Metformin attenuates steroidogenesis in ovarian follicles of the broiler breeder hen

in Reproduction
View More View Less
  • 1 Center for Reproductive Biology and Health, Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, USA

Correspondence should be addressed to R Ramachandran; Email: RameshR@psu.edu
Restricted access

The follicular hierarchy in broiler breeder chicken ovary is often deranged due to excessive ovarian follicular recruitment, resulting in a condition that resembles polycystic ovary syndrome (PCOS) in women. Metformin is widely prescribed to correct PCOS and has been shown to affect granulosa cell functions in humans and rodent models. The objectives of this study are to determine the effects of metformin on signal transduction pathways, gene expression related to steroidogenesis, and progesterone secretion from granulosa cells isolated from the most recently recruited preovulatory and prehierarchical follicles of broiler breeder chickens. Granulosa cells were treated with 0, 1, 10, or 20 mM of metformin in the presence of FSH. The abundance of pAMPK, pACC, pERK, and pAkt was determined by Western blotting. The expression of genes related to progesterone biosynthesis was quantified by qPCR. Progesterone concentrations in culture media were quantified by ELISA. Metformin treatment did not have an effect on the abundance of pAMPK and pACC in prehierarchical follicles but significantly decreased the abundance of pERK and pAkt in a dose-dependent manner in preovulatory and prehierarchical follicles. The expression of genes related to steroidogenesis such as FSHR, STAR, CYP11A1, HSD3B, and progesterone secretion was significantly decreased in response to metformin treatment in a dose-dependent manner. Our data suggest that metformin treatment attenuates progesterone secretion via AMPK-independent pathways in granulosa cells of prehierarchical and preovulatory follicles of broiler breeder hens. Further studies are required to determine if metformin administration could ameliorate ovarian dysfunction in obese broiler breeder hens.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 119 119 99
Full Text Views 14 14 12
PDF Downloads 10 10 9
  • Ashwell CM & McMurtry JP 2003 Hypoglycemia and reduced feed intake in broiler chickens treated with metformin. Poultry Science 82 106110. (https://doi.org/10.1093/ps/82.1.106)

    • Search Google Scholar
    • Export Citation
  • Beauclair L, Ramé C, Arensburger P, Piégu B, Guillou F, Dupont J & Bigot Y 2019 Sequence properties of certain GC rich avian genes, their origins and absence from genome assemblies: case studies. BMC Genomics 20 734. (https://doi.org/10.1186/s12864-019-6131-1)

    • Search Google Scholar
    • Export Citation
  • Bertoldo MJ, Faure M, Dupont J & Ent P 2014 Impact of metformin on reproductive tissues: an overview from gametogenesis to gestation. Annals of Translational Medicine 2 55. (https://doi.org/10.3978/j.issn.2305-5839.2014.06.04)

    • Search Google Scholar
    • Export Citation
  • Buscà R, Christen R, Lovern M, Clifford AM, Yue JX, Goss GG, Pouysségur J & Lenormand P 2015 ERK1 and ERK2 present functional redundancy in tetrapods despite higher evolution rate of ERK1. BMC Evolutionary Biology 15 179. (https://doi.org/10.1186/s12862-015-0450-x)

    • Search Google Scholar
    • Export Citation
  • Cassy S, Metayer S, Crochet S, Rideau N, Collin A & Tesseraud S 2004 Leptin receptor in the chicken ovary: potential involvement in ovarian dysfunction of ad libitum-fed broiler breeder hens. Reproductive Biology and Endocrinology 2 72. (https://doi.org/10.1186/1477-7827-2-72)

    • Search Google Scholar
    • Export Citation
  • Cen J, Sargsyan E, Forslund A & Bergsten P 2018 Mechanisms of beneficial effects of metformin on fatty acid-treated human islets. Journal of Molecular Endocrinology 61 9199. (https://doi.org/10.1530/JME-17-0304)

    • Search Google Scholar
    • Export Citation
  • Chen SE, McMurtry JP & Walzem RL 2006 Overfeeding-induced ovarian dysfunction in broiler breeder hens is associated with lipotoxicity. Poultry Science 85 7081. (https://doi.org/10.1093/ps/85.1.70)

    • Search Google Scholar
    • Export Citation
  • Chen YJ, Hsiao PW, Lee MT, Mason JI, Ke FC & Hwang JJ 2007 Interplay of PI3K and cAMP/PKA signaling, and rapamycin-hypersensitivity in TGF 1 enhancement of FSH-stimulated steroidogenesis in rat ovarian granulosa cells. Journal of Endocrinology 192 405419. (https://doi.org/10.1677/JOE-06-0076)

    • Search Google Scholar
    • Export Citation
  • Chen WL, Wei HW, Chiu WZ, Kang CH, Lin TH, Hung CC, Chen MC, Shieh MS, Lee CC & Lee HM 2011 Metformin regulates hepatic lipid metabolism through activating AMP-activated protein kinase and inducing ATGL in laying hens. European Journal of Pharmacology 671 107112. (https://doi.org/10.1016/j.ejphar.2011.09.029)

    • Search Google Scholar
    • Export Citation
  • Ehrmann DA, Cavaghan MK, Imperial J, Sturis J, Rosenfield RL & Polonsky KS 1997 Effects of metformin on insulin secretion, insulin action, and ovarian steroidogenesis in women with polycystic ovary syndrome 1. Journal of Clinical Endocrinology and Metabolism 82 524530. (https://doi.org/10.1210/jcem.82.2.3722)

    • Search Google Scholar
    • Export Citation
  • Faure M, Guibert E, Alves S, Pain B, Ramé C, Dupont J, Brillard JP & ent P 2016 The insulin sensitiser metformin regulates chicken Sertoli and germ cell populations. Reproduction 151 527538. (https://doi.org/10.1530/REP-15-0565)

    • Search Google Scholar
    • Export Citation
  • Foretz M, Hébrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, Sakamoto K, Andreelli F & Viollet B 2010 Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. Journal of Clinical Investigation 120 23552369. (https://doi.org/10.1172/JCI40671)

    • Search Google Scholar
    • Export Citation
  • Fukuda S, Orisaka M, Tajima K, Hattori K & Kotsuji F 2009 Luteinizing hormone-induced Akt phosphorylation and androgen production are modulated by MAP kinase in bovine theca cells. Journal of Ovarian Research 2 17. (https://doi.org/10.1186/1757-2215-2-17)

    • Search Google Scholar
    • Export Citation
  • Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, O’Neill HM, Ford RJ, Palanivel R & O’Brien M 2013 Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nature Medicine 19 16491654. (https://doi.org/10.1038/nm.3372)

    • Search Google Scholar
    • Export Citation
  • Ghanem K & Johnson AL 2019 Response of hen pre-recruitment ovarian follicles to follicle stimulating hormone, in vivo. General and Comparative Endocrinology 270 4147. (https://doi.org/10.1016/j.ygcen.2018.10.004)

    • Search Google Scholar
    • Export Citation
  • Hendricks GL III, Hadley JA, Krzysik-Walker SM, Prabhu KS, Vasilatos-Younken R & Ramachandran R 2009 Unique profile of chicken adiponectin, a predominantly heavy molecular weight multimer, and relationship to visceral adiposity. Endocrinology 150 30923100. (https://doi.org/10.1210/en.2008-1558)

    • Search Google Scholar
    • Export Citation
  • Hughes CHK, Bosviel R, Newman JW & Pate JL 2019 Luteal lipids regulate progesterone production and may modulate immune cell function during the estrous cycle and pregnancy. Frontiers in Endocrinology 10 662. (https://doi.org/10.3389/fendo.2019.00662)

    • Search Google Scholar
    • Export Citation
  • Johnson AL 2015 Ovarian follicle selection and granulosa cell differentiation. Poultry Science 94 781785. (https://doi.org/10.3382/ps/peu008)

    • Search Google Scholar
    • Export Citation
  • Johnson AL & Lee J 2016 Granulosa cell responsiveness to follicle stimulating hormone during early growth of hen ovarian follicles. Poultry Science 95 108114. (https://doi.org/10.3382/ps/pev318)

    • Search Google Scholar
    • Export Citation
  • Johnson AL, Bridgham JT & Swenson JA 2001 Activation of the Akt/protein kinase B signaling pathway is associated with granulosa cell survival. Biology of Reproduction 64 15661574. (https://doi.org/10.1095/biolreprod64.5.1566)

    • Search Google Scholar
    • Export Citation
  • Kai Y, Kawano Y, Yamamoto H & Narahara H 2015 A possible role for AMP-activated protein kinase activated by metformin and AICAR in human granulosa cells. Reproductive Biology and Endocrinology 13 27. (https://doi.org/10.1186/s12958-015-0023-2)

    • Search Google Scholar
    • Export Citation
  • Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B, Kemp BE, Bardeesy N, Dennis P & Schlager JJ 2010 Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metabolism 11 390401. (https://doi.org/10.1016/j.cmet.2010.03.014)

    • Search Google Scholar
    • Export Citation
  • Kim D & Johnson AL 2018 Differentiation of the granulosa layer from hen prehierarchal follicles associated with follicle-stimulating hormone receptor signaling. Molecular Reproduction and Development 85 729737. (https://doi.org/10.1002/mrd.23042)

    • Search Google Scholar
    • Export Citation
  • Kim JH, Lee KJ, Seo Y, Kwon JH, Yoon JP, Kang JY, Lee HJ, Park SJ, Hong SP & Cheon JH 2018 Effects of metformin on colorectal cancer stem cells depend on alterations in glutamine metabolism. Scientific Reports 8 409. (https://doi.org/10.1038/s41598-017-18762-4)

    • Search Google Scholar
    • Export Citation
  • Krzysik-Walker SM, Ocón-Grove OM, Maddineni SB, Hendricks GL & Ramachandran R 2007 Identification of calcitonin expression in the chicken ovary: influence of follicular maturation and ovarian steroids. Biology of Reproduction 77 626635. (https://doi.org/10.1095/biolreprod.106.054957)

    • Search Google Scholar
    • Export Citation
  • Lefloch R, Pouysségur J & Lenormand P 2008 Single and combined silencing of ERK1 and ERK2 reveals their positive contribution to growth signaling depending on their expression levels. Molecular and Cellular Biology 28 511527. (https://doi.org/10.1128/MCB.00800-07)

    • Search Google Scholar
    • Export Citation
  • Livak KJ & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25 402408. (https://doi.org/10.1006/meth.2001.1262)

    • Search Google Scholar
    • Export Citation
  • Maddineni S, Metzger S, Ocón O, Hendricks G & Ramachandran R 2005 Adiponectin gene is expressed in multiple tissues in the chicken: food deprivation influences adiponectin messenger ribonucleic acid expression. Endocrinology 146 42504256. (https://doi.org/10.1210/en.2005-0254)

    • Search Google Scholar
    • Export Citation
  • Maddineni SR, Ocón-Grove OM, Krzysik-Walker SM, Hendricks GL & Ramachandran R 2008 Gonadotropin-inhibitory hormone (GnIH) receptor gene is expressed in the chicken ovary: potential role of GnIH in follicular maturation. Reproduction 135 267274. (https://doi.org/10.1530/REP-07-0369)

    • Search Google Scholar
    • Export Citation
  • Mansfield R, Galea R, Brincat M, Hole D & Mason H 2003 Metformin has direct effects on human ovarian steroidogenesis. Fertility and Sterility 79 956962. (https://doi.org/10.1016/s0015-0282(02)04925-7)

    • Search Google Scholar
    • Export Citation
  • Miller RA, Chu Q, Xie J, Foretz M, Viollet B & Birnbaum MJ 2013 Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494 256260. (https://doi.org/10.1038/nature11808)

    • Search Google Scholar
    • Export Citation
  • Morin-Papunen LC, Koivunen RM, Ruokonen A & Martikainen HK 1998 Metformin therapy improves the menstrual pattern with minimal endocrine and metabolic effects in women with polycystic ovary syndrome. Fertility and Sterility 69 691696. (https://doi.org/10.1016/s0015-0282(98)00011-9)

    • Search Google Scholar
    • Export Citation
  • Owen MR, Doran E & Halestrap AP 2000 Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochemical Journal 348 607614. (https://doi.org/10.1042/bj3480607)

    • Search Google Scholar
    • Export Citation
  • Pan YE, Liu ZC, Chang CJ, Xie YL, Chen CY, Chen CF, Walzem RL & Chen SE 2012 Ceramide accumulation and up-regulation of proinflammatory interleukin-1beta exemplify lipotoxicity to mediate declines of reproductive efficacy of broiler hens. Domestic Animal Endocrinology 42 183194. (https://doi.org/10.1016/j.domaniend.2011.12.001)

    • Search Google Scholar
    • Export Citation
  • Pasquali R & Casimirri F 1993 The impact of obesity on hyperandrogenism and polycystic ovary syndrome in premenopausal women. Clinical Endocrinology 39 116. (https://doi.org/10.1111/j.1365-2265.1993.tb01744.x)

    • Search Google Scholar
    • Export Citation
  • Pasquali R, Pelusi C, Genghini S, Cacciari M & Gambineri A 2003 Obesity and reproductive disorders in women. Human Reproduction Update 9 359372. (https://doi.org/10.1093/humupd/dmg024)

    • Search Google Scholar
    • Export Citation
  • Perriello G, Misericordia P, Volpi E, Santucci A, Santucci C, Ferrannini E, Ventura MM, Santeusanio F, Brunetti P & Bolli GB 1994 Acute antihyperglycemic mechanisms of metformin in NIDDM: evidence for suppression of lipid oxidation and hepatic glucose production. Diabetes 43 920928.

    • Search Google Scholar
    • Export Citation
  • Petroff MG, Mark Coggeshall KM, Jones LS & Pate JL 1997 Bovine luteal cells elicit major histocompatibility complex class II-dependent T-cell proliferation. Biology of Reproduction 57 887893. (https://doi.org/10.1095/biolreprod57.4.887)

    • Search Google Scholar
    • Export Citation
  • Prager R, Schernthaner G & Graf H 1986 Effect of metformin on peripheral insulin sensitivity in non insulin dependent diabetes mellitus. Diabete and Metabolisme 12 346350. (available at: http://www.ncbi.nlm.nih.gov/pubmed/3817257)

    • Search Google Scholar
    • Export Citation
  • Ramachandran R, Ocón-Grove OM & Metzger SL 2007 Molecular cloning and tissue expression of chicken AdipoR1 and AdipoR2 complementary deoxyribonucleic acids. Domestic Animal Endocrinology 33 1931. (https://doi.org/10.1016/j.domaniend.2006.04.004)

    • Search Google Scholar
    • Export Citation
  • Rice S, Pellatt L, Ramanathan K, Whitehead SA & Mason HD 2009 Metformin inhibits aromatase via an extracellular signal-regulated kinase-mediated pathway. Endocrinology 150 47944801. (https://doi.org/10.1210/en.2009-0540)

    • Search Google Scholar
    • Export Citation
  • Sato T, Toyoshima A, Hiraki T, Ohta Y, Katayama K, Arai T & Tazaki H 2011 Effects of metformin on plasma concentrations of glucose and mannose, G6Pase and PEPCK activity, and mRNA expression in the liver and kidney of chickens. British Poultry Science 52 273277. (https://doi.org/10.1080/00071668.2011.560595)

    • Search Google Scholar
    • Export Citation
  • Tajima K, Dantes A, Yao Z, Sorokina K, Kotsuji F, Seger R & Amsterdam A 2003 Down-regulation of steroidogenic response to gonadotropins in human and rat preovulatory granulosa cells involves mitogen-activated protein kinase activation and modulation of DAX-1 and steroidogenic factor-1. Journal of Clinical Endocrinology and Metabolism 88 22882299. (https://doi.org/10.1210/jc.2002-020913)

    • Search Google Scholar
    • Export Citation
  • Tajima K, Yoshii K, Fukuda S, Orisaka M, Miyamoto K, Amsterdam A & Kotsuji F 2005 Luteinizing hormone-induced extracellular-signal regulated kinase activation differently modulates progesterone and androstenedione production in bovine theca cells. Endocrinology 146 29032910. (https://doi.org/10.1210/en.2005-0093)

    • Search Google Scholar
    • Export Citation
  • Tang T, Glanville J, Orsi N, Barth JH & Balen AH 2006 The use of metformin for women with PCOS undergoing IVF treatment. Human Reproduction 21 14161425. (https://doi.org/10.1093/humrep/del025)

    • Search Google Scholar
    • Export Citation
  • Tilly JL & Johnson AL 1987 Presence and hormonal control of plasminogen activator in granulosa cells of the domestic hen. Biology of Reproduction 37 11561164. (https://doi.org/10.1095/biolreprod37.5.1156)

    • Search Google Scholar
    • Export Citation
  • Tilly JL, Kowalski KI & Johnson AL 1991 Stage of Ovarian Follicular Development Associated with the Initiation of Steroidogenic Competence in Avian Granulosa Cells1. Biology of Reproduction 44 305314. (https://doi.org/10.1095/biolreprod44.2.305)

    • Search Google Scholar
    • Export Citation
  • Tosca L, Froment P, Solnais P, Ferré P, Foufelle F & Dupont J 2005 Adenosine 5′-monophosphate-activated protein kinase regulates progesterone secretion in rat granulosa cells. Endocrinology 146 45004513. (https://doi.org/10.1210/en.2005-0301)

    • Search Google Scholar
    • Export Citation
  • Tosca L, Crochet S, Ferre P, Foufelle F, Tesseraud S & Dupont J 2006 AMP-activated protein kinase activation modulates progesterone secretion in granulosa cells from hen preovulatory follicles. Journal of Endocrinology 190 8597. (https://doi.org/10.1677/joe.1.06828)

    • Search Google Scholar
    • Export Citation
  • Tosca L, Chabrolle C, Uzbekova S & Dupont J 2007 Effects of metformin on bovine granulosa cells steroidogenesis: possible involvement of adenosine 5′ monophosphate-activated protein kinase (AMPK). Biology of Reproduction 76 368378. (https://doi.org/10.1095/biolreprod.106.055749)

    • Search Google Scholar
    • Export Citation
  • Tosca L, Ramé C, Chabrolle C, Tesseraud S & Dupont J 2010 Metformin decreases IGF1-induced cell proliferation and protein synthesis through AMP-activated protein kinase in cultured bovine granulosa cells. Reproduction 139 409418. (https://doi.org/10.1530/REP-09-0351)

    • Search Google Scholar
    • Export Citation
  • Tosca L, Solnais P, Ferré P, Foufelle F, Dupont J & Ferre P 2006b Metformin-induced stimulation of adenosine 5′ monophosphate-activated protein kinase (PRKA) impairs progesterone secretion in rat granulosa cells. Biology of Reproduction 75 342351. (https://doi.org/10.1095/biolreprod.106.050831)

    • Search Google Scholar
    • Export Citation
  • van Santbrink EJP, Hohmann FP, Eijkemans MJC, Laven JSE & Fauser BCJM 2005 Does metformin modify ovarian responsiveness during exogenous FSH ovulation induction in normogonadotrophic anovulation? A placebo-controlled double-blind assessment. European Journal of Endocrinology 152 611617. (https://doi.org/10.1530/eje.1.01866)

    • Search Google Scholar
    • Export Citation
  • Vandermolen DT, Ratts VS, Evans WS, Stovall DW, Kauma SW & Nestler JE 2001 Metformin increases the ovulatory rate and pregnancy rate from clomiphene citrate in patients with polycystic ovary syndrome who are resistant to clomiphene citrate alone. Fertility and Sterility 75 310315. (https://doi.org/10.1016/s0015-0282(00)01675-7)

    • Search Google Scholar
    • Export Citation
  • Velazquez E, Acosta A & Mendoza SG 1997 Menstrual cyclicity after metformin therapy in polycystic ovary syndrome. Obstetrics and Gynecology 90 392395. (https://doi.org/10.1016/s0029-7844(97)00296-2)

    • Search Google Scholar
    • Export Citation
  • Vrbikova J, Hill M, Starka L, Cibula D, Bendlova B, Vondra K, Sulcova J & Snajderova M 2001 The effects of long-term metformin treatment on adrenal and ovarian steroidogenesis in women with polycystic ovary syndrome. European Journal of Endocrinology 144 619628. (https://doi.org/10.1530/eje.0.1440619)

    • Search Google Scholar
    • Export Citation
  • Walzem RL & Chen SE 2014 Obesity-induced dysfunctions in female reproduction: lessons from birds and mammals. Advances in Nutrition 5 199206. (https://doi.org/10.3945/an.113.004747)

    • Search Google Scholar
    • Export Citation
  • Westfall SD, Hendry IR, Obholz KL, Rueda BR & Davis JS 2000 Putative role of the phosphatidylinositol 3-kinase-Akt signaling pathway in the survival of granulosa cells Endocrine 12 315321. (https://doi.org/10.1385/ENDO:12:3:315)

    • Search Google Scholar
    • Export Citation
  • Woods DC & Johnson AL 2005 Regulation of follicle-stimulating hormone-receptor messenger RNA in hen granulosa cells relative to follicle selection. Biology of Reproduction 72 643650. (https://doi.org/10.1095/biolreprod.104.033902)

    • Search Google Scholar
    • Export Citation
  • Wu X, Yeerna H, Goto Y, Ando T, Wu VH, Zhang X, Wang Z, Amornphimoltham P, Murphy AN & Tamayo P 2019 Metformin inhibits progression of head and neck squamous cell carcinoma by acting directly on carcinoma-initiating cells. Cancer Research 79 43604370. (https://doi.org/10.1158/0008-5472.CAN-18-3525)

    • Search Google Scholar
    • Export Citation
  • Yu MW, Robinson FE, Charles RG & Weingardt R 1992a Effect of feed allowance during rearing and breeding on female broiler breeders. 2. Ovarian morphology and production. Poultry Science 71 17501761. (https://doi.org/10.3382/ps.0711750)

    • Search Google Scholar
    • Export Citation
  • Yu MW, Robinson FE & Etches RJ 1992Wb Effect of feed allowance during rearing and breeding on female broiler breeders. 3. Ovarian steroidogenesis. Poultry Science 71 17621767. (https://doi.org/10.3382/ps.0711762)

    • Search Google Scholar
    • Export Citation
  • Zhou P, Baumgarten SC, Wu Y, Bennett J, Winston N, Hirshfeld-Cytron J & Stocco C 2013 IGF-I signaling is essential for FSH stimulation of AKT and steroidogenic genes in granulosa cells. Molecular Endocrinology 27 511523. (https://doi.org/10.1210/me.2012-1307)

    • Search Google Scholar
    • Export Citation
  • Zhou X, Kuang Y, Liang S & Wang L 2019 Metformin inhibits cell proliferation in SKM-1 cells via AMPK-mediated cell cycle arrest. Journal of Pharmacological Sciences 141 146152. (https://doi.org/10.1016/j.jphs.2019.10.003)

    • Search Google Scholar
    • Export Citation