Nesfatin-1 suppresses fish reproductive axis and gonadal steroidogenesis

in Reproduction
View More View Less
  • 1 Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Canada

Correspondence should be addressed to S Unniappan; Email: suraj.unniappan@usask.ca
Restricted access

Nesfatin-1 is a naturally occurring orphan ligand in fish and mammals. Research in our lab resulted in the identification of an inhibitory role for nesfatin-1 on pituitary hormones (goldfish) and oocyte maturation (zebrafish). The present study is an extension of these original findings and aimed to determine whether nesfatin-1 has any additional effects on HPG genes in male and female goldfish. We found that a single i.p. injection of synthetic nesfatin-1 (50 ng/g body weight) downregulated the expression of salmon gonadotropin-releasing hormone (sgnrh), chicken gnrh-II (cgnrh-II), kisspeptin receptor (gpr54a) and brain aromatase (cyp19a1b) mRNAs in the hypothalamus of both male and female goldfish at 15 min post-administration. In the pituitary of both males and females, nesfatin-1 reduced luteinizing hormone beta (lhβ) and follicle stimulating hormone beta (fshβ) mRNA expression at 60 min and gpr54a mRNA at 15 min. Similarly, the gonadotropin receptors lhr and fshr were downregulated in the gonads. Meanwhile, gonadotropin inhibiting hormone (gnih), gnih receptor, kisspeptin 1 (kiss1) and gpr54a mRNA expression in the gonads were increased post-nesfatin-1 treatment. Nesfatin-1 negatively influences the star, cytochrome P450 family 11 subfamily A member 1, anti-mullerian hormone and aromatase mRNAs. In agreement with these results, nesfatin-1 reduced plasma estradiol and testosterone in female and male goldfish circulation at 60 min post-injection. The information generated through this research further solidified nesfatin-1 as an inhibitor of reproductive hormones in fish. Targeting nesfatin-1 and related peptides could yield beneficial effects in fish reproduction and aquaculture.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 343 343 199
Full Text Views 10 10 4
PDF Downloads 6 6 2
  • Bertucci JI, Blanco AM, Canosa LF & Unniappan S 2016 Estradiol and testosterone modulate the tissue-specific expression of ghrelin, ghs-r, goat and nucb2 in goldfish. General and Comparative Endocrinology 228 1723. (https://doi.org/10.1016/j.ygcen.2016.01.006)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blanco AM, Gómez-Boronat M, Alonso-Gómez ÁL, Yufa R, Unniappan S, Delgado MJ & Valenciano AI 2017 Characterization of ghrelin O-acyltransferase (GOAT) in goldfish (Carassius auratus). PLoS One 12 e0171874. (https://doi.org/10.1371/journal.pone.0171874)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bloem B, Xu L, Morava E, Faludi G, Palkovits M, Roubos EW & Kozicz T 2012 Sex-specific differences in the dynamics of cocaine- and amphetamine-regulated transcript and nesfatin-1 expressions in the midbrain of depressed suicide victims vs. controls. Neuropharmacology 62 297303. (https://doi.org/10.1016/j.neuropharm.2011.07.023)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Caldwell LK, Pierce AL, Riley LG, Duncan CA & Nagler JJ 2014 Plasma nesfatin-1 is not affected by long-term food restriction and does not predict rematuration among iteroparous female rainbow trout (Oncorhynchus mykiss). PLoS One 9 e85700. (https://doi.org/10.1371/journal.pone.0085700)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Evans JJ & Anderson GM 2012 Balancing ovulation and anovulation: integration of the reproductive and energy balance axes by neuropeptides. Human Reproduction Update 18 313332. (https://doi.org/10.1093/humupd/dms004)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gao X, Zhang K, Song M, Li X, Luo L, Tian Y, Zhang Y, Li Y, Zhang X & Ling Y 2016 Role of Nesfatin-1 in the reproductive axis of male rat. Scientific Reports 6 32877. (https://doi.org/10.1038/srep32877)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • García-Galiano D, Navarro VM, Roa J, Ruiz-Pino F, Sánchez-Garrido MA, Pineda R, Castellano JM, Romero M, Aguilar E & Gaytán F 2010 The anorexigenic neuropeptide, nesfatin-1, is indispensable for normal puberty onset in the female rat. Journal of Neuroscience 30 77837792. (https://doi.org/10.1523/JNEUROSCI.5828-09.2010)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Galiano D, Pineda R, Ilhan T, Castellano JM, Ruiz-Pino F, Sánchez-Garrido MA, Vazquez MJ, Sangiao-Alvarellos S, Romero-Ruiz A & Pinilla L 2012 Cellular distribution, regulated expression, and functional role of the anorexigenic peptide, NUCB2/Nesfatin-1, in the testis. Endocrinology 153 19591971. (https://doi.org/10.1210/en.2011-2032)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gharib SD, Wierman ME, Shupnik MA & Chin WW 1990 Molecular biology of the pituitary gonadotropins. Endocrine Reviews 11 177199. (https://doi.org/10.1210/edrv-11-1-177)

  • Gonzalez R, Kerbel B, Chun A & Unniappan S 2010 Molecular, cellular and physiological evidences for the anorexigenic actions of nesfatin-1 in goldfish. PLoS One 5 e15201. (https://doi.org/10.1371/journal.pone.0015201)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gonzalez R, Mohan H & Unniappan S 2012b Nucleobindins: bioactive precursor proteins encoding putative endocrine factors? General and Comparative Endocrinology 176 341346. (https://doi.org/10.1016/j.ygcen.2011.11.021)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez R, Shepperd E, Thiruppugazh V, Lohan S, Grey CL, Chang JP & Unniappan S 2012a Nesfatin-1 regulates the hypothalamo-pituitary-ovarian axis of fish. Biology of Reproduction 87 84. (https://doi.org/10.1095/biolreprod.112.099630)

    • Search Google Scholar
    • Export Citation
  • Guiguen Y, Fostier A, Piferrer F & Chang CF 2010 Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. General and Comparative Endocrinology 165 352366. (https://doi.org/10.1016/j.ygcen.2009.03.002)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Halm S, Rocha A, Miura T, Prat F & Zanuy S 2007 Anti-Müllerian hormone (AMH/AMH) in the European sea bass: its gene structure, regulatory elements, and the expression of alternatively-spliced isoforms. Gene 388 148158. (https://doi.org/10.1016/j.gene.2006.10.018)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hatef A, Shajan S & Unniappan S 2015 Nutrient status modulates the expression of nesfatin-1 encoding nucleobindin 2A and 2B mRNAs in zebrafish gut, liver and brain. General and Comparative Endocrinology 215 5160. (https://doi.org/10.1016/j.ygcen.2014.09.009)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hatef A & Unniappan S 2017 Gonadotropin-releasing hormone, kisspeptin, and gonadal steroids directly modulate nucleobindin-2/nesfatin-1 in murine hypothalamic gonadotropin-releasing hormone neurons and gonadotropes. Biology of Reproduction 96 635651. (https://doi.org/10.1095/biolreprod.116.146621)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hill JW, Elmquist JK & Elias CF 2008 Hypothalamic pathways linking energy balance and reproduction. American Journal of Physiology: Endocrinology and Metabolism 294 E827E832. (https://doi.org/10.1152/ajpendo.00670.2007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hofmann T, Elbelt U, Ahnis A, Rose M, Klapp BF & Stengel A 2015 Sex-specific regulation of NUCB2/nesfatin-1: differential implication in anxiety in obese men and women. Psychoneuroendocrinology 60 130137. (https://doi.org/10.1016/j.psyneuen.2015.06.014)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim MH, Oka Y, Amano M, Kobayashi M, Okuzawa K, Hasegawa Y, Kawashima S, Suzuki Y & Aida K 1995 Immunocytochemical localization of sGnRH and cGnRH-II in the brain of goldfish, Carassius auratus. Journal of Comparative Neurology 356 7282. (https://doi.org/10.1002/cne.903560105)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kühne SG, Schalla MA, Friedrich T, Kobelt P, Goebel-Stengel M, Long M, Rivalan M, Winter Y, Rose M & Stengel A 2018 Nesfatin-130-59 injected intracerebroventricularly increases anxiety, depression-like behavior, and anhedonia in normal weight rats. Nutrients 10 1889. (https://doi.org/10.3390/nu10121889)

    • Search Google Scholar
    • Export Citation
  • Lambeth LS, Morris K, Ayers KL, Wise TG, O’Neil T, Wilson S, Cao Y, Sinclair AH, Cutting AD & Doran TJ 2016 Overexpression of anti-Müllerian hormone disrupts gonadal sex differentiation, blocks sex hormone synthesis, and supports cell autonomous sex development in the chicken. Endocrinology 157 12581275. (https://doi.org/10.1210/en.2015-1571)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lin F, Zhou C, Chen H, Wu H, Xin Z, Liu J, Gao Y, Yuan D, Wang T & Wei R 2014 Molecular characterization, tissue distribution and feeding related changes of NUCB2A/nesfatin-1 in Ya-fish (Schizothorax prenanti). Gene 536 238246. (https://doi.org/10.1016/j.gene.2013.12.031)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Livak KJ & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 402408. (https://doi.org/10.1006/meth.2001.1262)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lord LD, Bond J & Thompson RR 2009 Rapid steroid influences on visually guided sexual behavior in male goldfish. Hormones and Behavior 56 519526. (https://doi.org/10.1016/j.yhbeh.2009.09.002)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mortazavi S, Gonzalez R, Ceddia R & Unniappan S 2015 Long-term infusion of nesfatin-1 causes a sustained regulation of whole-body energy homeostasis of male Fischer 344 rats. Frontiers in Cell and Developmental Biology 3 22. (https://doi.org/10.3389/fcell.2015.00022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oh S, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M, Imaki T & Hashimoto K 2006 Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443 709712. (https://doi.org/10.1038/nature05162)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pala I, Klüver N, Thorsteinsdóttir S, Schartl M & Coelho MM 2008 Expression pattern of anti-Müllerian hormone (amh) in the hybrid fish complex of Squalius Alburnoides. Gene 410 249258. (https://doi.org/10.1016/j.gene.2007.12.018)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pan W, Hsuchou H & Kastin AJ 2007 Nesfatin-1 crosses the blood–brain barrier without saturation. Peptides 28 22232228. (https://doi.org/10.1016/j.peptides.2007.09.005)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peter RE, Nahorniak CS, Sokolowska M, Chang JP, Rivier JE, Vale WW, King JA & Millar RP 1985 Structure-activity relationships of mammalian, chicken, and salmon gonadotropin releasing hormones in vivo in goldfish. General and Comparative Endocrinology 58 231242. (https://doi.org/10.1016/0016-6480(85)90339-9)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pfennig F, Standke A & Gutzeit HO 2015 The role of Amh signaling in teleost fish – multiple functions not restricted to the gonads. General and Comparative Endocrinology 223 87107. (https://doi.org/10.1016/j.ygcen.2015.09.025)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Price TO, Samson WK, Niehoff ML & Banks WA 2007 Permeability of the blood–brain barrier to a novel satiety molecule nesfatin-1. Peptides 28 23722381. (https://doi.org/10.1016/j.peptides.2007.10.008)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rajeswari JJ, Hatef A, Golshan M, Alavi SMH & Unniappan S 2019 Metabolic stress leads to divergent changes in the ghrelinergic system in goldfish (Carassius auratus) gonads. Comparative Biochemistry and Physiology: Part A, Molecular & Integrative Physiology 235 112120. (https://doi.org/10.1016/j.cbpa.2019.05.027)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Marí A, Yan YL, BreMiller RA, Wilson C, Cañestro C & Postlethwait JH 2005 Characterization and expression pattern of zebrafish anti-Müllerian hormone (amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development. Gene Expression Patterns 5 655667. (https://doi.org/10.1016/j.modgep.2005.02.008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaramuzzi RJ, Campbell BK, Downing JA, Kendall NR, Khalid M, Muñoz-Gutiérrez M & Somchit A 2006 A review of the effects of supplementary nutrition in the ewe on the concentrations of reproductive and metabolic hormones and the mechanisms that regulate folliculogenesis and ovulation rate. Reproduction, Nutrition, Development 46 339354. (https://doi.org/10.1051/rnd:2006016)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schalla MA & Stengel A 2018 Current understanding of the role of Nesfatin-1. Journal of the Endocrine Society 2 11881206. (https://doi.org/10.1210/js.2018-00246)

  • Schneider JE 2004 Energy balance and reproduction. Physiology & Behavior 81 289317. (https://doi.org/10.1016/j.physbeh.2004.02.007)

  • Tsutsui K, Bentley GE, Bedecarrats G, Osugi T, Ubuka T & Kriegsfeld LJ 2010 Gonadotropin-inhibitory hormone (GnIH) and its control of central and peripheral reproductive function. Frontiers in Neuroendocrinology 31 284295. (https://doi.org/10.1016/j.yfrne.2010.03.001)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Unniappan S 2010 Ghrelin: an emerging player in the regulation of reproduction in non-mammalian vertebrates. General and Comparative Endocrinology 167 340343. (https://doi.org/10.1016/j.ygcen.2009.12.003)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wernecke K, Lamprecht I, Jöhren O, Lehnert H & Schulz C 2014 Nesfatin-1 increases energy expenditure and reduces food intake in rats. Obesity 22 16621668. (https://doi.org/10.1002/oby.20736)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu HY, Zhang HX, Xiao Z, Qiao J & Li R 2019 Regulation of anti-Müllerian hormone (AMH) in males and the associations of serum AMH with the disorders of male fertility. Asian Journal of Andrology 21 109114. (https://doi.org/10.4103/aja.aja_83_18)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Z, Zhu B & Ge W 2015 Genetic analysis of zebrafish gonadotropin (FSH and LH) functions by TALEN-mediated gene disruption. Molecular Endocrinology 29 7698. (https://doi.org/10.1210/me.2014-1256)

    • Crossref
    • Search Google Scholar
    • Export Citation