TET3 overexpression facilitates DNA reprogramming and early development of bovine SCNT embryos

in Reproduction

Correspondence should be addressed to X Zhang or B Tang; Email: zhangxuem@jlu.edu.cn or tang_bo@jlu.edu.cn

*(J Zhang and L Hao contributed equally to this work)

Restricted access

Somatic cell nuclear transfer (SCNT) has been successfully used for cloning in a variety of mammalian species. However, SCNT reprogramming efficiency is relatively low, in part, due to incomplete DNA methylation reprogramming of donor cell nuclei. We previously showed that ten-eleven translocation 3 (TET3) is responsible for active DNA demethylation during preimplantation embryonic development in bovines. In this study, we constructed TET3-overexpressing cell lines in vitro and observed that the use of these fibroblasts as donor cells increased the blastocyst rate by approximately 18 percentage points compared to SCNT. The overexpression of TET3 in bovine SCNT embryos caused a decrease in the global DNA methylation level of the pluripotency genes Nanog and Oct-4, ultimately resulting in an increase in the transcriptional activity of these pluripotency genes. Moreover, the quality of bovine TET3-NT embryos at the blastocyst stage was significantly improved, and bovine TET3-NT blastocysts possessed more total number of cells and fewer apoptotic cells than the SCNT blastocysts, similar to in vitro fertilization (IVF) embryos. Nevertheless, DNA methylation of the imprinting control region (ICR) for the imprinted genes H19-IGF2 in SCNT embryos remained unaffected by TET3 overexpression, maintaining parent-specific activity for further development. Thus, the results of our study provide a promising approach to rectify incomplete epigenetic reprogramming and achieve higher cloning efficiency.

Supplementary Materials

    • Supplementary Tables: Primers for qRT-PCR

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 141 141 141
Full Text Views 12 12 12
PDF Downloads 6 6 6
  • AflaloEDSod-MoriahUAPotashnikGHar-VardiI 2005 Expression of plasminogen activators in preimplantation rat embryos developed in vivo and in vitro. Reproductive Biology and Endocrinology 3 7. (https://doi.org/10.1186/1477-7827-3-7)

    • Search Google Scholar
    • Export Citation
  • AmourouxRNashunBShiraneKNakagawaSHillPWD’SouzaZNakayamaMMatsudaMTurpANdjeteheE 2016 De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nature Cell Biology 18 225233. (https://doi.org/10.1038/ncb3296)

    • Search Google Scholar
    • Export Citation
  • AndrabiSMMaxwellWM 2007 A review on reproductive biotechnologies for conservation of endangered mammalian species. Animal Reproduction Science 99 223243. (https://doi.org/10.1016/j.anireprosci.2006.07.002)

    • Search Google Scholar
    • Export Citation
  • ArmstrongLLakoMDeanWStojkovicM 2006 Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer. Stem Cells 24 805814. (https://doi.org/10.1634/stemcells.2005-0350)

    • Search Google Scholar
    • Export Citation
  • BockCReitherSMikeskaTPaulsenMWalterJLengauerT 2005 BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics 21 40674068. (https://doi.org/10.1093/bioinformatics/bti652)

    • Search Google Scholar
    • Export Citation
  • CampbellKHFisherPChenWCChoiIKellyRDLeeJHXhuJ 2007 Somatic cell nuclear transfer: past, present and future perspectives. Theriogenology 68 (Supplement 1) S214S231. (https://doi.org/10.1016/j.theriogenology.2007.05.059)

    • Search Google Scholar
    • Export Citation
  • CaoZZhouNZhangYZhangYWuRLiYZhangYLiN 2014 Dynamic reprogramming of 5-hydroxymethylcytosine during early porcine embryogenesis. Theriogenology 81 496508. (https://doi.org/10.1016/j.theriogenology.2013.10.025)

    • Search Google Scholar
    • Export Citation
  • ChengHZhangJZhangSZhaiYHJiangYAnXLMaXLZhangXMLiZYTangB 2019 Tet3 is required for normal in vitro fertilization preimplantation embryos development of bovine. Molecular Reproduction and Development 86 298307. (https://doi.org/10.1002/mrd.23105)

    • Search Google Scholar
    • Export Citation
  • ChungYGMatobaSLiuYEumJHLuFJiangWLeeJESepilianVChaKYLeeDR 2015 Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells. Cell Stem Cell 17 758766. (https://doi.org/10.1016/j.stem.2015.10.001)

    • Search Google Scholar
    • Export Citation
  • DeanWSantosFStojkovicMZakhartchenkoVWalterJWolfEReikW 2001 Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. PNAS 98 1373413738. (https://doi.org/10.1073/pnas.241522698)

    • Search Google Scholar
    • Export Citation
  • EnrightBPSungLYChangCCYangXTianXC 2005 Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2′-deoxycytidine. Biology of Reproduction 72 944948. (https://doi.org/10.1095/biolreprod.104.033225)

    • Search Google Scholar
    • Export Citation
  • GaoYChenJLiKWuTHuangBLiuWKouXZhangYHuangHJiangY 2013 Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 12 453469. (https://doi.org/10.1016/j.stem.2013.02.005)

    • Search Google Scholar
    • Export Citation
  • GaoRWangCGaoYXiuWChenJKouXZhaoYLiaoYBaiDQiaoZ 2018 Inhibition of aberrant DNA Re-methylation improves post-implantation development of somatic cell nuclear transfer embryos. Cell Stem Cell 23 426.e5435.e5. (https://doi.org/10.1016/j.stem.2018.07.017)

    • Search Google Scholar
    • Export Citation
  • GoissisMDSuhrSTCibelliJB 2013 Effects of donor fibroblasts expressing OCT4 on bovine embryos generated by somatic cell nuclear transfer. Cell Reprogram 15 2434. (https://doi.org/10.1089/cell.2012.0055)

    • Search Google Scholar
    • Export Citation
  • GomezMCBiancardiMNJenkinsJADumasCGaliguisJWangGEarle PopeC 2012 Scriptaid and 5-aza-2′deoxycytidine enhanced expression of pluripotent genes and in vitro developmental competence in interspecies black-footed cat cloned embryos. Reproduction in Domestic Animals 47 (Supplement 6) 130135. (https://doi.org/10.1111/rda.12027)

    • Search Google Scholar
    • Export Citation
  • GuTPGuoFYangHWuHPXuGFLiuWXieZGShiLHeXJinSG 2011 The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477 606610. (https://doi.org/10.1038/nature10443)

    • Search Google Scholar
    • Export Citation
  • GurdonJB 1962 The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Journal of Embryology and Experimental Morphology 10 622640.

    • Search Google Scholar
    • Export Citation
  • HeYFLiBZLiZLiuPWangYTangQDingJJiaYChenZLiL 2011 Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333 13031307. (https://doi.org/10.1126/science.1210944)

    • Search Google Scholar
    • Export Citation
  • HormansederESimeoneAAllenGEBradshawCRFiglmullerMGurdonJJullienJ 2017 H3K4 methylation-dependent memory of somatic cell identity inhibits reprogramming and development of nuclear transfer embryos. Cell Stem Cell 21 135.e6143.e6. (https://doi.org/10.1016/j.stem.2017.03.003)

    • Search Google Scholar
    • Export Citation
  • IqbalKJinSGPfeiferGPSzaboPE 2011 Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. PNAS 108 36423647. (https://doi.org/10.1073/pnas.1014033108)

    • Search Google Scholar
    • Export Citation
  • LiuWLiuXWangCGaoYGaoRKouXZhaoYLiJWuYXiuW 2016 Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing. Cell Discovery 2 16010. (https://doi.org/10.1038/celldisc.2016.10)

    • Search Google Scholar
    • Export Citation
  • LiuXWangYGaoYSuJZhangJXingXZhouCYaoKAnQZhangY 2018 H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming. Development 145 dev158261. (https://doi.org/10.1242/dev.158261)

    • Search Google Scholar
    • Export Citation
  • LivakKJSchmittgenTD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25 402408. (https://doi.org/10.1006/meth.2001.1262)

    • Search Google Scholar
    • Export Citation
  • LuFLiuYJiangLYamaguchiSZhangY 2014 Role of Tet proteins in enhancer activity and telomere elongation. Genes and Development 28 21032119. (https://doi.org/10.1101/gad.248005.114)

    • Search Google Scholar
    • Export Citation
  • MatobaSZhangY 2018 Somatic cell nuclear transfer reprogramming: mechanisms and applications. Cell Stem Cell 23 471485. (https://doi.org/10.1016/j.stem.2018.06.018)

    • Search Google Scholar
    • Export Citation
  • OkaeHMatobaSNagashimaTMizutaniEInoueKOgonukiNChibaHFunayamaRTanakaSYaegashiN 2014 RNA sequencing-based identification of aberrant imprinting in cloned mice. Human Molecular Genetics 23 9921001. (https://doi.org/10.1093/hmg/ddt495)

    • Search Google Scholar
    • Export Citation
  • PeatJRReikW 2012 Incomplete methylation reprogramming in SCNT embryos. Nature Genetics 44 965966. (https://doi.org/10.1038/ng.2393)

  • PerecinFMeoSCYamazakiWFerreiraCRMerigheGKMeirellesFVGarciaJM 2009 Imprinted gene expression in in vivo- and in vitro-produced bovine embryos and chorio-allantoic membranes. Genetics and Molecular Research 8 7685. (https://doi.org/10.4238/vol8-1gmr541)

    • Search Google Scholar
    • Export Citation
  • SantosFZakhartchenkoVStojkovicMPetersAJenuweinTWolfEReikWDeanW 2003 Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Current Biology 13 11161121. (https://doi.org/10.1016/s0960-9822(03)00419-6)

    • Search Google Scholar
    • Export Citation
  • ShenLInoueAHeJLiuYTLuFLZhangY 2014 Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes. Cell Stem Cell 15 459471. (https://doi.org/10.1016/j.stem.2014.09.002)

    • Search Google Scholar
    • Export Citation
  • StelzerYWuHSongYShivalilaCSMarkoulakiSJaenischR 2016 Parent-of-origin DNA methylation dynamics during mouse development. Cell Reports 16 31673180. (https://doi.org/10.1016/j.celrep.2016.08.066)

    • Search Google Scholar
    • Export Citation
  • SuzukiJTherrienJFilionFLefebvreRGoffAKSmithLC 2009 In vitro culture and somatic cell nuclear transfer affect imprinting of SNRPN gene in pre- and post-implantation stages of development in cattle. BMC Developmental Biology 9 9. (https://doi.org/10.1186/1471-213X-9-9)

    • Search Google Scholar
    • Export Citation
  • Van ThuanNBuiHTKimJHHikichiTWakayamaSKishigamiSMizutaniEWakayamaT 2009 The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice. Reproduction 138 309317. (https://doi.org/10.1530/REP-08-0299)

    • Search Google Scholar
    • Export Citation
  • WangFKouZZhangYGaoS 2007 Dynamic reprogramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos. Biology of Reproduction 77 10071016. (https://doi.org/10.1095/biolreprod.107.063149)

    • Search Google Scholar
    • Export Citation
  • WangZZhaoTZhangPZhangSGuanJMaXYinYZhangJTangBLiZ 2011 Histone deacetylase 1 down-regulation on developmental capability and histone acetylation in bovine oocytes and parthenogenetic embryos. Reproduction in Domestic Animals 46 10221028. (https://doi.org/10.1111/j.1439-0531.2011.01778.x)

    • Search Google Scholar
    • Export Citation
  • WeiYCHuanYJShiYQLiuZFBouGLuoYBZhangLYangCRKongQRTianJT 2011 Unfaithful maintenance of methylation imprints due to loss of maternal nuclear Dnmt1 during somatic cell nuclear transfer. PLoS ONE 6 e20154. (https://doi.org/10.1371/journal.pone.0020154)

    • Search Google Scholar
    • Export Citation
  • WilmutISchniekeAEMcWhirJKindAJCampbellKH 1997 Viable offspring derived from fetal and adult mammalian cells. Nature 385 810813. (https://doi.org/10.1038/385810a0)

    • Search Google Scholar
    • Export Citation
  • WossidloMNakamuraTLepikhovKMarquesCJZakhartchenkoVBoianiMArandJNakanoTReikWWalterJ 2011 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nature Communications 2 241. (https://doi.org/10.1038/ncomms1240)

    • Search Google Scholar
    • Export Citation
  • YangXSmithSLTianXCLewinHARenardJPWakayamaT 2007 Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nature Genetics 39 295302. (https://doi.org/10.1038/ng1973)

    • Search Google Scholar
    • Export Citation
  • YoungLEFernandesKMcEvoyTGButterwithSCGutierrezCGCarolanCBroadbentPJRobinsonJJWilmutISinclairKD 2001 Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nature Genetics 27 153154. (https://doi.org/10.1038/84769)

    • Search Google Scholar
    • Export Citation
  • ZhangLLuoYBBouGKongQRHuanYJZhuJWangJYLiHWangFShiYQ 2011 Overexpression Nanog activates pluripotent genes in porcine fetal fibroblasts and nuclear transfer embryos. Anatomical Record 294 18091817. (https://doi.org/10.1002/ar.21457)

    • Search Google Scholar
    • Export Citation
  • ZhangSChenXWangFAnXTangBZhangXSunLLiZ 2016 Aberrant DNA methylation reprogramming in bovine SCNT preimplantation embryos. Scientific Reports 6 30345. (https://doi.org/10.1038/srep30345)

    • Search Google Scholar
    • Export Citation
  • ZhangJZhangSWangYChengHHaoLZhaiYZhangZAnXMaXZhangX 2017 Effect of TET inhibitor on bovine parthenogenetic embryo development. PLoS ONE 12 e0189542. (https://doi.org/10.1371/journal.pone.0189542)

    • Search Google Scholar
    • Export Citation
  • ZhangZZhaiYMaXZhangSAnXYuHLiZ 2018 Down-regulation of H3K4me3 by MM-102 facilitates epigenetic reprogramming of porcine somatic cell nuclear transfer embryos. Cellular Physiology and Biochemistry 45 15291540. (https://doi.org/10.1159/000487579)

    • Search Google Scholar
    • Export Citation
  • ZhuPGuoHRenYHouYDongJLiRLianYFanXHuBGaoY 2018 Single-cell DNA methylome sequencing of human preimplantation embryos. Nature Genetics 50 1219. (https://doi.org/10.1038/s41588-017-0007-6)

    • Search Google Scholar
    • Export Citation