Canine oviductal exosomes improve oocyte development via EGFR/MAPK signaling pathway

in Reproduction
View More View Less
  • 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
  • 2 Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, California, USA

Correspondence should be addressed to B C Lee: Email; bclee@snu.ac.kr
Restricted access

Oviduct cells produce a favorable environment for the development of gametes by generating multiple growth factors. Particularly, in canine species, immature oocytes undergo serial maturation processes in the oviduct, while the other mammals already possess matured oocytes in ovulatory follicles. However, little is known about the potential effect exhibited by the components released from canine oviduct cells (OCs) for modulating the biological function of oocytes. Recently, exosomes are regarded as promising extracellular vesicles because they represent considerable data for molecular cargo. Therefore, we first investigated the effect of canine oviductal exosomes (OC-Exo) on oocyte development via EGFR/MAPK pathway. Our results showed that OC-Exo labeled with PHK67 are successfully incorporated with cumulus cells and oocytes during IVM. Also, OC-Exo markedly increased the proportion of cumulus-oocyte complexes (COCs) exhibiting cumulus expansion as well as cumulus cell proliferation and maturation rate of oocytes (P < 0.05). Furthermore, gene expression patterns related with EGFR/MAPK pathway including EGFR, PKA, TACE/ADAM17, MAPK1/3, MAPK14, PTGS2, TNFAIP6, GDF9, and BMP15 were positively modified in COCs cultured with OC-Exo (P < 0.05). In addition, OC-Exo significantly up-regulated the protein expression levels of p-EGFR, p-MAPK1/3, GDF9 and BMP15 in COCs (P < 0.05). Consequently, the current study provides a model for understanding the roles of OC-Exo as bioactive molecules for canine oocyte maturation via EGFR/MAPK pathway, which would open a new avenue for the application of exosomes to improve assisted reproductive technology in mammals, including humans.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 431 431 192
Full Text Views 63 63 25
PDF Downloads 34 34 11
  • Al-Dossary AA & Martin-Deleon PA 2016 Role of exosomes in the reproductive tract oviductosomes mediate interactions of oviductal secretion with gametes/early embryo. Frontiers in Bioscience 21 12781285. (https://doi.org/10.2741/4456)

    • Search Google Scholar
    • Export Citation
  • Alminana C, Corbin E, Tsikis G, Alcantara-Neto AS, Labas V, Reynaud K, Galio L, Uzbekov R, Garanina AS & Druart X 2017 Oviduct extracellular vesicles protein content and their role during oviduct-embryo cross-talk. Reproduction 154 153168. (https://doi.org/10.1530/REP-17-0054)

    • Search Google Scholar
    • Export Citation
  • Bogliolo L, Zedda MT, Ledda S, Leoni G, Naitana S & Pau S 2002 Influence of co-culture with oviductal epithelial cells on in vitro maturation of canine oocytes. Reproduction, Nutrition, Development 42 265273. (https://doi.org/10.1051/rnd:2002024)

    • Search Google Scholar
    • Export Citation
  • Budna-Tukan J, Swiatly-Blaszkiewicz A, Celichowski P, Kaluzna S, Konwerska A, Sujka-Kordowska P, Jankowski M, Kulus M, Jeseta M & Piotrowska-Kempisty H 2019 ‘Biological adhesion’ is a significantly regulated molecular process during long-term primary in vitro culture of oviductal epithelial cells (Oecs): a transcriptomic and proteomic study. International Journal of Molecular Sciences 20 3387. (https://doi.org/10.3390/ijms20143387)

    • Search Google Scholar
    • Export Citation
  • Burns GW, Brooks KE & Spencer TE 2016 Extracellular vesicles originate from the conceptus and uterus during early pregnancy in sheep. Biology of Reproduction 94 56. (https://doi.org/10.1095/biolreprod.115.134973)

    • Search Google Scholar
    • Export Citation
  • da Silveira JC, Carnevale EM, Winger QA & Bouma GJ 2014 Regulation of ACVR1 and ID2 by cell-secreted exosomes during follicle maturation in the mare. Reproductive Biology and Endocrinology 12 44. (https://doi.org/10.1186/1477-7827-12-44)

    • Search Google Scholar
    • Export Citation
  • Di Pietro C 2016 Exosome-mediated communication in the ovarian follicle. Journal of Assisted Reproduction and Genetics 33 303311. (https://doi.org/10.1007/s10815-016-0657-9)

    • Search Google Scholar
    • Export Citation
  • Diaz FJ, O'Brien MJ, Wigglesworth K & Eppig JJ 2006 The preantral granulosa cell to cumulus cell transition in the mouse ovary: development of competence to undergo expansion. Developmental Biology 299 91104. (https://doi.org/10.1016/j.ydbio.2006.07.012)

    • Search Google Scholar
    • Export Citation
  • Diaz FJ, Wigglesworth K & Eppig JJ 2007 Oocytes are required for the preantral granulosa cell to cumulus cell transition in mice. Developmental Biology 305 300311. (https://doi.org/10.1016/j.ydbio.2007.02.019)

    • Search Google Scholar
    • Export Citation
  • Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N & Matzuk MM 1996 Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383 531535. (https://doi.org/10.1038/383531a0)

    • Search Google Scholar
    • Export Citation
  • Dong J, Opresko LK, Dempsey PJ, Lauffenburger DA, Coffey RJ & Wiley HS 1999 Metalloprotease-mediated ligand release regulates autocrine signaling through the epidermal growth factor receptor. PNAS 96 62356240. (https://doi.org/10.1073/pnas.96.11.6235)

    • Search Google Scholar
    • Export Citation
  • Downs SM & Chen J 2008 EGF-like peptides mediate FSH-induced maturation of cumulus cell-enclosed mouse oocytes. Molecular Reproduction and Development 75 105114. (https://doi.org/10.1002/mrd.20781)

    • Search Google Scholar
    • Export Citation
  • El Andaloussi S, Lakhal S, Mager I & Wood MJ 2013 Exosomes for targeted siRNA delivery across biological barriers. Advanced Drug Delivery Reviews 65 391397. (https://doi.org/10.1016/j.addr.2012.08.008)

    • Search Google Scholar
    • Export Citation
  • Fan HY, O'Connor A, Shitanaka M, Shimada M, Liu Z & Richards JS 2010 Beta-catenin (CTNNB1) promotes preovulatory follicular development but represses LH-mediated ovulation and luteinization. Molecular Endocrinology 24 15291542. (https://doi.org/10.1210/me.2010-0141)

    • Search Google Scholar
    • Export Citation
  • Ferraz MAMM, Carothers A, Dahal R, Noonan MJ & Songsasen N 2019 Oviductal extracellular vesicles interact with the spermatozoon’s head and mid-piece and improves its motility and fertilizing ability in the domestic cat. Scientific Reports 9 9484. (https://doi.org/10.1038/s41598-019-45857-x)

    • Search Google Scholar
    • Export Citation
  • Galloway SM, Gregan SM, Wilson T, McNatty KP, Juengel JL, Ritvos O & Davis GH 2002 Bmp15 mutations and ovarian function. Molecular and Cellular Endocrinology 191 1518. (https://doi.org/10.1016/s0303-7207(02)00047-3)

    • Search Google Scholar
    • Export Citation
  • Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M & Kabanov AV 2015 Exosomes as drug delivery vehicles for Parkinson’s disease therapy. Journal of Controlled Release 207 1830. (https://doi.org/10.1016/j.jconrel.2015.03.033)

    • Search Google Scholar
    • Export Citation
  • Hatoya S, Sugiyama Y, Nishida H, Okuno T, Torii R, Sugiura K, Kida K, Kawate N, Tamada H & Inaba T 2009 Canine oocyte maturation in culture: significance of estrogen and EGF receptor gene expression in cumulus cells. Theriogenology 71 560567. (https://doi.org/10.1016/j.theriogenology.2008.08.013)

    • Search Google Scholar
    • Export Citation
  • Hewitt DA & England GC 1998 The effect of oocyte size and bitch age upon oocyte nuclear maturation in vitro. Theriogenology 49 957966. (https://doi.org/10.1016/s0093-691x(98)00044-2)

    • Search Google Scholar
    • Export Citation
  • Higginbotham JN, Demory Beckler M, Gephart JD, Franklin JL, Bogatcheva G, Kremers GJ, Piston DW, Ayers GD, McConnell RE & Tyska MJ 2011 Amphiregulin exosomes increase cancer cell invasion. Current Biology 21 779786. (https://doi.org/10.1016/j.cub.2011.03.043)

    • Search Google Scholar
    • Export Citation
  • Holst PA & Phemister RD 1971 The prenatal development of the dog: preimplantation events. Biology of Reproduction 5 194206. (https://doi.org/10.1093/biolreprod/5.2.194)

    • Search Google Scholar
    • Export Citation
  • Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A & Ceder S 2015 Tumour exosome integrins determine organotropic metastasis. Nature 527 329335. (https://doi.org/10.1038/nature15756)

    • Search Google Scholar
    • Export Citation
  • Hung WT, Hong X, Christenson LK & McGinnis LK 2015 Extracellular vesicles from bovine follicular fluid support cumulus expansion. Biology of Reproduction 93 117. (https://doi.org/10.1095/biolreprod.115.132977)

    • Search Google Scholar
    • Export Citation
  • Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y & Ochiya T 2010 Secretory mechanisms and intercellular transfer of microRNAs in living cells. Journal of Biological Chemistry 285 1744217452. (https://doi.org/10.1074/jbc.M110.107821)

    • Search Google Scholar
    • Export Citation
  • Lee BC, Kim MK, Jang G, Oh HJ, Yuda F, Kim HJ, Hossein MS, Kim JJ, Kang SK & Schatten G 2005 Dogs cloned from adult somatic cells. Nature 436 641. (https://doi.org/10.1038/436641a)

    • Search Google Scholar
    • Export Citation
  • Lee SH, Oh HJ, Kim MJ, Kim GA, Choi YB, Jo YK, Setyawan EMN & Lee BC 2017 Oocyte maturation-related gene expression in the canine oviduct, cumulus cells, and oocytes and effect of co-culture with oviduct cells on in vitro maturation of oocytes. Journal of Assisted Reproduction and Genetics 34 929938. (https://doi.org/10.1007/s10815-017-0910-x)

    • Search Google Scholar
    • Export Citation
  • Lee SH, Oh HJ, Kim MJ, Kim GA, Choi YB, Jo YK, Setyawan EMN & Lee BC 2018 Effect of co-culture canine cumulus and oviduct cells with porcine oocytes during maturation and subsequent embryo development of parthenotes in vitro. Theriogenology 106 108116. (https://doi.org/10.1016/j.theriogenology.2017.09.015)

    • Search Google Scholar
    • Export Citation
  • Lee SH, Oh HJ, Kim MJ, Setyawan EMN & Lee BC 2019 Interaction of the EGFR signaling pathway with porcine cumulus oocyte complexes and oviduct cells in a coculture system. Journal of Cellular Physiology 234 40304043. (https://doi.org/10.1002/jcp.27170)

    • Search Google Scholar
    • Export Citation
  • Lee SH, Oh HJ, Kim MJ & Lee BC 2020 Exosomes derived from oviduct cells mediate the EGFR/MAPK signaling pathway in cumulus cells. Journal of Cellular Physiology 235 13861404. (https://doi.org/10.1002/jcp.29058)

    • Search Google Scholar
    • Export Citation
  • Luvoni GC, Chigioni S, Allievi E & Macis D 2005 Factors involved in vivo and in vitro maturation of canine oocytes. Theriogenology 63 4159. (https://doi.org/10.1016/j.theriogenology.2004.03.004)

    • Search Google Scholar
    • Export Citation
  • Machtinger R, Laurent LC & Baccarelli AA 2016 Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Human Reproduction Update 22 182193. (https://doi.org/10.1093/humupd/dmv055)

    • Search Google Scholar
    • Export Citation
  • Maillo V, Sanchez-Calabuig MJ, Lopera-Vasquez R, Hamdi M, Gutierrez-Adan A, Lonergan P & Rizos D 2016 Oviductal response to gametes and early embryos in mammals. Reproduction 152 R127R141. (https://doi.org/10.1530/REP-16-0120)

    • Search Google Scholar
    • Export Citation
  • Nickson DA, Boyd JS, Eckersall PD, Ferguson JM, Harvey MJ & Renton JP 1993 Molecular biological methods for monitoring oocyte maturation and in vitro fertilization in bitches. Journal of Reproduction and Fertility: Supplement 47 231240.

    • Search Google Scholar
    • Export Citation
  • No J, Zhao M, Lee S, Ock SA, Nam Y & Hur TY 2018 Enhanced in vitro maturation of canine oocytes by oviduct epithelial cell co-culture. Theriogenology 105 6674. (https://doi.org/10.1016/j.theriogenology.2017.09.002)

    • Search Google Scholar
    • Export Citation
  • Oda K, Matsuoka Y, Funahashi A & Kitano H 2005 A comprehensive pathway map of epidermal growth factor receptor signaling. Molecular Systems Biology 1 2005.0010. (https://doi.org/10.1038/msb4100014)

    • Search Google Scholar
    • Export Citation
  • Park JY, Su YQ, Ariga M, Law E, Jin SL & Conti M 2004 EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 303 682684. (https://doi.org/10.1126/science.1092463)

    • Search Google Scholar
    • Export Citation
  • Pereira LMC, Bersano PRO, Rocha DD & Lopes MD 2019 Effect of EGF on expression and localization of maturation-promoting factor, mitogen-activated protein kinase, p34(cdc2) and cyclin B during different culture periods on in vitro maturation of canine oocytes. Reproduction in Domestic Animals 54 325341. (https://doi.org/10.1111/rda.13365)

    • Search Google Scholar
    • Export Citation
  • Prochazka R, Blaha M & Nemcova L 2012 Signaling pathways regulating FSH- and amphiregulin-induced meiotic resumption and cumulus cell expansion in the pig. Reproduction 144 535546. (https://doi.org/10.1530/REP-12-0191)

    • Search Google Scholar
    • Export Citation
  • Quesenberry PJ & Aliotta JM 2010 Cellular phenotype switching and microvesicles. Advanced Drug Delivery Reviews 62 11411148. (https://doi.org/10.1016/j.addr.2010.06.001)

    • Search Google Scholar
    • Export Citation
  • Rieger D, Grisart B, Semple E, Van Langendonckt A, Betteridge KJ & Dessy F 1995 Comparison of the effects of oviductal cell co-culture and oviductal cell-conditioned medium on the development and metabolic activity of cattle embryos. Journal of Reproduction and Fertility 105 9198. (https://doi.org/10.1530/jrf.0.1050091)

    • Search Google Scholar
    • Export Citation
  • Rodrigues TA, Tuna KM, Alli AA, Tribulo P, Hansen PJ, Koh J & Paula-Lopes FF 2019 Follicular fluid exosomes act on the bovine oocyte to improve oocyte competence to support development and survival to heat shock. Reproduction, Fertility, and Development 31 888897. (https://doi.org/10.1071/RD18450)

    • Search Google Scholar
    • Export Citation
  • Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S, Peschon J, Hartmann D, Saftig P & Blobel CP 2004 Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. Journal of Cell Biology 164 769779. (https://doi.org/10.1083/jcb.200307137)

    • Search Google Scholar
    • Export Citation
  • Sasseville M, Ritter LJ, Nguyen TM, Liu F, Mottershead DG, Russell DL & Gilchrist RB 2010 Growth differentiation factor 9 signaling requires ERK1/2 activity in mouse granulosa and cumulus cells. Journal of Cell Science 123 31663176. (https://doi.org/10.1242/jcs.063834)

    • Search Google Scholar
    • Export Citation
  • Sekiguchi T, Mizutani T, Yamada K, Kajitani T, Yazawa T, Yoshino M & Miyamoto K 2004 Expression of epiregulin and amphiregulin in the rat ovary. Journal of Molecular Endocrinology 33 281291. (https://doi.org/10.1677/jme.0.0330281)

    • Search Google Scholar
    • Export Citation
  • Shimada M, Umehara T & Hoshino Y 2016 Roles of epidermal growth factor (EGF)-like factor in the ovulation process. Reproductive Medicine and Biology 15 201216. (https://doi.org/10.1007/s12522-016-0236-x)

    • Search Google Scholar
    • Export Citation
  • Song HJ, Kang EJ, Maeng GH, Ock SA, Lee SL, Yoo JG, Jeon BG & Rho GJ 2011 Influence of epidermal growth factor supplementation during in vitro maturation on nuclear status and gene expression of canine oocytes. Research in Veterinary Science 91 439445. (https://doi.org/10.1016/j.rvsc.2010.09.003)

    • Search Google Scholar
    • Export Citation
  • Songsasen N, Yu I & Leibo SP 2002 Nuclear maturation of canine oocytes cultured in protein-free media. Molecular Reproduction and Development 62 407415. (https://doi.org/10.1002/mrd.10130)

    • Search Google Scholar
    • Export Citation
  • Su YQ, Sugiura K, Li Q, Wigglesworth K, Matzuk MM & Eppig JJ 2010 Mouse oocytes enable LH-induced maturation of the cumulus-oocyte complex via promoting EGF receptor-dependent signaling. Molecular Endocrinology 24 12301239. (https://doi.org/10.1210/me.2009-0497)

    • Search Google Scholar
    • Export Citation
  • Sugimura S, Ritter LJ, Rose RD, Thompson JG, Smitz J, Mottershead DG & Gilchrist RB 2015 Promotion of EGF receptor signaling improves the quality of low developmental competence oocytes. Developmental Biology 403 139149. (https://doi.org/10.1016/j.ydbio.2015.05.008)

    • Search Google Scholar
    • Export Citation
  • Taverna S, Pucci M, Giallombardo M, Di Bella MA, Santarpia M, Reclusa P, Gil-Bazo I, Rolfo C & Alessandro R 2017 Amphiregulin contained in NSCLC-exosomes induces osteoclast differentiation through the activation of EGFR pathway. Scientific Reports 7 3170. (https://doi.org/10.1038/s41598-017-03460-y)

    • Search Google Scholar
    • Export Citation
  • Tsutsui T 1989 Gamete physiology and timing of ovulation and fertilization in dogs. Journal of Reproduction and Fertility: Supplement 39 269275.

    • Search Google Scholar
    • Export Citation
  • Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ & Lotvall JO 2007 Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology 9 654659. (https://doi.org/10.1038/ncb1596)

    • Search Google Scholar
    • Export Citation
  • Vannucchi CI, de Oliveira CM, Marques MG, Assumpcao ME & Visintin JA 2006 In vitro canine oocyte nuclear maturation in homologous oviductal cell co-culture with hormone-supplemented media. Theriogenology 66 16771681. (https://doi.org/10.1016/j.theriogenology.2006.01.008)

    • Search Google Scholar
    • Export Citation
  • Yamashita Y, Okamoto M, Kawashima I, Okazaki T, Nishimura R, Gunji Y, Hishinuma M & Shimada M 2011 Positive feedback loop between prostaglandin E2 and EGF-like factors is essential for sustainable activation of MAPK3/1 in cumulus cells during in vitro maturation of porcine cumulus oocyte complexes. Biology of Reproduction 85 10731082. (https://doi.org/10.1095/biolreprod.110.090092)

    • Search Google Scholar
    • Export Citation
  • Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, Li P, Li M, Wang X & Zhang C 2015 Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527 100104. (https://doi.org/10.1038/nature15376)

    • Search Google Scholar
    • Export Citation