Effect of aflatoxin B1 on bovine spermatozoa’s proteome and embryo’s transcriptome

in Reproduction
Authors:
Alisa Komsky-Elbaz The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
Animal Sperm Research Center, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel

Search for other papers by Alisa Komsky-Elbaz in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9610-3674
,
Dorit Kalo The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
Animal Sperm Research Center, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel

Search for other papers by Dorit Kalo in
Current site
Google Scholar
PubMed
Close
, and
Zvi Roth The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
Animal Sperm Research Center, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel

Search for other papers by Zvi Roth in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to Z Roth; Email: z.roth@mail.huji.ac.il
Restricted access
Rent on DeepDyve

Sign up for journal news

This study aims to evaluate the deleterious effect of the mycotoxin aflatoxin B1 (AFB1) on bull spermatozoa and the carryver effect on the developing embryo. Proteomic analysis of AFB1-treated spermatozoa revealed differential expression of proteins associated with biological processes and cellular pathways that involved in spermatozoon function, fertilization competence and embryonic development. Therefore, we assume that factors delivered by the spermatozoa, regardless of DNA fragmentation, are also involved. To confirm this hypothesis, we have used the annexin V (AV) kit to separate the spermatozoa into apoptotic (AV+) and non-apoptotic (AV−) subpopulations which were found to correlate with high- and low DNA fragmentation, respectively. Fertilization with AV+ AFB1-treated spermatozoa, resulted in no blastocyst formation, whereas fertilization with AV− spermatozoa resulted in reduced cleavage rate and formation of genetically altered blastocysts (POU5F1 and SOX2). Microarray analysis of blastocysts derived from 10 µM AFB1-treated spermatozoa revealed differential expression of 345 genes that involved in cellular pathways such as embryo and placenta development, cell cycle, DNA repair and histone modification, and in signaling pathways, especially calcium signaling pathway. This is the first report on deleterious carrying over effects of AFB1 from the bovine spermatozoa to the formed embryo. Our findings suggest that aside from the damage caused by AFB1 to spermatozoa’s DNA integrity, additional damage mechanisms are involved.

 

  • Collapse
  • Expand
  • Adedara IA, Nanjappa MK, Farombi EO & Akingbemi BT 2014 Aflatoxin b1 disrupts the androgen biosynthetic pathway in rat Leydig cells. Food and Chemical Toxicology 65 252259. (https://doi.org/10.1016/j.fct.2013.12.027)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ataman MB, Dönmez HH, Dönmez N, Sur E, Bucak MN & Çoyan K 2014 Protective effect of esterified glucomannan on aflatoxin-induced changes in testicular function, sperm quality, and seminal plasma biochemistry in rams. Theriogenology 81 373380. (https://doi.org/10.1016/j.theriogenology.2013.10.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Austin KJ, Cockrum RR, Jons AM, Alexander BM & Cammack KM 2012 Renin mRNA is upregulated in testes and testicular cells in response to treatment with aflatoxin b1. Theriogenology 77 331.e1337.e1. (https://doi.org/10.1016/j.theriogenology.2011.08.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N & Lovell-Badge R 2003 Multipotent cell lineages in early mouse development depend on SOX2 function. Genes and Development 17 126140. (https://doi.org/10.1101/gad.224503)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brener E, Rubinstein S, Cohen G, Shternall K, Rivlin J & Breitbart H 2003 Remodeling of the actin cytoskeleton during mammalian sperm capacitation and acrosome reaction. Biology of Reproduction 68 837845. (https://doi.org/10.1095/biolreprod.102.009233)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Castillo J, Estanyol JM, Ballescá JL & Oliva R 2015 Human sperm chromatin epigenetic potential: genomics, proteomics, and male infertility. Asian Journal of Andrology 17 601609. (https://doi.org/10.4103/1008-682X.153302)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Castillo J, Jodar M & Oliva R 2018 The contribution of human sperm proteins to the development and epigenome of the preimplantation embryo. Human Reproduction Update 24 535555. (https://doi.org/10.1093/humupd/dmy017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cox J & Mann M 2008 MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology 26 13671372. (https://doi.org/10.1038/nbt.1511)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cox J, Hein MY, Luber CA, Paron I, Nagaraj N & Mann M 2014 Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Molecular and Cellular Proteomics 13 25132526. (https://doi.org/10.1074/mcp.M113.031591)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dai Y, Huang K, Zhang B, Zhu L & Xu W 2017 Aflatoxin b1-induced epigenetic alterations: an overview. Food and Chemical Toxicology 109 683689. (https://doi.org/10.1016/j.fct.2017.06.034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT & Gore AC 2009 Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocrine Reviews 30 293342. (https://doi.org/10.1210/er.2009-0002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Drevet JR 2006 The antioxidant glutathione peroxidase family and spermatozoa: a complex story. Molecular and Cellular Endocrinology 250 7079. (https://doi.org/10.1016/j.mce.2005.12.027)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dubey R, Malhotra SS & Gupta SK 2018 Forskolin-mediated BeWo cell fusion involves down-regulation of miR-92a-1-5p that targets dysferlin and protein kinase cAMP-activated catalytic subunit alpha. American Journal of Reproductive Immunology 79 e12834. (https://doi.org/10.1111/aji.12834)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Egozcue S, Vendrell JM, Garcia F, Veiga A, Aran B, Barri PN & Egozcue J 2000 Increased incidence of meiotic anomalies in oligoasthenozoospermic males preselected for intracytoplasmic sperm injection. Journal of Assisted Reproduction and Genetics 17 307309. (https://doi.org/10.1023/a:1009444709504)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Evenson D & Jost L 2000 Sperm chromatin structure assay is useful for fertility assessment. Methods in Cell Science 22 169189. (https://doi.org/10.1023/a:1009844109023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feng W-H, Xue K, Tang L, Williams P & Wang J-S 2016 Aflatoxin b1-induced developmental and DNA damage in Caenorhabditis elegans. Toxins 9 9. (https://doi.org/10.3390/toxins9010009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gallicano GI 2001 Composition, regulation, and function of the cytoskeleton in mammalian eggs and embryos. Frontiers in Bioscience 6 D1089D1108. (https://doi.org/10.2741/gallican)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gong YY, Watson S & Routledge MN 2016 Aflatoxin exposure and associated human health effects, a review of epidemiological studies. Food Safety 4 1427. (https://doi.org/10.14252/foodsafetyfscj.2015026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang W, Cao Z, Zhang J, Ji Q & Li Y 2019 Aflatoxin b1 promotes autophagy associated with oxidative stress-related PI3K/AKT/mTOR signaling pathway in mice testis. Environmental Pollution 255 113317. (https://doi.org/10.1016/j.envpol.2019.113317)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ibeh IN, Uraih N & Ogonar JI 1994 Dietary exposure to aflatoxin in human male infertility in Benin City, Nigeria. International Journal of Fertility and Menopausal Studies 39 208214.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ibeh IN, Saxena DK & Uraih N 2000 Toxicity of aflatoxin: effects on spermatozoa, oocytes, and in vitro fertilization. Journal of Environmental Pathology, Toxicology and Oncology 19 357361.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jenkins TG & Carrell DT 2012 The sperm epigenome and potential implications for the developing embryo. Reproduction 143 727734. (https://doi.org/10.1530/REP-11-0450)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jiang Y, Hansen PJ, Xiao Y, Amaral TF, Vyas D & Adesogan AT 2019 Aflatoxin compromises development of the preimplantation bovine embryo through mechanisms independent of reactive oxygen production. Journal of Dairy Science 102 1050610513. (https://doi.org/10.3168/jds.2019-16839)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kalo D & Roth Z 2017 Low level of mono(2-ethylhexyl) phthalate reduces oocyte developmental competence in association with impaired gene expression. Toxicology 377 3848. (https://doi.org/10.1016/j.tox.2016.12.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kemboi DC, Antonissen G, Ochieng PE, Croubels S, Okoth S, Kangethe EK, Faas J, Lindahl JF & Gathumbi JK 2020 A review of the impact of mycotoxins on dairy cattle health: challenges for food safety and dairy production in sub-Saharan Africa. Toxins 12 222. (https://doi.org/10.3390/toxins12040222)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kichine E, Di Falco M, Hales BF, Robaire B & Chan P 2013 Analysis of the sperm head protein profiles in fertile men: consistency across time in the levels of expression of heat shock proteins and peroxiredoxins. PLoS ONE 8 e77471. (https://doi.org/10.1371/journal.pone.0077471)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Klingelhöfer D, Zhu Y, Braun M, Bendels MHK, Brüggmann D & Groneberg DA 2018 Aflatoxin – publication analysis of a global health threat. Food Control 89 280290. (https://doi.org/10.1016/j.foodcont.2018.02.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Komsky-Elbaz A, Saktsier M & Roth Z 2018 Aflatoxin b1 impairs sperm quality and fertilization competence. Toxicology 393 4250. (https://doi.org/10.1016/j.tox.2017.11.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kumar M, Kumar K, Jain S, Hassan T & Dada R 2013 Novel insights into the genetic and epigenetic paternal contribution to the human embryo. Clinics 68 (Supplement 1) 514. (https://doi.org/10.6061/clinics/2013(sup01)02)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu J, Wang QC, Han J, Xiong B & Sun SC 2015 Aflatoxin b1 is toxic to porcine oocyte maturation. Mutagenesis 30 527535. (https://doi.org/10.1093/mutage/gev015)

  • Lu Y, Lin M & Aitken RJ 2017 Exposure of spermatozoa to dibutyl phthalate induces abnormal embryonic development in a marine invertebrate Galeolaria caespitosa (Polychaeta: Serpulidae). Aquatic Toxicology 191 189200. (https://doi.org/10.1016/j.aquatox.2017.08.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ly L, Chan D, Aarabi M, Landry M, Behan NA, MacFarlane AJ & Trasler J 2017 Intergenerational impact of paternal lifetime exposures to both folic acid deficiency and supplementation on reproductive outcomes and imprinted gene methylation. Molecular Human Reproduction 23 461477. (https://doi.org/10.1093/molehr/gax029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Macé K, Aguilar F, Wang JS, Vautravers P, Gómez-Lechón M, Gonzalez FJ, Groopman J, Harris CC & Pfeifer AM 1997 Aflatoxin b1-induced DNA adduct formation and p53 mutations in CYP450-expressing human liver cell lines. Carcinogenesis 18 12911297. (https://doi.org/10.1093/carcin/18.7.1291)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mcgeehan RE, Romar R, Matás C & Gutiérrez-Adán A 2009 Effects of oviductal fluid on the development, quality, and gene expression of porcine blastocysts produced in vitro. Reproduction137 679–687. (https://doi.org/10.1530/REP-08-0405)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McReynolds S, Dzieciatkowska M, Stevens J, Hansen KC, Schoolcraft WB & Katz-Jaffe MG 2014 Toward the identification of a subset of unexplained infertility: a sperm proteomic approach. Fertility and Sterility 102 692699. (https://doi.org/10.1016/j.fertnstert.2014.05.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meissonnier GM, Pinton P, Laffitte J, Cossalter AM, Gong YY, Wild CP, Bertin G, Galtier P & Oswald IP 2008 Immunotoxicity of aflatoxin b1: impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression. Toxicology and Applied Pharmacology 231 142149. (https://doi.org/10.1016/j.taap.2008.04.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miao YL & Williams CJ 2012 Calcium signaling in mammalian egg activation and embryo development: the influence of subcellular localization. Molecular Reproduction and Development 79 742756. (https://doi.org/10.1002/mrd.22078)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ntostis P, Carter D, Iles D, Huntriss J, Tzetis M & Miller D 2017 Potential sperm contributions to the murine zygote predicted by in silico analysis. Reproduction 154 777788. (https://doi.org/10.1530/REP-17-0097)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • O’Flaherty C & de Souza AR 2011 Hydrogen peroxide modifies human sperm peroxiredoxins in a dose-dependent manner. Biology of Reproduction 84 238247. (https://doi.org/10.1095/biolreprod.110.085712)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ortiz-Rodriguez JM, Ortega-Ferrusola C, Gil MC, Martín-Cano FE, Gaitskell-Phillips G, Rodríguez-Martínez H, Hinrichs K, Álvarez-Barrientos A, Román Á & Peña FJ 2019 Transcriptome analysis reveals that fertilization with cryopreserved sperm downregulates genes relevant for early embryo development in the horse. PLoS ONE 14 e0213420. (https://doi.org/10.1371/journal.pone.0213420)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ozawa M, Sakatani M, Yao J, Shanker S, Yu F, Yamashita R, Wakabayashi S, Nakai K, Dobbs KB & Sudano MJ et al.2012 Global gene expression of the inner cell mass and trophectoderm of the bovine blastocyst. BMC Developmental Biology 12 33. (https://doi.org/10.1186/1471-213X-12-33)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Panner Selvam MK & Agarwal A 2018 Update on the proteomics of male infertility: a systematic review. Arab Journal of Urology 16 103112. (https://doi.org/10.1016/j.aju.2017.11.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Puglisi R, Maccari I, Pipolo S, Conrad M, Mangia F & Boitani C 2012 The nuclear form of glutathione peroxidase 4 is associated with sperm nuclear matrix and is required for proper paternal chromatin decondensation at fertilization. Journal of Cellular Physiology 227 14201427. (https://doi.org/10.1002/jcp.22857)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rappsilber J, Mann M & Ishihama Y 2007 Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature Protocols 2 18961906. (https://doi.org/10.1038/nprot.2007.261)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rhee SG, Chae HZ & Kim K 2005 Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radical Biology and Medicine 38 15431552. (https://doi.org/10.1016/j.freeradbiomed.2005.02.026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Simmet K, Zakhartchenko V, Philippou-Massier J, Blum H, Klymiuk N & Wolf E 2018 OCT4/POU5F1 is required for NANOG expression in bovine blastocysts. PNAS 115 27702775. (https://doi.org/10.1073/pnas.1718833115)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Simon L, Murphy K, Shamsi MB, Liu L, Emery B, Aston KI, Hotaling J & Carrell DT 2014 Paternal influence of sperm DNA integrity on early embryonic development. Human Reproduction 29 24022412. (https://doi.org/10.1093/humrep/deu228)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sun Y, Zhang WJ, Zhao X, Yuan RP, Jiang H & Pu XP 2014 PARK7 protein translocating into spermatozoa mitochondria in Chinese asthenozoospermia. Reproduction 148 249257. (https://doi.org/10.1530/REP-14-0222)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sutovsky P 2011 Sperm proteasome and fertilization. Reproduction 142 114. (https://doi.org/10.1530/REP-11-0041)

  • Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M & Cox J 2016 The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods 13 731740. (https://doi.org/10.1038/nmeth.3901)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ungar AR & Moon RT 1996 Inhibition of protein kinase A phenocopies ectopic expression of hedgehogin the CNS of wild-type and cyclops mutant embryos. Developmental Biology 178 186191. (https://doi.org/10.1006/dbio.1996.0209)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Uppangala S, Pudakalakatti S, D’souza F, Salian SR, Kalthur G, Kumar P, Atreya H & Adiga SK 2016 Influence of sperm DNA damage on human preimplantation embryo metabolism. Reproductive Biology 16 234241. (https://doi.org/10.1016/j.repbio.2016.07.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Uriah N, Ibeh IN & Oluwafemi F 2001 A study on the impact of aflatoxin on human reproduction. African Journal of Reproductive Health 5 106110. (https://doi.org/10.2307/3583204)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • van Gestel RA, Brewis IA, Ashton PR, Brouwers JF & Gadella BM 2007 Multiple proteins present in purified porcine sperm apical plasma membranes interact with the zona pellucida of the oocyte. Molecular Human Reproduction 13 445454. (https://doi.org/10.1093/molehr/gam030)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Viuff D, Avery B, Greve T, King WA & Hyttel P 1996 Transcriptional activity in in vitro produced bovine two- and four-cell embryos. Molecular Reproduction and Development 43 171179. (https://doi.org/10.1002/(SICI)1098-2795(199602)43:2<171::AID-MRD6>3.0.CO;2-O)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang M, Yu T, Hu L, Cheng Z & Li M 2016 Ubiquitin carboxy-terminal hydrolasel3 correlates with human sperm count, motility and fertilization. PLoS ONE 11 e0165198. (https://doi.org/10.1371/journal.pone.0165198)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Watkins AJ, Sirovica S, Stokes B, Isaacs M, Addison O & Martin RA 2017 Paternal low protein diet programs preimplantation embryo gene expression, fetal growth and skeletal development in mice. Biochimica et Biophysica Acta: Molecular Basis of Disease 1863 13711381. (https://doi.org/10.1016/j.bbadis.2017.02.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wei Y, Schatten H & Sun QY 2015 Environmental epigenetic inheritance through gametes and implications for human reproduction. Human Reproduction Update 21 194208. (https://doi.org/10.1093/humupd/dmu061)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whitaker M 2008 Calcium signalling in early embryos. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences 363 14011418. (https://doi.org/10.1098/rstb.2008.2259)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wilkinson KD 2000 Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Seminars in Cell and Developmental Biology 11 141148. (https://doi.org/10.1006/scdb.2000.0164)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM & Aggarwal D 2004 Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. American Journal of Clinical Nutrition 80 11061122. (https://doi.org/10.1093/ajcn/80.5.1106)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yi YJ, Manandhar G, Sutovsky M, Li R, Jonáková V, Oko R, Park CS, Prather RS & Sutovsky P 2007 Ubiquitin C-terminal hydrolase-activity is involved in sperm acrosomal function and anti-polyspermy defense during porcine fertilization. Biology of Reproduction 77 780793. (https://doi.org/10.1095/biolreprod.107.061275)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yi YJ, Zimmerman SW, Manandhar G, Odhiambo JF, Kennedy C, Jonáková V, Maňásková-Postlerová P, Sutovsky M, Park CS & Sutovsky P 2012 Ubiquitin-activating enzyme (UBA1) is required for sperm capacitation, acrosomal exocytosis and sperm-egg coat penetration during porcine fertilization. International Journal of Andrology 35 196210. (https://doi.org/10.1111/j.1365-2605.2011.01217.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yilmaz S, Kaya E & Kisacam MA 2017 The effect on oxidative stress of aflatoxin and protective effect of lycopene on aflatoxin damage. In Aflatoxin-Control, Analysis, Detection and Health Risks. InTech.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Y, Yang Z & Wu J 2007 Signaling pathways and preimplantation development of mammalian embryos. FEBS Journal 274 43494359. (https://doi.org/10.1111/j.1742-4658.2007.05980.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao W, Wang L, Liu M, Jiang K, Wang M, Yang G, Qi C & Wang B 2017 Transcriptome, antioxidant enzyme activity and histopathology analysis of hepatopancreas from the white shrimp litopenaeus vannamei fed with aflatoxin b1(AFB1). Developmental and Comparative Immunology 74 6981. (https://doi.org/10.1016/j.dci.2017.03.031)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao Y, Lu X, Cheng Z, Tian M, Qiangba Qiang Y, Fu Q & Ren Z 2019 Comparative proteomic analysis of Tibetan pig spermatozoa at high and low altitudes. BMC Genomics 20 569. (https://doi.org/10.1186/s12864-019-5873-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zimmerman S & Sutovsky P 2009 The sperm proteasome during sperm capacitation and fertilization. Journal of Reproductive Immunology 83 1925. (https://doi.org/10.1016/j.jri.2009.07.006)

    • PubMed
    • Search Google Scholar
    • Export Citation