Proteomics and metabolomics in cow fertility: a systematic review

in Reproduction
View More View Less
  • 1 AgResearch, Ltd., Lincoln Research Centre, Proteins and Metabolites Team, Lincoln, New Zealand
  • 2 Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
  • 3 AgResearch, Ltd., Ruakura Research Centre, Animal Reproduction Team, Hamilton, New Zealand

Correspondence should be addressed to J L Gathercole; Email: jessica.gathercole@agresearch.co.nz
Restricted access

Cow subfertility is a multi-factorial problem in many countries which is only starting to be unravelled. Molecular biology can provide a substantial source of insight into its causes and potential solutions, particularly through large scale, untargeted omics approaches. In this systematic review, we set out to compile, assess and integrate the latest proteomic and metabolomic research on cow reproduction, specifically that on the female reproductive tract and early embryo. We herein report a general improvement in technical standards throughout the temporal span examined; however, significant methodological limitations are also identified. We propose easily actionable avenues for ameliorating these shortcomings and enhancing the reach of this field. Text mining and pathway analysis corroborate the relevance of proteins and metabolites related to the triad oxidative stress-inflammation-disease on reproductive function. We envisage a breakthrough in cattle reproductive molecular research within the next few years as in vivo sample techniques are improved, omics analysis equipment becomes more affordable and widespread, and software tools for single- and multi-omics data processing are further developed. Additional investigation of the impact of local oxidative stress and inflammation on fertility, both at the local and systemic levels, is key towards realising the full potential of this field.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 446 446 385
Full Text Views 89 89 68
PDF Downloads 39 39 34
  • Acosta DAV, Denicol AC, Tribulo P, Rivelli MI, Skenandore C, Zhou Z, Luchini D, Correa MN, Hansen PJ & Cardoso FC 2016 Effects of rumen-protected methionine and choline supplementation on the preimplantation embryo in Holstein cows. Theriogenology 85 16691679. (https://doi.org/10.1016/j.theriogenology.2016.01.024)

    • Search Google Scholar
    • Export Citation
  • Alavi-Shoushtari SM, Asri-Rezai S & Abshenas J 2006 A study of the uterine protein variations during the estrus cycle in the cow: a comparison with the serum proteins. Animal Reproduction Science 96 1020. (https://doi.org/10.1016/j.anireprosci.2005.10.012)

    • Search Google Scholar
    • Export Citation
  • Aller JF, Callejas SS & Alberio RH 2013 Biochemical and steroid concentrations in follicular fluid and blood plasma in different follicular waves of the estrous cycle from normal and superovulated beef cows. Animal Reproduction Science 142 113120. (https://doi.org/10.1016/j.anireprosci.2013.09.009)

    • Search Google Scholar
    • Export Citation
  • Almiñana C, Corbin E, Tsikis G, Alcântara-Neto AS, Labas V, Reynaud K, Galio L, Uzbekov R, Garanina AS & Druart X 2017 Oviduct extracellular vesicles protein content and their role during oviduct–embryo cross-talk. Reproduction 154 153168. (https://doi.org/10.1530/REP-17-0054)

    • Search Google Scholar
    • Export Citation
  • Almiñana C, Tsikis G, Labas V, Uzbekov R, da Silveira JC, Bauersachs S & Mermillod P 2018 Deciphering the oviductal extracellular vesicles content across the estrous cycle: implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genomics 19 622. (https://doi.org/10.1186/s12864-018-4982-5)

    • Search Google Scholar
    • Export Citation
  • Ametaj BN 2017 Demystifying the Myths: Switching Paradigms from Reductionism to Systems Veterinary in Approaching Transition Dairy Cow Diseases, Periparturient Diseases of Dairy Cows, pp. 929. Springer. (https://doi.org/10.1007/978-3-319-43033-1_2)

    • Search Google Scholar
    • Export Citation
  • Annes K, Müller DB, Vilela JAP, Valente RS, Caetano DP, Cibin FWS, Milazzotto MP, Mesquita FS, Belaz KRA & Eberlin MN 2019 Influence of follicle size on bovine oocyte lipid composition, follicular metabolic and stress markers, embryo development and blastocyst lipid content. Reproduction, Fertility, and Development 31 462472. (https://doi.org/10.1071/RD18109)

    • Search Google Scholar
    • Export Citation
  • Arnold GJ & Frohlich T 2011 Dynamic proteome signatures in gametes, embryos and their maternal environment. Reproduction, Fertility, and Development 23 8193. (https://doi.org/10.1071/RD10223)

    • Search Google Scholar
    • Export Citation
  • Artus J, Hue I & Acloque H 2020 Preimplantation development in ungulates: a ‘ménage à quatre’ scenario. Reproduction 159 R151R172. (https://doi.org/10.1530/REP-19-0348)

    • Search Google Scholar
    • Export Citation
  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS & Eppig JT 2000 Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics 25 2529. (https://doi.org/10.1038/75556)

    • Search Google Scholar
    • Export Citation
  • Banliat C, Dubuisson F, Corbin E, Beurois J, Tomas D, Le Bourhis D, Salvetti P, Labas V, Mermillod P & Saint-Dizier M 2019a Intraoviductal concentrations of steroid hormones during in vitro culture changed phospholipid profiles and cryotolerance of bovine embryos. Molecular Reproduction and Development 86 661672. (https://doi.org/10.1002/mrd.23144)

    • Search Google Scholar
    • Export Citation
  • Banliat C, Tomas D, Teixeira-Gomes AP, Uzbekova S, Guyonnet B, Labas V & Saint-Dizier M 2019b Stage-dependent changes in oviductal phospholipid profiles throughout the estrous cycle in cattle. Theriogenology 135 6572. (https://doi.org/10.1016/j.theriogenology.2019.06.011)

    • Search Google Scholar
    • Export Citation
  • Banliat C, Tsikis G, Labas V, Teixeira-Gomes AP, Com E, Lavigne R, Pineau C, Guyonnet B, Mermillod P & Saint-Dizier M 2020 Identification of 56 proteins involved in embryo-maternal interactions in the bovine oviduct. International Journal of Molecular Sciences 21 17. (https://doi.org/10.3390/ijms21020466)

    • Search Google Scholar
    • Export Citation
  • Belaz KR, Tata A, França MR, Santos da Silva MI, Vendramini PH, Fernandes AM, D’Alexandri FL, Eberlin MN & Binelli M 2016 Phospholipid profile and distribution in the receptive oviduct and uterus during early diestrus in cattle. Biology of Reproduction 95 127. (https://doi.org/10.1095/biolreprod.116.142257)

    • Search Google Scholar
    • Export Citation
  • Beltman ME, Mullen MP, Elia G, Hilliard M, Diskin MG, Evans AC & Crowe MA 2014 Global proteomic characterization of uterine histotroph recovered from beef heifers yielding good quality and degenerate day 7 embryos. Domestic Animal Endocrinology 46 4957. (https://doi.org/10.1016/j.domaniend.2013.10.003)

    • Search Google Scholar
    • Export Citation
  • Bender K, Walsh S, Evans AC, Fair T & Brennan L 2010 Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows. Reproduction 139 10471055. (https://doi.org/10.1530/REP-10-0068)

    • Search Google Scholar
    • Export Citation
  • Berendt FJ, Frohlich T, Schmidt SE, Reichenbach HD, Wolf E & Arnold GJ 2005 Holistic differential analysis of embryo-induced alterations in the proteome of bovine endometrium in the preattachment period. Proteomics 5 25512560. (https://doi.org/10.1002/pmic.200401242)

    • Search Google Scholar
    • Export Citation
  • Berglund B 2008 Genetic improvement of dairy cow reproductive performance. Reproduction in Domestic Animals 43 (Supplement 2) 8995. (https://doi.org/10.1111/j.1439-0531.2008.01147.x)

    • Search Google Scholar
    • Export Citation
  • Berkkanoglu M, Isikoglu M, Seleker M & Ozgur K 2006 Flushing the endometrium prior to the embryo transfer does not affect the pregnancy rate. Reproductive Biomedicine Online 13 268271. (https://doi.org/10.1016/S1472-6483(10)60625-6)

    • Search Google Scholar
    • Export Citation
  • Besenfelder U, Havlicek V, Mösslacher G & Brem G 2001 Collection of tubal stage bovine embryos by means of endoscopy a technique report. Theriogenology 55 837845. (https://doi.org/10.1016/s0093-691x(01)00447-2)

    • Search Google Scholar
    • Export Citation
  • Bhagwat SR, Redij T, Phalnikar K, Nayak S, Iyer S, Gadkar S, Chaudhari U, Kholkute SD & Sachdeva G 2014 Cell surfactomes of two endometrial epithelial cell lines that differ in their adhesiveness to embryonic cells. Molecular Reproduction and Development 81 326340. (https://doi.org/10.1002/mrd.22301)

    • Search Google Scholar
    • Export Citation
  • Bhojwani M, Rudolph E, Kanitz W, Zuehlke H, Schneider F & Tomek W 2006 Molecular analysis of maturation processes by protein and phosphoprotein profiling during in vitro maturation of bovine oocytes: a proteomic approach. Cloning and Stem Cells 8 259274. (https://doi.org/10.1089/clo.2006.8.259)

    • Search Google Scholar
    • Export Citation
  • Bromfield JJ & Iacovides SM 2017 Evaluating lipopolysaccharide-induced oxidative stress in bovine granulosa cells. Journal of Assisted Reproduction and Genetics 34 16191626. (https://doi.org/10.1007/s10815-017-1031-2)

    • Search Google Scholar
    • Export Citation
  • Caldari-Torres C, Rodriguez-Sallaberry C, Greene ES & Badinga L 2006 Differential effects of n-3 and n-6 fatty acids on prostaglandin F2alpha production by bovine endometrial cells. Journal of Dairy Science 89 971977. (https://doi.org/10.3168/jds.S0022-0302(06)72162-2)

    • Search Google Scholar
    • Export Citation
  • Carvalho JB, Carvalho NA, Reis EL, Nichi M, Souza AH & Baruselli PS 2008 Effect of early luteolysis in progesterone-based timed AI protocols in Bos indicus, Bos indicus x Bos taurus, and Bos taurus heifers. Theriogenology 69 167175. (https://doi.org/10.1016/j.theriogenology.2007.08.035)

    • Search Google Scholar
    • Export Citation
  • Ceciliani F, Vecchio D, De Carlo E, Martucciello A & Lecchi C 2017 A systems biology approach to dairy cattle subfertility and infertility. In Periparturient Diseases of Dairy Cows, pp. 93119. Eds Ametaj BN. Cham: Springer International Publishing. (https://doi.org/10.1007/978-3-319-43033-1_6)

    • Search Google Scholar
    • Export Citation
  • Ceciliani F, Lecchi C, Urh C & Sauerwein H 2018 Proteomics and metabolomics characterizing the pathophysiology of adaptive reactions to the metabolic challenges during the transition from late pregnancy to early lactation in dairy cows. Journal of Proteomics 178 92106. (https://doi.org/10.1016/j.jprot.2017.10.010)

    • Search Google Scholar
    • Export Citation
  • Cesari A, Monclus Mde L, Tejon GP, Clementi M & Fornes MW 2010 Regulated serine proteinase lytic system on mammalian sperm surface: there must be a role. Theriogenology 74 699.e1711.e5. (https://doi.org/10.1016/j.theriogenology.2010.03.029)

    • Search Google Scholar
    • Export Citation
  • Choe C, Park JW, Kim ES, Lee SG, Park SY, Lee JS, Cho MJ, Kang KR, Han J & Kang D 2010 Proteomic analysis of differentially expressed proteins in bovine endometrium with endometritis. Korean Journal of Physiology and Pharmacology 14 205212. (https://doi.org/10.4196/kjpp.2010.14.4.205)

    • Search Google Scholar
    • Export Citation
  • De Maio A 1999 Heat shock proteins: facts, thoughts, and dreams. Shock 11 112. (https://doi.org/10.1097/00024382-199901000-00001)

  • Demant M, Deutsch DR, Frohlich T, Wolf E & Arnold GJ 2015 Proteome analysis of early lineage specification in bovine embryos. Proteomics 15 688701. (https://doi.org/10.1002/pmic.201400251)

    • Search Google Scholar
    • Export Citation
  • Destaillats F & Cruz-Hernandez C 2007 Fast analysis by gas-liquid chromatography. Perspective on the resolution of complex fatty acid compositions. Journal of Chromatography, A 1169 175178. (https://doi.org/10.1016/j.chroma.2007.08.073)

    • Search Google Scholar
    • Export Citation
  • Deutsch DR, Frohlich T, Otte KA, Beck A, Habermann FA, Wolf E & Arnold GJ 2014 Stage-specific proteome signatures in early bovine embryo development. Journal of Proteome Research 13 43634376. (https://doi.org/10.1021/pr500550t)

    • Search Google Scholar
    • Export Citation
  • Deutsch DR, Fröhlich T & Arnold GJ 2019 Proteomics of Bovine Endometrium, Oocytes and Early Embryos, Reproduction in Domestic Ruminants VIII. Bioscientifica. (https://doi.org/10.1530/biosciprocs.8.003)

    • Search Google Scholar
    • Export Citation
  • Dhaliwal GS, Murray RD & Woldehiwet Z 2001 Some aspects of immunology of the bovine uterus related to treatments for endometritis. Animal Reproduction Science 67 135152. (https://doi.org/10.1016/S0378-4320(01)00124-5)

    • Search Google Scholar
    • Export Citation
  • Diskin MG & Morris DG 2008 Embryonic and early foetal losses in cattle and other ruminants. Reproduction in Domestic Animals 43 (Supplement 2) 260267. (https://doi.org/10.1111/j.1439-0531.2008.01171.x)

    • Search Google Scholar
    • Export Citation
  • Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, Spener F, van Meer G, Wakelam MJ & Dennis EA 2009 Update of the LIPID MAPS comprehensive classification system for lipids. Journal of Lipid Research 50 (Supplement) S9S14. (https://doi.org/10.1194/jlr.R800095-JLR200)

    • Search Google Scholar
    • Export Citation
  • Faulkner S, Elia G, Hillard M, O’Boyle P, Dunn M & Morris D 2011 Immunodepletion of albumin and immunoglobulin G from bovine plasma. Proteomics 11 23292335. (https://doi.org/10.1002/pmic.201000364)

    • Search Google Scholar
    • Export Citation
  • Faulkner S, Elia G, Mullen MP, O’Boyle P, Dunn MJ & Morris D 2012 A comparison of the bovine uterine and plasma proteome using iTRAQ proteomics. Proteomics 12 20142023. (https://doi.org/10.1002/pmic.201100609)

    • Search Google Scholar
    • Export Citation
  • Faulkner S, Elia G, O’ Boyle P, Dunn M & Morris D 2013 Composition of the bovine uterine proteome is associated with stage of cycle and concentration of systemic progesterone. Proteomics 13 33333353. (https://doi.org/10.1002/pmic.201300204)

    • Search Google Scholar
    • Export Citation
  • Fazio R, Buuck M & Schrick F 1997 Embryonic Development of Frozen-Thawed Bovine Embryos Cultured In Vitro in Response to Elevated Concentrations of Prostaglandin F-2 Alpha, Biology of Reproduction, pp. 420420. Madison, WI: SOC Study Reproduction.

    • Search Google Scholar
    • Export Citation
  • Forde N & Lonergan P 2012 Transcriptomic analysis of the bovine endometrium: what is required to establish uterine receptivity to implantation in cattle? Journal of Reproduction and Development 58 189195. (https://doi.org/10.1262/jrd.2011-021)

    • Search Google Scholar
    • Export Citation
  • Forde N, Carter F, Spencer TE, Bazer FW, Sandra O, Mansouri-Attia N, Okumu LA, McGettigan PA, Mehta JP & McBride R 2011 Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant? Biology of Reproduction 85 144156. (https://doi.org/10.1095/biolreprod.110.090019)

    • Search Google Scholar
    • Export Citation
  • Forde N, Mehta JP, McGettigan PA, Mamo S, Bazer FW, Spencer TE & Lonergan P 2013 Alterations in expression of endometrial genes coding for proteins secreted into the uterine lumen during conceptus elongation in cattle. BMC Genomics 14 321. (https://doi.org/10.1186/1471-2164-14-321)

    • Search Google Scholar
    • Export Citation
  • Forde N, McGettigan PA, Mehta JP, O’Hara L, Mamo S, Bazer FW, Spencer TE & Lonergan P 2014a Proteomic analysis of uterine fluid during the pre-implantation period of pregnancy in cattle. Reproduction 147 575587. (https://doi.org/10.1530/REP-13-0010)

    • Search Google Scholar
    • Export Citation
  • Forde N, Simintiras CA, Sturmey R, Mamo S, Kelly AK, Spencer TE, Bazer FW & Lonergan P 2014b Amino acids in the uterine luminal fluid reflects the temporal changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle. PLoS ONE 9 e100010. (https://doi.org/10.1371/journal.pone.0100010)

    • Search Google Scholar
    • Export Citation
  • Forde N, Bazer FW, Spencer TE & Lonergan P 2015 ‘Conceptualizing’ the endometrium: identification of conceptus-derived proteins during early pregnancy in cattle. Biology of Reproduction 92 156. (https://doi.org/10.1095/biolreprod.115.129296)

    • Search Google Scholar
    • Export Citation
  • Forde N, Maillo V, O’Gaora P, Simintiras CA, Sturmey RG, Ealy AD, Spencer TE, Gutierrez-Adan A, Rizos D & Lonergan P 2016a Sexually dimorphic gene expression in bovine conceptuses at the initiation of implantation. Biology of Reproduction 95 92. (https://doi.org/10.1095/biolreprod.116.139857)

    • Search Google Scholar
    • Export Citation
  • Forde N, O’Gorman A, Whelan H, Duffy P, O’Hara L, Kelly AK, Havlicek V, Besenfelder U, Brennan L & Lonergan P 2016b Lactation-induced changes in metabolic status and follicular-fluid metabolomic profile in postpartum dairy cows. Reproduction, Fertility, and Development 28 18821892. (https://doi.org/10.1071/RD14348)

    • Search Google Scholar
    • Export Citation
  • Forde N, Simintiras CA, Sturmey RG, Graf A, Wolf E, Blum H & Lonergan P 2017 Effect of lactation on conceptus-maternal interactions at the initiation of implantation in cattle: I. Effects on the conceptus transcriptome and amino acid composition of the uterine luminal fluid. Biology of Reproduction 97 798809. (https://doi.org/10.1093/biolre/iox135)

    • Search Google Scholar
    • Export Citation
  • Garnsworthy PC, Sinclair KD & Webb R 2008 Integration of physiological mechanisms that influence fertility in dairy cows. Animal 2 11441152. (https://doi.org/10.1017/S1751731108002358)

    • Search Google Scholar
    • Export Citation
  • Gegenfurtner K, Fröhlich T, Flenkenthaler F, Kösters M, Fritz S, Desnoës O, Le Bourhis D, Salvetti P, Sandra O & Charpigny G 2019a Genetic merit for fertility alters the bovine uterine luminal fluid proteome. Biology of Reproduction 102 730739. (https://doi.org/10.1093/biolre/ioz216)

    • Search Google Scholar
    • Export Citation
  • Gegenfurtner K, Frohlich T, Kosters M, Mermillod P, Locatelli Y, Fritz S, Salvetti P, Forde N, Lonergan P & Wolf E 2019b Influence of metabolic status and genetic merit for fertility on proteomic composition of bovine oviduct fluid. Biology of Reproduction 101 893905. (https://doi.org/10.1093/biolre/ioz142)

    • Search Google Scholar
    • Export Citation
  • Giergiel M, Wawrzykowski J & Kankofer M 2018 Comparison between endometrial protein profile in Holstein-Friesian heifers and female prepubertal calves. Veterinaria Italiana 54 211218. (https://doi.org/10.12834/VetIt.1002.5292.1)

    • Search Google Scholar
    • Export Citation
  • Gilbert RO 2019 Symposium review: Mechanisms of disruption of fertility by infectious diseases of the reproductive tract. Journal of Dairy Science 102 37543765. (https://doi.org/10.3168/jds.2018-15602)

    • Search Google Scholar
    • Export Citation
  • Goldansaz SA, Guo AC, Sajed T, Steele MA, Plastow GS & Wishart DS 2017 Livestock metabolomics and the livestock metabolome: a systematic review. PLoS ONE 12 e0177675. (https://doi.org/10.1371/journal.pone.0177675)

    • Search Google Scholar
    • Export Citation
  • Gomez E & Munoz M 2015 Multiple-embryo transfer for studying very early maternal-embryo interactions in cattle. Reproduction 150 R35R43. (https://doi.org/10.1530/REP-14-0465)

    • Search Google Scholar
    • Export Citation
  • Goncalves RF, Ferreira MS, de Oliveira DN, Canevarolo R, Achilles MA, D’Ercole DL, Bols PE, Visintin JA, Killian GJ & Catharino RR 2016 Analysis and characterisation of bovine oocyte and embryo biomarkers by matrix-assisted desorption ionisation mass spectrometry imaging. Reproduction, Fertility, and Development 28 293301. (https://doi.org/10.1071/RD14047)

    • Search Google Scholar
    • Export Citation
  • Gray CA, Burghardt RC, Johnson GA, Bazer FW & Spencer TE 2002 Evidence that absence of endometrial gland secretions in uterine gland knockout ewes compromises conceptus survival and elongation. Reproduction 124 289300. (https://doi.org/10.1530/rep.0.1240289)

    • Search Google Scholar
    • Export Citation
  • Groebner AE, Rubio-Aliaga I, Schulke K, Reichenbach HD, Daniel H, Wolf E, Meyer HH & Ulbrich SE 2011a Increase of essential amino acids in the bovine uterine lumen during preimplantation development. Reproduction 141 685695. (https://doi.org/10.1530/REP-10-0533))

    • Search Google Scholar
    • Export Citation
  • Groebner AE, Schulke K, Schefold JC, Fusch G, Sinowatz F, Reichenbach HD, Wolf E, Meyer HH & Ulbrich SE 2011b Immunological mechanisms to establish embryo tolerance in early bovine pregnancy. Reproduction, Fertility, and Development 23 619632. (https://doi.org/10.1071/RD10230)

    • Search Google Scholar
    • Export Citation
  • Guerin P, El Mouatassim S & Menezo Y 2001 Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Human Reproduction Update 7 175189. (https://doi.org/10.1093/humupd/7.2.175)

    • Search Google Scholar
    • Export Citation
  • Guerreiro TM, Goncalves RF, Melo CFOR, de Oliveira DN, Lima EO, Visintin JA, de Achilles MA & Catharino RR 2018 A metabolomic overview of follicular fluid in cows. Frontiers in Veterinary Science 5 10. (https://doi.org/10.3389/fvets.2018.00010)

    • Search Google Scholar
    • Export Citation
  • Guise MB & Gwazdauskas FC 1987 Profiles of uterine protein in flushings and progesterone in plasma of normal and repeat-breeding dairy cattle. Journal of Dairy Science 70 26352641. (https://doi.org/10.3168/jds.S0022-0302(87)80333-8)

    • Search Google Scholar
    • Export Citation
  • Hansen PJ 2010 Supplemental antioxidants to enhance fertility in dairy cattle. In 21st Annual FL Ruminant Nutrition Symposium, pp. 157166, Gainesville, FL, USA.

    • Search Google Scholar
    • Export Citation
  • Harlow K, Taylor E, Casey T, Hedrick V, Sobreira T, Aryal UK, Lemenager RP, Funnell B & Stewart K 2018 Diet impacts pre-implantation histotroph proteomes in beef cattle. Journal of Proteome Research 17 21442155. (https://doi.org/10.1021/acs.jproteome.8b00077)

    • Search Google Scholar
    • Export Citation
  • Hayes BJ, Bowman PJ, Chamberlain AJ & Goddard ME 2009 Invited review: Genomic selection in dairy cattle: progress and challenges. Journal of Dairy Science 92 433443. (https://doi.org/10.3168/jds.2008-1646)

    • Search Google Scholar
    • Export Citation
  • Helfrich AL, Reichenbach HD, Meyerholz MM, Schoon HA, Arnold GJ, Frohlich T, Weber F & Zerbe H 2020 Novel sampling procedure to characterize bovine subclinical endometritis by uterine secretions and tissue. Theriogenology 141 186196. (https://doi.org/10.1016/j.theriogenology.2019.09.016)

    • Search Google Scholar
    • Export Citation
  • Hemmings KE, Leese HJ & Picton HM 2012 Amino acid turnover by bovine oocytes provides an index of oocyte developmental competence in vitro. Biology of Reproduction 86 165, 112. (https://doi.org/10.1095/biolreprod.111.092585)

    • Search Google Scholar
    • Export Citation
  • Horan B, Mee JF, Rath M, O’Connor PO & Dillon P 2004 The effect of strain of Holstein-Friesian cow and feeding system on reproductive performance in seasonal-calving milk production systems. Animal Science 79 453467. (https://doi.org/10.1017/S1357729800090329)

    • Search Google Scholar
    • Export Citation
  • Hugentobler SA, Morris DG, Sreenan JM & Diskin MG 2007a Ion concentrations in oviduct and uterine fluid and blood serum during the estrous cycle in the bovine. Theriogenology 68 538548. (https://doi.org/10.1016/j.theriogenology.2007.04.049)

    • Search Google Scholar
    • Export Citation
  • Hugentobler SA, Diskin MG, Leese HJ, Humpherson PG, Watson T, Sreenan JM & Morris DG 2007b Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Molecular Reproduction and Development 74 445454. (https://doi.org/10.1002/mrd.20607)

    • Search Google Scholar
    • Export Citation
  • Hugentobler SA, Humpherson PG, Leese HJ, Sreenan JM & Morris DG 2008 Energy substrates in bovine oviduct and uterine fluid and blood plasma during the oestrous cycle. Molecular Reproduction and Development 75 496503. (https://doi.org/10.1002/mrd.20760)

    • Search Google Scholar
    • Export Citation
  • Hugentobler SA, Sreenan JM, Humpherson PG, Leese HJ, Diskin MG & Morris DG 2010 Effects of changes in the concentration of systemic progesterone on ions, amino acids and energy substrates in cattle oviduct and uterine fluid and blood. Reproduction, Fertility, and Development 22 684694. (https://doi.org/10.1071/RD09129)

    • Search Google Scholar
    • Export Citation
  • Hullin-Matsuda F, Luquain-Costaz C, Bouvier J & Delton-Vandenbroucke I 2009 Bis(monoacylglycero)phosphate, a peculiar phospholipid to control the fate of cholesterol: implications in pathology. Prostaglandins, Leukotrienes, and Essential Fatty Acids 81 313324. (https://doi.org/10.1016/j.plefa.2009.09.006)

    • Search Google Scholar
    • Export Citation
  • Hunter RH, Cicinelli E & Einer-Jensen N 2007 Peritoneal fluid as an unrecognised vector between female reproductive tissues. Acta Obstetricia et Gynecologica Scandinavica 86 260265. (https://doi.org/10.1080/00016340601155098)

    • Search Google Scholar
    • Export Citation
  • Hunter RH, Coy P, Gadea J & Rath D 2011 Considerations of viscosity in the preliminaries to mammalian fertilisation. Journal of Assisted Reproduction and Genetics 28 191197. (https://doi.org/10.1007/s10815-010-9531-3)

    • Search Google Scholar
    • Export Citation
  • Hutchinson JL, Rajagopal SP, Sales KJ & Jabbour HN 2011 Molecular regulators of resolution of inflammation: potential therapeutic targets in the reproductive system. Reproduction 142 1528. (https://doi.org/10.1530/REP-11-0069)

    • Search Google Scholar
    • Export Citation
  • Jensen PL, Grøndahl ML, Beck HC, Petersen J, Stroebech L, Christensen ST & Yding Andersen C 2014a Proteomic analysis of bovine blastocoel fluid and blastocyst cells. Systems Biology in Reproductive Medicine 60 127135. (https://doi.org/10.3109/19396368.2014.894152)

    • Search Google Scholar
    • Export Citation
  • Jensen PL, Beck HC, Petersen TS, Stroebech L, Schmidt M, Rasmussen LM & Hyttel P 2014b Proteomic analysis of the early bovine yolk sac fluid and cells from the day 13 ovoid and elongated preimplantation embryos. Theriogenology 82 657667. (https://doi.org/10.1016/j.theriogenology.2014.04.028)

    • Search Google Scholar
    • Export Citation
  • Jung YY, Nam Y, Park YS, Lee HS, Hong SA, Kim BK, Park ES, Chung YH & Jeong JH 2013 Protective effect of phosphatidylcholine on lipopolysaccharide-induced acute inflammation in multiple organ injury. Korean Journal of Physiology and Pharmacology 17 209216. (https://doi.org/10.4196/kjpp.2013.17.3.209)

    • Search Google Scholar
    • Export Citation
  • Kilkenny C, Browne WJ, Cuthill IC, Emerson M & Altman DG 2010 Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biology 8 e1000412. (https://doi.org/10.1371/journal.pbio.1000412)

    • Search Google Scholar
    • Export Citation
  • Kim IH, Kang HG, Jeong JK, Hur TY & Jung YH 2014 Inflammatory cytokine concentrations in uterine flush and serum samples from dairy cows with clinical or subclinical endometritis. Theriogenology 82 427432. (https://doi.org/10.1016/j.theriogenology.2014.04.022)

    • Search Google Scholar
    • Export Citation
  • Kosciuczuk EM, Lisowski P, Jarczak J, Strzalkowska N, Jozwik A, Horbanczuk J, Krzyzewski J, Zwierzchowski L & Bagnicka E 2012 Cathelicidins: family of antimicrobial peptides. A review. Molecular Biology Reports 39 1095710970. (https://doi.org/10.1007/s11033-012-1997-x)

    • Search Google Scholar
    • Export Citation
  • Krisher RL & Prather RS 2012 A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Molecular Reproduction and Development 79 311320. (https://doi.org/10.1002/mrd.22037)

    • Search Google Scholar
    • Export Citation
  • Kyle JE, Zhang X, Weitz KK, Monroe ME, Ibrahim YM, Moore RJ, Cha J, Sun X, Lovelace ES & Wagoner J 2016 Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst 141 16491659. (https://doi.org/10.1039/c5an02062j)

    • Search Google Scholar
    • Export Citation
  • Lamy J, Labas V, Harichaux G, Tsikis G, Mermillod P & Saint-Dizier M 2016a Regulation of the bovine oviductal fluid proteome. Reproduction 152 629644. (https://doi.org/10.1530/REP-16-0397)

    • Search Google Scholar
    • Export Citation
  • Lamy J, Liere P, Pianos A, Aprahamian F, Mermillod P & Saint-Dizier M 2016b Steroid hormones in bovine oviductal fluid during the estrous cycle. Theriogenology 86 14091420. (https://doi.org/10.1016/j.theriogenology.2016.04.086)

    • Search Google Scholar
    • Export Citation
  • LeBlanc S 2010 Assessing the association of the level of milk production with reproductive performance in dairy cattle. Journal of Reproduction and Development 56 (Supplement) S1S7. (https://doi.org/10.1262/jrd.1056s01)

    • Search Google Scholar
    • Export Citation
  • Ledgard AM, Lee RS & Peterson AJ 2009 Bovine endometrial legumain and TIMP-2 regulation in response to presence of a conceptus. Molecular Reproduction and Development 76 6574. (https://doi.org/10.1002/mrd.20931)

    • Search Google Scholar
    • Export Citation
  • Ledgard AM, Berg MC, McMillan WH, Smolenski G & Peterson AJ 2012 Effect of asynchronous transfer on bovine embryonic development and relationship with early cycle uterine proteome profiles. Reproduction, Fertility, and Development 24 962972. (https://doi.org/10.1071/RD11225)

    • Search Google Scholar
    • Export Citation
  • Ledgard AM, Smolenski GA, Henderson H & Lee RS-F 2015 Influence of pathogenic bacteria species present in the postpartum bovine uterus on proteome profiles. Reproduction, Fertility, and Development 27 395406. (https://doi.org/10.1071/RD13144)

    • Search Google Scholar
    • Export Citation
  • Leroy JLMR, Vanholder T, Delanghe JR, Opsomer G, Van Soom A, Bols PE & de Kruif A 2004a Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows. Animal Reproduction Science 80 201211. (https://doi.org/10.1016/S0378-4320(03)00173-8)

    • Search Google Scholar
    • Export Citation
  • Leroy JLMR, Vanholder T, Delanghe JR, Opsomer G, Van Soom A, Bols PE, Dewulf J & de Kruif A 2004b Metabolic changes in follicular fluid of the dominant follicle in high-yielding dairy cows early post partum. Theriogenology 62 11311143. (https://doi.org/10.1016/j.theriogenology.2003.12.017)

    • Search Google Scholar
    • Export Citation
  • Leroy JL, Vanholder T, Mateusen B, Christophe A, Opsomer G, de Kruif A, Genicot G & Van Soom A 2005 Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction 130 485495. (https://doi.org/10.1530/rep.1.00735)

    • Search Google Scholar
    • Export Citation
  • Li CQ, Han JW, Yao QL, Zou CD, Xu YJ, Zhang CL, Shang DS, Zhou LY, Zou CX & Sun ZG 2013 Subpathway-GM: identification of metabolic subpathways via joint power of interesting genes and metabolites and their topologies within pathways. Nucleic Acids Research 41 e101e101. (https://doi.org/10.1093/nar/gkt161)

    • Search Google Scholar
    • Export Citation
  • Lucy MC 2001 Reproductive loss in high-producing dairy cattle: where will it end? Journal of Dairy Science 84 12771293. (https://doi.org/10.3168/jds.S0022-0302(01)70158-0)

    • Search Google Scholar
    • Export Citation
  • Lukanidin E & Sleeman JP 2012 Building the niche: the role of the S100 proteins in metastatic growth. Seminars in Cancer Biology 22 216225. (https://doi.org/10.1016/j.semcancer.2012.02.006)

    • Search Google Scholar
    • Export Citation
  • Maillo V, Gaora , Forde N, Besenfelder U, Havlicek V, Burns GW, Spencer TE, Gutierrez-Adan A, Lonergan P & Rizos D 2015 Oviduct-embryo interactions in cattle: two-way traffic or a one-way street? Biology of Reproduction 92 144. (https://doi.org/10.1095/biolreprod.115.127969)

    • Search Google Scholar
    • Export Citation
  • Maniwa J, Izumi S, Isobe N & Terada T 2005 Studies on substantially increased proteins in follicular fluid of bovine ovarian follicular cysts using 2-D PAGE and MALDI-TOF MS. Reproductive Biology and Endocrinology 3 23. (https://doi.org/10.1186/1477-7827-3-23)

    • Search Google Scholar
    • Export Citation
  • Marei WF, Wathes DC & Fouladi-Nashta AA 2009 The effect of linolenic acid on bovine oocyte maturation and development. Biology of Reproduction 81 10641072. (https://doi.org/10.1095/biolreprod.109.076851)

    • Search Google Scholar
    • Export Citation
  • Martins T, Pugliesi G, Sponchiado M, Gonella-Diaza AM, Ojeda-Rojas OA, Rodriguez FD, Ramos RS, Basso AC & Binelli M 2018 Perturbations in the uterine luminal fluid composition are detrimental to pregnancy establishment in cattle. Journal of Animal Science and Biotechnology 9 70. (https://doi.org/10.1186/s40104-018-0285-6)

    • Search Google Scholar
    • Export Citation
  • Martins-de-Souza D 2010 Is the word ‘biomarker’ being properly used by proteomics research in neuroscience? European Archives of Psychiatry and Clinical Neuroscience 260 561562. (https://doi.org/10.1007/s00406-010-0105-2)

    • Search Google Scholar
    • Export Citation
  • Massicotte L, Coenen K, Mourot M & Sirard MA 2006 Maternal housekeeping proteins translated during bovine oocyte maturation and early embryo development. Proteomics 6 38113820. (https://doi.org/10.1002/pmic.200500803)

    • Search Google Scholar
    • Export Citation
  • Matoba S, Bender K, Fahey AG, Mamo S, Brennan L, Lonergan P & Fair T 2014 Predictive value of bovine follicular components as markers of oocyte developmental potential. Reproduction, Fertility, and Development 26 337345. (https://doi.org/10.1071/RD13007)

    • Search Google Scholar
    • Export Citation
  • McDougall S 2001 Effects of periparturient diseases and conditions on the reproductive performance of New Zealand dairy cows. New Zealand Veterinary Journal 49 6067. (https://doi.org/10.1080/00480169.2001.36204)

    • Search Google Scholar
    • Export Citation
  • McDougall S, Hussein H, Aberdein D, Buckle K, Roche J, Burke C, Mitchell M & Meier S 2011 Relationships between cytology, bacteriology and vaginal discharge scores and reproductive performance in dairy cattle. Theriogenology 76 229240. (https://doi.org/10.1016/j.theriogenology.2010.12.024)

    • Search Google Scholar
    • Export Citation
  • McMillan WH, Cox SF, Donnison MJ, Hagemann LJ & Peterson AJ 1998 Single and twin conceptus development to day 34 of pregnancy after the transfer of in vitro-produced bovine embryos. Theriogenology 49 246. (https://doi.org/10.1016/S0093-691X(98)90599-4)

    • Search Google Scholar
    • Export Citation
  • Memili E, Peddinti D, Shack LA, Nanduri B, McCarthy F, Sagirkaya H & Burgess SC 2007 Bovine germinal vesicle oocyte and cumulus cell proteomics. Reproduction 133 11071120. (https://doi.org/10.1530/REP-06-0149)

    • Search Google Scholar
    • Export Citation
  • Mikulski D & Molski M 2010 Quantitative structure-antioxidant activity relationship of trans-resveratrol oligomers, trans-4,4′-dihydroxystilbene dimer, trans-resveratrol-3-O-glucuronide, glucosides: trans-piceid, cis-piceid, trans-astringin and trans-resveratrol-4′-O-beta-D-glucopyranoside. European Journal of Medicinal Chemistry 45 23662380. (https://doi.org/10.1016/j.ejmech.2010.02.016)

    • Search Google Scholar
    • Export Citation
  • Moher D, Liberati A, Tetzlaff J, Altman DG & PRISMA Group 2009 Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of Internal Medicine 151 264269, W64. (https://doi.org/10.7326/0003-4819-151-4-200908180-00135)

    • Search Google Scholar
    • Export Citation
  • Mondejar I, Acuna OS, Izquierdo-Rico MJ, Coy P & Aviles M 2012 The oviduct: functional genomic and proteomic approach. Reproduction in Domestic Animals 47 (Supplement 3) 2229. (https://doi.org/10.1111/j.1439-0531.2012.02027.x)

    • Search Google Scholar
    • Export Citation
  • Moore S G, O’Gorman A, Brennan L, Fair T & Butler S T 2015 Follicular fluid and serum metabolites in Holstein cows are predictive of genetic merit for fertility. Reproduction, Fertility and Development 29 658669. (https://doi.org/10.1071/RD15182)

    • Search Google Scholar
    • Export Citation
  • Moore SG, Ericsson AC, Behura SK, Lamberson WR, Evans TJ, McCabe MS, Poock SE & Lucy MC 2019 Concurrent and long-term associations between the endometrial microbiota and endometrial transcriptome in postpartum dairy cows. BMC Genomics 20 405. (https://doi.org/10.1186/s12864-019-5797-8)

    • Search Google Scholar
    • Export Citation
  • Moraes JGN, Behura SK, Bishop JV, Hansen TR, Geary TW & Spencer TE 2020a Analysis of the uterine lumen in fertility-classified heifers: II. Proteins and metabolites. Biology of Reproduction 102 571587. (https://doi.org/10.1093/biolre/ioz197)

    • Search Google Scholar
    • Export Citation
  • Moraes JGN, Behura SK, Geary TW & Spencer TE 2020b Analysis of the uterine lumen in fertility-classified heifers: I. Glucose, prostaglandins, and lipids. Biology of Reproduction 102 456474. (https://doi.org/10.1093/biolre/ioz191)

    • Search Google Scholar
    • Export Citation
  • Mu YM, Yanase T, Nishi Y, Tanaka A, Saito M, Jin CH, Mukasa C, Okabe T, Nomura M & Goto K 2001 Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology 142 35903597. (https://doi.org/10.1210/endo.142.8.8293)

    • Search Google Scholar
    • Export Citation
  • Mullen MP, Elia G, Hilliard M, Parr MH, Diskin MG, Evans AC & Crowe MA 2012 Proteomic characterization of histotroph during the preimplantation phase of the estrous cycle in cattle. Journal of Proteome Research 11 30043018. (https://doi.org/10.1021/pr300144q)

    • Search Google Scholar
    • Export Citation
  • Muñoz M, Corrales FJ, Caamano JN, Diez C, Trigal B, Mora MI, Martin D, Carrocera S & Gomez E 2012 Proteome of the early embryo-maternal dialogue in the cattle uterus. Journal of Proteome Research 11 751766. (https://doi.org/10.1021/pr200969a)

    • Search Google Scholar
    • Export Citation
  • Nagana Gowda GA & Raftery D 2017 Recent advances in NMR-based metabolomics. Analytical Chemistry 89 490510. (https://doi.org/10.1021/acs.analchem.6b04420)

    • Search Google Scholar
    • Export Citation
  • Nakamura K, Kusama K, Ideta A, Imakawa K & Hori M 2020 IFNT-independent effects of intrauterine extracellular vesicles (EVs) in cattle. Reproduction 159 503511. (https://doi.org/10.1530/REP-19-0314)

    • Search Google Scholar
    • Export Citation
  • Needleman P, Turk J, Jakschik BA, Morrison AR & Lefkowith JB 1986 Arachidonic acid metabolism. Annual Review of Biochemistry 55 69102. (https://doi.org/10.1146/annurev.bi.55.070186.000441)

    • Search Google Scholar
    • Export Citation
  • O’Connor AM, Sargeant JM, Gardner IA, Dickson JS, Torrence ME & ID Consensus Meeting Participants: Dewey CE, Evans RB, Gray JT, Greiner M, Keefe G, Lefebvre SL, Morley PS, Ramirez A, Sischo W, Smith DR, Snedeker K, Sofos J, Ward MP, Wills R 2010 The REFLECT statement: methods and processes of creating reporting guidelines for randomized controlled trials for livestock and food safety. Journal of veterinary internal medicine 24 5764. (https://doi.org/10.1111/j.1863-2378.2009.01311.x)

    • Search Google Scholar
    • Export Citation
  • Oenema J, Koskamp GJ & Galama PJ 2001 Guiding commercial pilot farms to bridge the gap between experimental and commercial dairy farms; the project ‘Cows & Opportunities’. Netherlands Journal of Agricultural Science 49 277296. (https://doi.org/10.1016/S1573-5214(01)80011-7)

    • Search Google Scholar
    • Export Citation
  • Orsi NM, Gopichandran N, Leese HJ, Picton HM & Harris SE 2005 Fluctuations in bovine ovarian follicular fluid composition throughout the oestrous cycle. Reproduction 129 219228. (https://doi.org/10.1530/rep.1.00460)

    • Search Google Scholar
    • Export Citation
  • Oseikria M, Elis S, Maillard V, Corbin E & Uzbekova S 2016 N-3 polyunsaturated fatty acid DHA during IVM affected oocyte developmental competence in cattle. Theriogenology 85 1625.e21634.e2. (https://doi.org/10.1016/j.theriogenology.2016.01.019)

    • Search Google Scholar
    • Export Citation
  • Ospina PA, Nydam DV, Stokol T & Overton TR 2010 Associations of elevated nonesterified fatty acids and beta-hydroxybutyrate concentrations with early lactation reproductive performance and milk production in transition dairy cattle in the northeastern United States. Journal of Dairy Science 93 15961603. (https://doi.org/10.3168/jds.2009-2852)

    • Search Google Scholar
    • Export Citation
  • Ott TL 2019 Symposium review: Immunological detection of the bovine conceptus during early pregnancy. Journal of Dairy Science 102 37663777. (https://doi.org/10.3168/jds.2018-15668)

    • Search Google Scholar
    • Export Citation
  • Papp SM, Frohlich T, Radefeld K, Havlicek V, Kosters M, Yu H, Mayrhofer C, Brem G, Arnold GJ & Besenfelder U 2019 A novel approach to study the bovine oviductal fluid proteome using transvaginal endoscopy. Theriogenology 132 5361. (https://doi.org/10.1016/j.theriogenology.2019.04.009)

    • Search Google Scholar
    • Export Citation
  • Pascual-Marti MC, Salvador A, Chafer A & Berna A 2001 Supercritical fluid extraction of resveratrol from grape skin of Vitis vinifera and determination by HPLC. Talanta 54 735740. (https://doi.org/10.1016/s0039-9140(01)00319-8)

    • Search Google Scholar
    • Export Citation
  • Passaro C, Forde N, Spencer TE & Lonergan P 2016 73 proteomic analysis of uterine luminal fluid on day 7 of pregnancy in cattle. Reproduction, Fertility and Development 28 166166. (https://doi.org/10.1071/RDv28n2Ab73)

    • Search Google Scholar
    • Export Citation
  • Patti GJ, Yanes O & Siuzdak G 2012 Innovation: metabolomics: the apogee of the omics trilogy. Nature Reviews: Molecular Cell Biology 13 263269. (https://doi.org/10.1038/nrm3314)

    • Search Google Scholar
    • Export Citation
  • Philipsson J, Rege J, Zonabend König E & Okeyo Mwai A 2011 Sustainable Breeding Programmes for Tropical Low- and Medium Input Farming Systems. Nairobi, Kenya: Department of Animal Production, University of Nairobi.

    • Search Google Scholar
    • Export Citation
  • Pillai VV, Weber DM, Phinney BS & Selvaraj V 2017 Profiling of proteins secreted in the bovine oviduct reveals diverse functions of this luminal microenvironment. PLoS ONE 12 e0188105. (https://doi.org/10.1371/journal.pone.0188105)

    • Search Google Scholar
    • Export Citation
  • Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S, Schirra HJ & Wishart D 2019 Systems biology and multi-omics integration: viewpoints from the Metabolomics Research Community. Metabolites 9 76. (https://doi.org/10.3390/metabo9040076)

    • Search Google Scholar
    • Export Citation
  • Pontes JHF, Melo Sterza FA, Basso AC, Ferreira CR, Sanches BV, Rubin KCP & Seneda MM 2011 Ovum pick up, in vitro embryo production, and pregnancy rates from a large-scale commercial program using Nelore cattle (Bos indicus) donors. Theriogenology 75 16401646. (https://doi.org/10.1016/j.theriogenology.2010.12.026)

    • Search Google Scholar
    • Export Citation
  • Poyser NL 1995 The control of prostaglandin production by the endometrium in relation to luteolysis and menstruation. Prostaglandins, Leukotrienes, and Essential Fatty Acids 53 147195. (https://doi.org/10.1016/0952-3278(95)90115-9)

    • Search Google Scholar
    • Export Citation
  • Renaville B, Bacciu N, Comin A, Motta M, Poli I, Vanini G & Prandi A 2010 Plasma and follicular fluid fatty acid profiles in dairy cows. Reproduction in Domestic Animals 45 118121. (https://doi.org/10.1111/j.1439-0531.2008.01264.x)

    • Search Google Scholar
    • Export Citation
  • Ribeiro ES, Gomes G, Greco LF, Cerri RLA, Vieira-Neto A, Monteiro PLJ, Lima FS, Bisinotto RS, Thatcher WW & Santos JEP 2016a Carryover effect of postpartum inflammatory diseases on developmental biology and fertility in lactating dairy cows. Journal of Dairy Science 99 22012220. (https://doi.org/10.3168/jds.2015-10337)

    • Search Google Scholar
    • Export Citation
  • Ribeiro ES, Santos JE & Thatcher WW 2016b Role of lipids on elongation of the preimplantation conceptus in ruminants. Reproduction 152 R115R126. (https://doi.org/10.1530/REP-16-0104)

    • Search Google Scholar
    • Export Citation
  • Robinson RS, Fray MD, Wathes DC, Lamming GE & Mann GE 2006 In vivo expression of interferon tau mRNA by the embryonic trophoblast and uterine concentrations of interferon tau protein during early pregnancy in the cow. Molecular Reproduction and Development 73 470474. (https://doi.org/10.1002/mrd.20431)

    • Search Google Scholar
    • Export Citation
  • Rodrigues TA, Tuna KM, Alli AA, Tribulo P, Hansen PJ, Koh J & Paula-Lopes FF 2019 Follicular fluid exosomes act on the bovine oocyte to improve oocyte competence to support development and survival to heat shock. Reproduction, Fertility, and Development 31 888897. (https://doi.org/10.1071/RD18450)

    • Search Google Scholar
    • Export Citation
  • Salzano A, Albero G, Zullo G, Neglia G, Abdel-Wahab A, Bifulco G, Zicarelli L & Gasparrini B 2014 Effect of resveratrol supplementation during culture on the quality and cryotolerance of bovine in vitro produced embryos. Animal Reproduction Science 151 9196. (https://doi.org/10.1016/j.anireprosci.2014.09.018)

    • Search Google Scholar
    • Export Citation
  • Sartori R, Bastos MR & Wiltbank MC 2010 Factors affecting fertilisation and early embryo quality in single- and superovulated dairy cattle. Reproduction, Fertility, and Development 22 151158. (https://doi.org/10.1071/RD09221)

    • Search Google Scholar
    • Export Citation
  • Shirasuna K, Matsumoto H, Kobayashi E, Nitta A, Haneda S, Matsui M, Kawashima C, Kida K, Shimizu T & Miyamoto A 2012 Upregulation of interferon-stimulated genes and interleukin-10 in peripheral blood immune cells during early pregnancy in dairy cows. Journal of Reproduction and Development 58 8490. (https://doi.org/10.1262/jrd.11-094k)

    • Search Google Scholar
    • Export Citation
  • Siewe L, Bollati–Fogolin M, Wickenhauser C, Krieg T, Müller W & Roers A 2006 Interleukin‐10 derived from macrophages and/or neutrophils regulates the inflammatory response to LPS but not the response to CpG DNA. European Journal of Immunology 36 32483255. (https://doi.org/10.1002/eji.200636012)

    • Search Google Scholar
    • Export Citation
  • Simintiras CA, Sanchez JM, McDonald M & Lonergan P 2019a The influence of progesterone on bovine uterine fluid energy, nucleotide, vitamin, cofactor, peptide, and xenobiotic composition during the conceptus elongation-initiation window. Scientific Reports 9 7716. (https://doi.org/10.1038/s41598-019-44040-6)

    • Search Google Scholar
    • Export Citation
  • Simintiras CA, Sanchez JM, McDonald M & Lonergan P 2019b> Progesterone alters the bovine uterine fluid lipidome during the period of elongation. Reproduction 157 399411. (https://doi.org/10.1530/REP-18-0615)

    • Search Google Scholar
    • Export Citation
  • Simintiras CA, Sánchez JM, McDonald M, Martins T, Binelli M & Lonergan P 2019c Biochemical characterization of progesterone-induced alterations in bovine uterine fluid amino acid and carbohydrate composition during the conceptus elongation window. Biology of Reproduction 100 672685. (https://doi.org/10.1093/biolre/ioy234)

    • Search Google Scholar
    • Export Citation
  • Soto P, Natzke RP & Hansen PJ 2003 Identification of possible mediators of embryonic mortality caused by mastitis: actions of lipopolysaccharide, prostaglandin F2alpha, and the nitric oxide generator, sodium nitroprusside dihydrate, on oocyte maturation and embryonic development in cattle. American Journal of Reproductive Immunology 50 263272. (https://doi.org/10.1034/j.1600-0897.2003.00085.x)

    • Search Google Scholar
    • Export Citation
  • Spencer TE, Forde N, Dorniak P, Hansen TR, Romero JJ & Lonergan P 2013 Conceptus-derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants. Reproduction 146 377387. (https://doi.org/10.1530/REP-13-0165)

    • Search Google Scholar
    • Export Citation
  • Sponchiado M, Gomes NS, Fontes PK, Martins T, Del Collado M, Pastore AA, Pugliesi G, Nogueira MFG & Binelli M 2017 Pre-hatching embryo-dependent and -independent programming of endometrial function in cattle. PLoS ONE 12 e0175954. (https://doi.org/10.1371/journal.pone.0175954)

    • Search Google Scholar
    • Export Citation
  • Sponchiado M, Gonella-Diaza AM, Rocha CC, Turco EGL, Pugliesi G, Leroy JLMR & Binelli M 2019 The pre-hatching bovine embryo transforms the uterine luminal metabolite composition in vivo. Scientific Reports 9 8354. (https://doi.org/10.1038/s41598-019-44590-9)

    • Search Google Scholar
    • Export Citation
  • Stanstrup J, Broeckling CD, Helmus R, Hoffmann N, Mathe E, Naake T, Nicolotti L, Peters K, Rainer J & Salek RM 2019 The metaRbolomics Toolbox in Bioconductor and beyond. Metabolites 9 200. (https://doi.org/10.3390/metabo9100200)

    • Search Google Scholar
    • Export Citation
  • Sturmey RG, Bermejo-Alvarez P, Gutierrez-Adan A, Rizos D, Leese HJ & Lonergan P 2010 Amino acid metabolism of bovine blastocysts: a biomarker of sex and viability. Molecular Reproduction and Development 77 285296. (https://doi.org/10.1002/mrd.21145)

    • Search Google Scholar
    • Export Citation
  • Sun HZ, Wang DM, Wang B, Wang JK, Liu HY, Guan le L & Liu JX 2015 Metabolomics of four Biofluids from dairy cows: potential biomarkers for milk production and quality. Journal of Proteome Research 14 12871298. (https://doi.org/10.1021/pr501305g)

    • Search Google Scholar
    • Export Citation
  • Takeo S, Sato D, Kimura K, Monji Y, Kuwayama T, Kawahara-Miki R & Iwata H 2014 Resveratrol improves the mitochondrial function and fertilization outcome of bovine oocytes. Journal of Reproduction and Development 60 9299. (https://doi.org/10.1262/jrd.2013-102)

    • Search Google Scholar
    • Export Citation
  • Talbot NC, Powell AM, Caperna TJ & Garrett WM 2010 Proteomic analysis of the major cellular proteins of bovine trophectoderm cell lines derived from IVP, parthenogenetic and nuclear transfer embryos: reduced expression of annexins I and II in nuclear transfer-derived cell lines. Animal Reproduction Science 120 187202. (https://doi.org/10.1016/j.anireprosci.2010.03.009)

    • Search Google Scholar
    • Export Citation
  • The Gene Ontology Consortium 2019 The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Research 47 D330D338. (https://doi.org/10.1093/nar/gky1055)

    • Search Google Scholar
    • Export Citation
  • Tribulo P, Balzano-Nogueira L, Conesa A, Siqueira LG & Hansen PJ 2019 Changes in the uterine metabolome of the cow during the first 7 days after estrus. Molecular Reproduction and Development 86 7587. (https://doi.org/10.1002/mrd.23082)

    • Search Google Scholar
    • Export Citation
  • Ulbrich SE, Meyer SU, Zitta K, Hiendleder S, Sinowatz F, Bauersachs S, Buttner M, Frohlich T, Arnold GJ & Reichenbach HD 2011 Bovine endometrial metallopeptidases MMP14 and MMP2 and the metallopeptidase inhibitor TIMP2 participate in maternal preparation of pregnancy. Molecular and Cellular Endocrinology 332 4857. (https://doi.org/10.1016/j.mce.2010.09.009)

    • Search Google Scholar
    • Export Citation
  • Ulbrich SE, Groebner AE & Bauersachs S 2013 Transcriptional profiling to address molecular determinants of endometrial receptivity – lessons from studies in livestock species. Methods 59 108115. (https://doi.org/10.1016/j.ymeth.2012.10.013)

    • Search Google Scholar
    • Export Citation
  • Velazquez MA, Parrilla I, Van Soom A, Verberckmoes S, Kues W & Niemann H 2010 Sampling techniques for oviductal and uterine luminal fluid in cattle. Theriogenology 73 758767. (https://doi.org/10.1016/j.theriogenology.2009.07.004)

    • Search Google Scholar
    • Export Citation
  • Vilella F, Ramirez LB & Simon C 2013 Lipidomics as an emerging tool to predict endometrial receptivity. Fertility and Sterility 99 11001106. (https://doi.org/10.1016/j.fertnstert.2012.12.026)

    • Search Google Scholar
    • Export Citation
  • Wang X, Burghardt RC, Romero JJ, Hansen TR, Wu G & Bazer FW 2015 Functional roles of arginine during the peri-implantation period of pregnancy. III. Arginine stimulates proliferation and interferon tau production by ovine trophectoderm cells via nitric oxide and polyamine-TSC2-mTOR signaling pathways. Biology of Reproduction 92 75. (https://doi.org/10.1095/biolreprod.114.125989)

    • Search Google Scholar
    • Export Citation
  • Winder CB, Churchill KJ, Sargeant JM, LeBlanc SJ, O’Connor AM & Renaud DL 2019 Invited review: Completeness of reporting of experiments: REFLECTing on a year of animal trials in the Journal of Dairy Science. Journal of Dairy Science 102 47594771. (https://doi.org/10.3168/jds.2018-15797)

    • Search Google Scholar
    • Export Citation
  • Wise T 1987 Biochemical analysis of bovine follicular fluid: albumin, total protein, lysosomal enzymes, ions, steroids and ascorbic acid content in relation to follicular size, rank, atresia classification and day of estrous cycle. Journal of Animal Science 64 11531169. (https://doi.org/10.2527/jas1987.6441153x)

    • Search Google Scholar
    • Export Citation
  • Zachut M, Sood P, Livshitz L, Kra G, Levin Y & Moallem U 2016 Proteome dataset of pre-ovulatory follicular fluids from less fertile dairy cows. Data in Brief 7 15151518. (https://doi.org/10.1016/j.dib.2016.04.051)

    • Search Google Scholar
    • Export Citation
  • Zhang SD, Dong SW, Wang DS, Oguejiofor CF, Fouladi-Nashta AA, Yang ZQ & Yan ZT 2017 Differential proteomic profiling of endometrium and plasma indicate the importance of hydrolysis in bovine endometritis. Journal of Dairy Science 100 93249337. (https://doi.org/10.3168/jds.2016-12365)

    • Search Google Scholar
    • Export Citation