CDC42 drives RHOA activity and actin polymerization during capacitation

in Reproduction
View More View Less
  • 1 Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, San Pedro Zacatenco, Gustavo A. Madero, México City, México
  • 2 Universidad Autónoma Benito Juárez de Oaxaca, Facultad de Medicina y Cirugía, Oaxaca, Oaxaca, México

Correspondence should be addressed to E O Hernández-González; Email: eoton@cell.cinvestav.mx
Restricted access

Mammalian sperm cells acquire fertilizing capacity as a result of a process termed capacitation. Actin polymerization is important for capacitation; inhibiting actin polymerization prevents the adhesion and fusion of the sperm with the ovule. The main function of RHO proteins CDC42 and RHOA is to direct actin polymerization. Although these two RHO proteins are present in mammalian sperm, little is known about their role in capacitation, the acrosome reaction, and the way in which they direct actin polymerization. The purpose of this study was to determine the participation of CDC42 and RHOA in capacitation and the acrosome reaction and their relationship with actin polymerization using guinea pig sperm. Our results show that the inhibition of CDC42 and RHOA alters the kinetics of actin polymerization, capacitation, and the acrosome reaction in different ways. Our results also show that the initiation of actin polymerization and RHOA activation depend on the activation of CDC42 and that RHOA starts its activity and effect on actin polymerization when CDC42 reaches its maximum activity. Given that the inhibition of ROCK1 failed to prevent the acrosomal reaction, the participation of RHOA in capacitation and the acrosomal reaction is independent of its kinase 1 (ROCK1). In general, our results indicate that CDC42 and RHOA have different roles in capacitation and acrosomal reaction processes and that CDC42 plays a preeminent role.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 584 584 163
Full Text Views 27 27 13
PDF Downloads 16 16 6
  • Aktories K, Jung M, Bohmer J, Fritz G, Vandekerckhove J & Just I 1995 Studies on the active-site structure of C3-like exoenzymes: involvement of glutamic acid in catalysis of ADP-ribosylation. Biochimie 77 326332. (https://doi.org/10.1016/0300-9084(96)88142-9)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alberts P, Rudge R, Irinopoulou T, Danglot L, Gauthier-Rouviere C & Galli T 2006 Cdc42 and actin control polarized expression of TI-VAMP vesicles to neuronal growth cones and their fusion with the plasma membrane. Molecular Biology of the Cell 17 11941203. (https://doi.org/10.1091/mbc.e05-07-0643)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Amano M, Nakayama M & Kaibuchi K 2010 Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton 67 545554. (https://doi.org/10.1002/cm.20472)

  • Angeles-Floriano T, Roa-Espitia AL, Baltierrez-Hoyos R, Cordero-Martinez J, Elizondo G & Hernandez-Gonzalez EO 2016 Absence of aryl hydrocarbon receptor alters CDC42 expression and prevents actin polymerization during capacitation. Molecular Reproduction and Development 83 10151026. (https://doi.org/10.1002/mrd.22736)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ashizawa K, Wishart GJ, Katayama S, Takano D, Maeda M, Arakawa E & Tsuzuki Y 2006 Effects of calpain and Rho-kinase inhibitors on the acrosome reaction and motility of fowl spermatozoa in vitro. Reproduction 131 7179. (https://doi.org/10.1530/rep.1.00588)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Azamar Y, Uribe S & Mujica A 2007 F-actin involvement in guinea pig sperm motility. Molecular Reproduction and Development 74 312320. (https://doi.org/10.1002/mrd.20578)

  • Baltierrez-Hoyos R, Roa-Espitia AL & Hernandez-Gonzalez EO 2012 The association between CDC42 and caveolin-1 is involved in the regulation of capacitation and acrosome reaction of guinea pig and mouse sperm. Reproduction 144 123134. (https://doi.org/10.1530/REP-11-0433)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bastian Y, Roa-Espitia AL, Mujica A & Hernandez-Gonzalez EO 2010 Calpain modulates capacitation and acrosome reaction through cleavage of the spectrin cytoskeleton. Reproduction 140 673684. (https://doi.org/10.1530/REP-09-0545)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bernabo N, Berardinelli P, Mauro A, Russo V, Lucidi P, Mattioli M & Barboni B 2011 The role of actin in capacitation-related signaling: an in silico and in vitro study. BMC Systems Biology 5 47. (https://doi.org/10.1186/1752-0509-5-47)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breitbart H, Cohen G & Rubinstein S 2005 Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction. Reproduction 129 263268. (https://doi.org/10.1530/rep.1.00269)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brener E, Rubinstein S, Cohen G, Shternall K, Rivlin J & Breitbart H 2003 Remodeling of the actin cytoskeleton during mammalian sperm capacitation and acrosome reaction. Biology of Reproduction 68 837845. (https://doi.org/10.1095/biolreprod.102.009233)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bretou M, Jouannot O, Fanget I, Pierobon P, Larochette N, Gestraud P, Guillon M, Emiliani V, Gasman S & Desnos C 2014 Cdc42 controls the dilation of the exocytotic fusion pore by regulating membrane tension. Molecular Biology of the Cell 25 31953209. (https://doi.org/10.1091/mbc.E14-07-1229)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brito LF, Barth AD, Bilodeau-Goeseels S, Panich PL & Kastelic JP 2003 Comparison of methods to evaluate the plasmalemma of bovine sperm and their relationship with in vitro fertilization rate. Theriogenology 60 15391551. (https://doi.org/10.1016/s0093-691x(03)00174-2)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cabello-Agueros JF, Hernandez-Gonzalez EO & Mujica A 2003 The role of F-actin cytoskeleton-associated gelsolin in the guinea pig capacitation and acrosome reaction. Cell Motility and the Cytoskeleton 56 94108. (https://doi.org/10.1002/cm.10135)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cordero-Martinez J, Reyes-Miguel T, Rodriguez-Paez L, Garduno-Siciliano L, Maldonado-Garcia D, Roa-Espitia AL & Hernandez-Gonzalez EO 2018 TMEM16A inhibition impedes capacitation and acquisition of hyperactivated motility in guinea pig sperm. Journal of Cellular Biochemistry 119 59445959. (https://doi.org/10.1002/jcb.26789)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Delgado-Buenrostro NL, Hernandez-Gonzalez EO, Segura-Nieto M & Mujica A 2005 Actin polymerization in the equatorial and postacrosomal regions of guinea pig spermatozoa during the acrosome reaction is regulated by G proteins. Molecular Reproduction and Development 70 198210. (https://doi.org/10.1002/mrd.20192)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Delgado-Buenrostro NL, Mujica A, Chiquete-Felix N, Deciga-Alcaraz A, Medina-Reyes EI, Uribe-Carvajal S & Chirino YI 2016 Role of Wasp and the small GTPases RhoA, RhoB, and Cdc42 during capacitation and acrosome reaction in spermatozoa of English guinea pigs. Molecular Reproduction and Development 83 927937. (https://doi.org/10.1002/mrd.22657)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ducummon CC & Berger T 2006 Localization of the Rho GTPases and some Rho effector proteins in the sperm of several mammalian species. Zygote 14 249257. (https://doi.org/10.1017/S0967199406003790)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fiedler SE, Bajpai M & Carr DW 2008 Identification and characterization of RHOA-interacting proteins in bovine spermatozoa. Biology of Reproduction 78 184192. (https://doi.org/10.1095/biolreprod.107.062943)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fouquet JP, Kann ML & Dadoune JP 1990 Immunoelectron microscopic distribution of actin in hamster spermatids and epididymal, capacitated and acrosome-reacted spermatozoa. Tissue and Cell 22 291300. (https://doi.org/10.1016/0040-8166(90)90004-s)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gervasi MG & Visconti PE 2016 Chang’s meaning of capacitation: a molecular perspective. Molecular Reproduction and Development 83 860874. (https://doi.org/10.1002/mrd.22663)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hall JE, Fu W & Schaller MD 2011 Focal adhesion kinase: exploring Fak structure to gain insight into function. International Review of Cell and Molecular Biology 288 185225. (https://doi.org/10.1016/B978-0-12-386041-5.00005-4)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hernandez-Gonzalez EO, Lecona-Valera AN, Escobar-Herrera J & Mujica A 2000 Involvement of an F-actin skeleton on the acrosome reaction in guinea pig spermatozoa. Cell Motility and the Cytoskeleton 46 4358. (https://doi.org/10.1002/(SICI)1097-0169(200005)46:1<43::AID-CM5>3.0.CO;2-1)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Horvath D, Tamas I, Sipos A, Darula Z, Becsi B, Nagy D, Ivan J, Erdodi F & Lontay B 2017 Myosin phosphatase and RhoA-activated kinase modulate neurotransmitter release by regulating SNAP-25 of SNARE complex. PLoS ONE 12 e0177046. (https://doi.org/10.1371/journal.pone.0177046)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Itach SB, Finklestein M, Etkovitz N & Breitbart H 2012 Hyper-activated motility in sperm capacitation is mediated by phospholipase D-dependent actin polymerization. Developmental Biology 362 154161. (https://doi.org/10.1016/j.ydbio.2011.12.002)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jaffe AB & Hall A 2005 Rho GTPases: biochemistry and biology. Annual Review of Cell and Developmental Biology 21 247269. (https://doi.org/10.1146/annurev.cellbio.21.020604.150721)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Just I, Selzer J, Jung M, van Damme J, Vandekerckhove J & Aktories K 1995 Rho-ADP-ribosylating exoenzyme from Bacillus cereus. Purification, characterization, and identification of the NAD-binding site. Biochemistry 34 334340. (https://doi.org/10.1021/bi00001a041)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maldonado-Garcia D, Salgado-Lucio ML, Roa-Espitia AL, Reyes-Miguel T & Hernandez-Gonzalez EO 2017 Calpain inhibition prevents flotillin re-ordering and Src family activation during capacitation. Cell and Tissue Research 369 395412. (https://doi.org/10.1007/s00441-017-2591-2)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mattioli M, Barboni B, Lucidi P & Seren E 1996 Identification of capacitation in boar spermatozoa by chlortetracycline staining. Theriogenology 45 373381. (https://doi.org/10.1016/0093-691x(96)81099-5)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Megnagi B, Finkelstein M, Shabtay O & Breitbart H 2015 The role and importance of cofilin in human sperm capacitation and the acrosome reaction. Cell and Tissue Research 362 665675. (https://doi.org/10.1007/s00441-015-2229-1)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moreno-Fierros L, Hernandez EO, Salgado ZO & Mujica A 1992 F-actin in guinea pig spermatozoa: its role in calmodulin translocation during acrosome reaction. Molecular Reproduction and Development 33 172181. (https://doi.org/10.1002/mrd.1080330209)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mujica A, Moreno-Rodriguez R, Naciff J, Neri L & Tash JS 1991 Glucose regulation of guinea-pig sperm motility. Journal of Reproduction and Fertility 92 7587. (https://doi.org/10.1530/jrf.0.0920075)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Naresh S & Atreja SK 2015 Actin polymerization: an event regulated by tyrosine phosphorylation during buffalo sperm capacitation. Reproduction in Domestic Animals 50 10471053. (https://doi.org/10.1111/rda.12635)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narumiya S & Thumkeo D 2018 Rho signaling research: history, current status and future directions. FEBS Letters 592 17631776. (https://doi.org/10.1002/1873-3468.13087)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nevins AK & Thurmond DC 2006 Caveolin-1 functions as a novel Cdc42 guanine nucleotide dissociation inhibitor in pancreatic beta-cells. Journal of Biological Chemistry 281 1896118972. (https://doi.org/10.1074/jbc.M603604200)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelish HE, Peterson JR, Salvarezza SB, Rodriguez-Boulan E, Chen JL, Stamnes M, Macia E, Feng Y, Shair MD & Kirchhausen T 2006 Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro. Nature Chemical Biology 2 3946. (https://doi.org/10.1038/nchembio751)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peterson RN, Bozzola JJ, Hunt WP & Darabi A 1990 Characterization of membrane-associated actin in boar spermatozoa. Journal of Experimental Zoology 253 202214. (https://doi.org/10.1002/jez.1402530210)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramirez-Ramirez D, Salgado-Lucio ML, Roa-Espitia AL, Fierro R, Gonzalez-Marquez H, Cordero-Martinez J & Hernandez-Gonzalez EO 2020 Rac1 is necessary for capacitation and acrosome reaction in guinea pig spermatozoa. Journal of Cellular Biochemistry 121 28642876. (https://doi.org/10.1002/jcb.29521)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Roa-Espitia AL, Hernandez-Rendon ER, Baltierrez-Hoyos R, Munoz-Gotera RJ, Cote-Velez A, Jimenez I, Gonzalez-Marquez H & Hernandez-Gonzalez EO 2016 Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation. Biology Open 5 11891199. (https://doi.org/10.1242/bio.017558)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Romarowski A, Battistone MA, La Spina FA, Puga Molina Ldel C, Luque GM, Vitale AM, Cuasnicu PS, Visconti PE, Krapf D & Buffone MG 2015 PKA-dependent phosphorylation of LIMK1 and cofilin is essential for mouse sperm acrosomal exocytosis. Developmental Biology 405 237249. (https://doi.org/10.1016/j.ydbio.2015.07.008)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sakamoto S, Ishizaki T, Okawa K, Watanabe S, Arakawa T, Watanabe N & Narumiya S 2012 Liprin-alpha controls stress fiber formation by binding to mDia and regulating its membrane localization. Journal of Cell Science 125 108120. (https://doi.org/10.1242/jcs.087411)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Salvolini E, Buldreghini E, Lucarini G, Vignini A, Lenzi A, Di Primio R & Balercia G 2013 Involvement of sperm plasma membrane and cytoskeletal proteins in human male infertility. Fertility and Sterility 99 697704. (https://doi.org/10.1016/j.fertnstert.2012.10.042)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shi QX & Roldan ER 1995 Bicarbonate/CO2 is not required for zona pellucida- or progesterone-induced acrosomal exocytosis of mouse spermatozoa but is essential for capacitation. Biology of Reproduction 52 540546. (https://doi.org/10.1095/biolreprod52.3.540)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sosnik J, Miranda PV, Spiridonov NA, Yoon SY, Fissore RA, Johnson GR & Visconti PE 2009 Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. Journal of Cell Science 122 27412749. (https://doi.org/10.1242/jcs.047225)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Spungin B, Margalit I & Breitbart H 1995 Sperm exocytosis reconstructed in a cell-free system: evidence for the involvement of phospholipase C and actin filaments in membrane fusion. Journal of Cell Science 108 25252535.

    • Search Google Scholar
    • Export Citation
  • Stival C, Puga Molina Ldel C, Paudel B, Buffone MG, Visconti PE & Krapf D 2016 Sperm capacitation and acrosome reaction in mammalian sperm. Advances in Anatomy, Embryology, and Cell Biology 220 93106. (https://doi.org/10.1007/978-3-319-30567-7_5)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P & Kopf GS 1995a Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 121 11291137.

    • Search Google Scholar
    • Export Citation
  • Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, Olds-Clarke P & Kopf GS 1995b Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121 11391150.

    • Search Google Scholar
    • Export Citation
  • Ward CR & Storey BT 1984 Determination of the time course of capacitation in mouse spermatozoa using a chlortetracycline fluorescence assay. Developmental Biology 104 287296. (https://doi.org/10.1016/0012-1606(84)90084-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation