Human endometrial stromal cells inhibit the pro-angiogenic stimulus of hCG in vitro

in Reproduction
View More View Less
  • 1 Huntington Medicina Reprodutiva, São Paulo, Brasil
  • 2 IDIMI, Facultad de Medicina, Universidad de Chile, Santiago, Chile
  • 3 Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
  • 4 Disciplina de Ginecologia Endocrinológica, Departamento de Ginecologia, Escola Paulista de Medicina da Universidade Federal de São Paulo (UNIFSEP-EPM), São Paulo, Brazil

Correspondence should be addressed to A Tapia-Pizarro; Email: atapiap@gmail.com

(M Riboldi is now at Igenomix, São Paulo, Brasil)

(C Valencia is now at Laboratorio de Reproducción, Centro de Biotecnología de La Reproducción (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile)

Restricted access

During embryo implantation, endometrial angiogenesis is regulated by signals originating from the endometrium itself and the developing embryo. It has been suggested that hCG may play a pro-angiogenic role; therefore, we sought to understand its regulatory role in blood vessel formation in human endometrium using in vivo and in vitro models. In the in vivo model, we screened 16 angiogenesis-related transcripts in the endometrium upon intrauterine administration of hCG. Oocyte donors were recruited and during their controlled ovarian stimulation cycle received a single dose of hCG or vehicle on the day of oocyte pick up during a cycle of ovarian stimulation. One hour before obtaining an endometrial sample, women received an intrauterine administration of vehicle or hCG (500, 1500 and 5000 IU). Transcript and protein analysis showed that MMP3 and VEGFA increased, whereas TIMP1 decreased. The in vitro analysis studied the angiogenic potential of conditioned medium (CM) from primary cultures of human endometrial stromal cells (ESC) stimulated with hCG. Using a 2D and 3D in vitro angiogenesis assays, our results indicate that CM from ESC almost completely inhibits the capillary-like structure formation in endothelial cells, overriding the pro-angiogenic effect of hCG; and this inhibition due to secreted factors present in CM specifically reduced the migration potential of endothelial cells. In conclusion, the endometrial stromal milieu seems to modulate the direct pro-angiogenic effects of hCG on endothelial cells during embryo implantation.

Supplementary Materials

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 155 155 139
Full Text Views 18 18 15
PDF Downloads 14 14 12
  • Ahmed A, Dunk C, Ahmad S & Khaliq A 2000 Regulation of placental vascular endothelial growth factor (VEGF) and placenta growth factor (PIGF) and soluble Flt-1 by oxygen – a review. Placenta 21 (Supplement A) S16S24. (https://doi.org/10.1053/plac.1999.0524)

    • Search Google Scholar
    • Export Citation
  • Aranda E & Owen GI 2009 A semi-quantitative assay to screen for angiogenic compounds and compounds with angiogenic potential using the EA.hy926 endothelial cell line. Biological Research 42 377389. (https://doi.org//S0716-97602009000300012)

    • Search Google Scholar
    • Export Citation
  • Berndt S, Perrier d’Hauterive S, Blacher S, Péqueux C, Lorquet S, Munaut C, Applanat M, Hervé MA, Lamandé N & Corvol P 2006 Angiogenic activity of human chorionic gonadotropin through LH receptor activation on endothelial and epithelial cells of the endometrium. FASEB Journal 20 26302632. (https://doi.org/10.1096/fj.06-5885fje)

    • Search Google Scholar
    • Export Citation
  • Berndt S, Blacher S, Perrier d’Hauterive S, Thiry M, Tsampalas M, Cruz A, Péqueux C, Lorquet S, Munaut C & Noël A 2009 Chorionic gonadotropin stimulation of angiogenesis and pericyte recruitment. Journal of Clinical Endocrinology and Metabolism 94 45674574. (https://doi.org/10.1210/jc.2009-0443)

    • Search Google Scholar
    • Export Citation
  • Chen X, Man GCW, Liu Y, Wu F, Huang J, Li TC & Wang CC 2017 Physiological and pathological angiogenesis in endometrium at the time of embryo implantation. American Journal of Reproductive Immunology 78 e12693. (https://doi.org/10.1111/aji.12693)

    • Search Google Scholar
    • Export Citation
  • de Larco JE & Todaro GJ 1978 Epithelioid and fibroblastic rat kidney cell clones: epidermal growth factor (EGF) receptors and the effect of mouse sarcoma virus transformation. Journal of Cellular Physiology 94 335342. (https://doi.org/10.1002/jcp.1040940311)

    • Search Google Scholar
    • Export Citation
  • Fazleabas AT, Kim JJ & Strakova Z 2004 Implantation: embryonic signals and the modulation of the uterine environment – a review. Placenta 25 (Supplement A) S26S31. (https://doi.org/10.1016/j.placenta.2004.01.014)

    • Search Google Scholar
    • Export Citation
  • Fluhr H, Bischof-Islami D, Krenzer S, Licht P, Bischof P & Zygmunt M 2008 Human chorionic gonadotropin stimulates matrix metalloproteinases-2 and -9 in cytotrophoblastic cells and decreases tissue inhibitor of metalloproteinases-1, -2, and -3 in decidualized endometrial stromal cells. Fertility and Sterility 90 (Supplement) 13901395. (https://doi.org/10.1016/j.fertnstert.2007.08.023)

    • Search Google Scholar
    • Export Citation
  • Goodwin AM 2007 In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvascular Research 74 172183. (https://doi.org/10.1016/j.mvr.2007.05.006)

    • Search Google Scholar
    • Export Citation
  • Hanahan D & Folkman J 1996 Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86 353364. (https://doi.org/10.1016/s0092-8674(00)80108-7)

    • Search Google Scholar
    • Export Citation
  • Hannan NJ, Paiva P, Meehan KL, Rombauts LJ, Gardner DK & Salamonsen LA 2011 Analysis of fertility-related soluble mediators in human uterine fluid identifies VEGF as a key regulator of embryo implantation. Endocrinology 152 49484956. (https://doi.org/10.1210/en.2011-1248)

    • Search Google Scholar
    • Export Citation
  • Hornung D, Lebovic DI, Shifren JL, Vigne JL & Taylor RN 1998 Vectorial secretion of vascular endothelial growth factor by polarized human endometrial epithelial cells. Fertility and Sterility 69 909915. (https://doi.org/10.1016/s0015-0282(98)00044-2)

    • Search Google Scholar
    • Export Citation
  • Huang P, Wei L & Li X 2017 A study of intrauterine infusion of human chorionic gonadotropin (hCG) before frozen-thawed embryo transfer after two or more implantation failures. Gynecological Endocrinology 33 6769. (https://doi.org/10.1080/09513590.2016.1207164)

    • Search Google Scholar
    • Export Citation
  • Iruela-Arispe ML & Dvorak HF 1997 Angiogenesis: a dynamic balance of stimulators and inhibitors. Thrombosis and Haemostasis 78 672677. (https://doi.org/10.1055/s-0038-1657610)

    • Search Google Scholar
    • Export Citation
  • Kapiteijn K, Koolwijk P, van der Weiden RM, van Nieuw Amerongen G, Plaisier M, van Hinsbergh VW & Helmerhorst FM 2006 Human embryo-conditioned medium stimulates in vitro endometrial angiogenesis. Fertility and Sterility 85 (Supplement 1) 12321239. (https://doi.org/10.1016/j.fertnstert.2005.11.029)

    • Search Google Scholar
    • Export Citation
  • Licht P, Fluhr H, Neuwinger J, Wallwiener D & Wildt L 2007 Is human chorionic gonadotropin directly involved in the regulation of human implantation? Molecular and Cellular Endocrinology 269 8592. (https://doi.org/10.1016/j.mce.2006.09.016)

    • Search Google Scholar
    • Export Citation
  • Licht P, Losch A, Dittrich R, Neuwinger J, Siebzehnrubl E & Wildt L 1998 Novel insights into human endometrial paracrinology and embryo-maternal communication by intrauterine microdialysis. Human Reproduction Update 4 532538. (https://doi.org/10.1093/humupd/4.5.532)

    • Search Google Scholar
    • Export Citation
  • Licht P, Russu V & Wildt L 2001 On the role of human chorionic gonadotropin (hCG) in the embryo-endometrial microenvironment: implications for differentiation and implantation. Seminars in Reproductive Medicine 19 3747. (https://doi.org/10.1055/s-2001-13909)

    • Search Google Scholar
    • Export Citation
  • Mansour R, Tawab N, Kamal O, El-Faissal Y, Serour A, Aboulghar M & Serour G 2011 Intrauterine injection of human chorionic gonadotropin before embryo transfer significantly improves the implantation and pregnancy rates in in vitro fertilization/intracytoplasmic sperm injection: a prospective randomized study. Fertility and Sterility 96 1370.e11374.e1. (https://doi.org/10.1016/j.fertnstert.2011.09.044)

    • Search Google Scholar
    • Export Citation
  • Mather JP 1980 Establishment and characterization of two distinct mouse testicular epithelial cell lines. Biology of Reproduction 23 243252. (https://doi.org/10.1095/biolreprod23.1.243)

    • Search Google Scholar
    • Export Citation
  • Minas V, Loutradis D & Makrigiannakis A 2005 Factors controlling blastocyst implantation. Reproductive Biomedicine Online 10 205216. (https://doi.org/10.1016/s1472-6483(10)60942-x)

    • Search Google Scholar
    • Export Citation
  • Noyes RW, Hertig AT & Rock J 1950 Dating the endometrial biopsy. Fertility and Sterility 1 325. (https://doi.org/10.1016/S0015-0282(16)30062-0)

    • Search Google Scholar
    • Export Citation
  • Perrier d’Hauterive S, Charlet-Renard C, Dubois M, Berndt S, Goffin F, Foidart JM & Geenen V 2005 Human endometrial leukemia inhibitory factor and interleukin-6: control of secretion by transforming growth factor-beta-related members. Neuroimmunomodulation 12 157163. (https://doi.org/10.1159/000084848)

    • Search Google Scholar
    • Export Citation
  • Tapia-Pizarro A, Argandona F, Palomino WA & Devoto L 2013 Human chorionic gonadotropin (hCG) modulation of TIMP1 secretion by human endometrial stromal cells facilitates extravillous trophoblast invasion in vitro. Human Reproduction 28 22152227. (https://doi.org/10.1093/humrep/det136)

    • Search Google Scholar
    • Export Citation
  • Taylor RN, Lebovic DI, Hornung D & Mueller MD 2001 Endocrine and paracrine regulation of endometrial angiogenesis. Annals of the New York Academy of Sciences 943 109121. (https://doi.org/10.1111/j.1749-6632.2001.tb03795.x)

    • Search Google Scholar
    • Export Citation
  • Torry DS & Torry RJ 1997 Angiogenesis and the expression of vascular endothelial growth factor in endometrium and placenta. American Journal of Reproductive Immunology 37 2129. (https://doi.org/10.1111/j.1600-0897.1997.tb00189.x)

    • Search Google Scholar
    • Export Citation
  • Toth P, Li X, Rao CV, Lincoln SR, Sanfilippo JS, Spinnato JA 2nd & Yussman MA 1994 Expression of functional human chorionic gonadotropin/human luteinizing hormone receptor gene in human uterine arteries. Journal of Clinical Endocrinology and Metabolism 79 307315. (https://doi.org/10.1210/jcem.79.1.8027246)

    • Search Google Scholar
    • Export Citation
  • Vucenik I, Passaniti A, Vitolo MI, Tantivejkul K, Eggleton P & Shamsuddin AM 2004 Anti-angiogenic activity of inositol hexaphosphate (IP6). Carcinogenesis 25 21152123. (https://doi.org/10.1093/carcin/bgh232)

    • Search Google Scholar
    • Export Citation
  • Zygmunt M, Herr F, Keller-Schoenwetter S, Kunzi-Rapp K, Munstedt K, Rao CV, Lang U & Preissner KT 2002 Characterization of human chorionic gonadotropin as a novel angiogenic factor. Journal of Clinical Endocrinology and Metabolism 87 52905296. (https://doi.org/10.1210/jc.2002-020642)

    • Search Google Scholar
    • Export Citation