiniERivarolaMABergadaC 1985 Response to acute hCG stimulation and steroidogenic potential of Leydig cell fibroblastic precursors in humans. Journal of Andrology 6 102112. (https://doi.org/10.1002/j.1939-4640.1985.tb00824.x)

    • Search Google Scholar
    • Export Citation
  • ChenLYBrownPRWillisWBEddyEM 2014 Peritubular myoid cells participate in male mouse spermatogonial stem cell maintenance. Endocrinology 155 49644974. (https://doi.org/10.1210/en.2014-1406)

    • Search Google Scholar
    • Export Citation
  • ChenLYWillisWDEddyEM 2016 Targeting the Gdnf Gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development. PNAS 113 18291834. (https://doi.org/10.1073/pnas.1517994113)

    • Search Google Scholar
    • Export Citation
  • CoxJHeinMYLuberCAParonINagarajNMannM 2014 Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Molecular and Cellular Proteomics 13 25132526. (https://doi.org/10.1074/mcp.M113.031591)

    • Search Google Scholar
    • Export Citation
  • DebowskiKWarthemannRLentesJSalinas-RiesterGDresselRLangenstrothDGromollJSasakiEBehrR 2015 Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach. PLoS ONE 10 e0118424. (https://doi.org/10.1371/journal.pone.0118424)

    • Search Google Scholar
    • Export Citation
  • FlenkenthalerFWindschuttlSFrohlichTSchwarzerJUMayerhoferAArnoldGJ 2014 Secretome analysis of testicular peritubular cells: a window into the human testicular microenvironment and the spermatogonial stem cell niche in man. Journal of Proteome Research 13 12591269. (https://doi.org/10.1021/pr400769z)

    • Search Google Scholar
    • Export Citation
  • GelainDPde SouzaLFBernardEA 2003 Extracellular purines from cells of seminiferous tubules. Molecular and Cellular Biochemistry 245 19. (https://doi.org/10.1023/a:1022857608849)

    • Search Google Scholar
    • Export Citation
  • HaiderSG 2004 Cell biology of Leydig cells in the testis. International Review of Cytology 233 181241. (https://doi.org/10.1016/S0074-7696(04)33005-6)

    • Search Google Scholar
    • Export Citation
  • JungerWG 2011 Immune cell regulation by autocrine purinergic signalling. Nature Reviews: Immunology 11 201212. (https://doi.org/10.1038/nri2938)

    • Search Google Scholar
    • Export Citation
  • LandrehLSpinnlerKSchubertKHakkinenMRAuriolaSPoutanenMSoderOSvechnikovKMayerhoferA 2014 Human testicular peritubular cells host putative stem Leydig cells with steroidogenic capacity. Journal of Clinical Endocrinology and Metabolism 99 E1227E1235. (https://doi.org/10.1210/jc.2013-4199)

    • Search Google Scholar
    • Export Citation
  • LiLHDonaldJMGolubMS 2005 Review on testicular development, structure, function, and regulation in common marmoset. Birth Defects Research: Part B Developmental and Reproductive Toxicology 74 450469. (https://doi.org/10.1002/bdrb.20057)

    • Search Google Scholar
    • Export Citation
  • MaekawaMKamimuraKNaganoT 1996 Peritubular myoid cells in the testis: their structure and function. Archives of Histology and Cytology 59 113. (https://doi.org/10.1679/aohc.59.1)

    • Search Google Scholar
    • Export Citation
  • MansfieldK 2003 Marmoset models commonly used in biomedical research. Comparative Medicine 53 383392.

  • MasutomiKYuEYKhurtsSBen-PorathICurrierJLMetzGBBrooksMWKanekoSMurakamiSDeCaprioJA 2003 Telomerase maintains telomere structure in normal human cells. Cell 114 241253. (https://doi.org/10.1016/s0092-8674(03)00550-6)

    • Search Google Scholar
    • Export Citation
  • MayerCAdamMGlashauserLDietrichKSchwarzerJUKohnFMStraussLWelterHPoutanenMMayerhoferA 2016 Sterile inflammation as a factor in human male infertility: involvement of Toll like receptor 2, biglycan and peritubular cells. Scientific Reports 6 37128. (https://doi.org/10.1038/srep37128)

    • Search Google Scholar
    • Export Citation
  • MayerCAdamMWalentaLSchmidNHeikelaHSchubertKFlenkenthalerFDietrichKGGruschkaSArnoldGJ 2018 Insights into the role of androgen receptor in human testicular peritubular cells. Andrology 6 756765. (https://doi.org/10.1111/andr.12509)

    • Search Google Scholar
    • Export Citation
  • MayerhoferA 2013 Human testicular peritubular cells: more than meets the eye. Reproduction 145 R107R116. (https://doi.org/10.1530/REP-12-0497)

    • Search Google Scholar
    • Export Citation
  • MayerhoferAWalentaLMayerCEublerKWelterH 2018 Human testicular peritubular cells, mast cells and testicular inflammation. Andrologia 50 e13055. (https://doi.org/10.1111/and.13055)

    • Search Google Scholar
    • Export Citation
  • MeinekeVFrungieriMBJessbergerBVogtHMayerhoferA 2000 Human testicular mast cells contain tryptase: increased mast cell number and altered distribution in the testes of infertile men. Fertility and Sterility 74 239244. (https://doi.org/10.1016/s0015-0282(00)00626-9)

    • Search Google Scholar
    • Export Citation
  • MichelJBMahouyG 1990 The marmoset in biomedical research. Value of this primate model for cardiovascular studies. Pathologie-Biologie 38 197204.

    • Search Google Scholar
    • Export Citation
  • MillarMRSharpeRMWeinbauerGFFraserHMSaundersPT 2000 Marmoset spermatogenesis: organizational similarities to the human. International Journal of Andrology 23 266277. (https://doi.org/10.1046/j.1365-2605.2000.00236.x)

    • Search Google Scholar
    • Export Citation
  • PetkovSKahlandTShomroniOLingnerTSalinasGFuchsSDebowskiKBehrR 2018 Immortalization of common marmoset monkey fibroblasts by piggyBac transposition of hTERT. PLoS ONE 13 e0204580. (https://doi.org/10.1371/journal.pone.0204580)

    • Search Google Scholar
    • Export Citation
  • Rey-AresVRossiSPDietrichKGKohnFMSchwarzerJUWelterHFrungieriMBMayerhoferA 2018 Prostaglandin E2 (PGE2) is a testicular peritubular cell-derived factor involved in human testicular homeostasis. Molecular and Cellular Endocrinology 473 217224. (https://doi.org/10.1016/j.mce.2018.01.022)

    • Search Google Scholar
    • Export Citation
  • SatoKKurokiYKumitaWFujiyamaAToyodaAKawaiJIrikiASasakiEOkanoHSakakibaraY 2015 Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis. Scientific Reports 5 16894. (https://doi.org/10.1038/srep16894)

    • Search Google Scholar
    • Export Citation
  • SchellCAlbrechtMSpillnerSMayerCKunzLKohnFMSchwarzerUMayerhoferA 2010 15-Deoxy-delta 12–14-prostaglandin-J2 induces hypertrophy and loss of contractility in human testicular peritubular cells: implications for human male fertility. Endocrinology 151 12571268. (https://doi.org/10.1210/en.2009-1325)

    • Search Google Scholar
    • Export Citation
  • SchmidNStocklJBFlenkenthalerFDietrichKGSchwarzerJUKohnFMDrummerCFrohlichTArnoldGJBehrR 2018 Characterization of a non-human primate model for the study of testicular peritubular cells-comparison with human testicular peritubular cells. Molecular Human Reproduction 24 401410. (https://doi.org/10.1093/molehr/gay025)

    • Search Google Scholar
    • Export Citation
  • SchmidNFlenkenthalerFStocklJBDietrichKGKohnFMSchwarzerJUKunzLLucknerMWannerGArnoldGJ 2019 Insights into replicative senescence of human testicular peritubular cells. Scientific Reports 9 15052. (https://doi.org/10.1038/s41598-019-51380-w)

    • Search Google Scholar
    • Export Citation
  • SpinnlerKKohnFMSchwarzerUMayerhoferA 2010 Glial cell line-derived neurotrophic factor is constitutively produced by human testicular peritubular cells and may contribute to the spermatogonial stem cell niche in man. Human Reproduction 25 21812187. (https://doi.org/10.1093/humrep/deq170)

    • Search Google Scholar
    • Export Citation
  • TyanovaSTemuTCoxJ 2016 The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nature Protocols 11 23012319. (https://doi.org/10.1038/nprot.2016.136)

    • Search Google Scholar
    • Export Citation
  • WalentaLFleckDFrohlichTvon EysmondtHArnoldGJSpehrJSchwarzerJUKohnFMSpehrMMayerhoferA 2018 ATP-mediated events in peritubular cells contribute to sterile testicular inflammation. Scientific Reports 8 1431. (https://doi.org/10.1038/s41598-018-19624-3)

    • Search Google Scholar
    • Export Citation
  • WelterHHuberALaufSEinwangDMayerCSchwarzerJUKohnFMMayerhoferA 2014 Angiotensin II regulates testicular peritubular cell function via AT1 receptor: a specific situation in male infertility. Molecular and Cellular Endocrinology 393 171178. (https://doi.org/10.1016/j.mce.2014.06.011)

    • Search Google Scholar
    • Export Citation
  • ZhouRWuJLiuBJiangYChenWLiJHeQHeZ 2019 The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis. Cellular and Molecular Life Sciences 76 26812695. (https://doi.org/10.1007/s00018-019-03101-9)

    • Search Google Scholar
    • Export Citation
  • ZuhlkeUWeinbauerG 2003 The common marmoset (Callithrix jacchus) as a model in toxicology. Toxicologic Pathology Supplement 123127 31 123127. (https://doi.org/10.1080/01926230390175002)

    • Search Google Scholar
    • Export Citation