Hormone-responsive organoids from domestic mare and endangered Przewalski’s horse endometrium

in Reproduction
Authors:
Riley E Thompson Department of Large Animal Clinical Sciences, University of Tennessee, Knoxville, Tennessee, USA
Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA

Search for other papers by Riley E Thompson in
Current site
Google Scholar
PubMed
Close
,
Aime K Johnson Department of Clinical Sciences, Auburn University, Auburn, Alabama, USA

Search for other papers by Aime K Johnson in
Current site
Google Scholar
PubMed
Close
,
Pouya Dini Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA

Search for other papers by Pouya Dini in
Current site
Google Scholar
PubMed
Close
,
Margherita Y Turco Centre for Trophoblast Research, University of Cambridge, Cambridge, UK

Search for other papers by Margherita Y Turco in
Current site
Google Scholar
PubMed
Close
,
Tulio M Prado Department of Large Animal Clinical Sciences, University of Tennessee, Knoxville, Tennessee, USA

Search for other papers by Tulio M Prado in
Current site
Google Scholar
PubMed
Close
,
Christopher Premanandan Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA

Search for other papers by Christopher Premanandan in
Current site
Google Scholar
PubMed
Close
,
Graham J Burton Centre for Trophoblast Research, University of Cambridge, Cambridge, UK

Search for other papers by Graham J Burton in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8677-4143
,
Barry A Ball Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA

Search for other papers by Barry A Ball in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0502-0276
,
Brian K Whitlock Department of Large Animal Clinical Sciences, University of Tennessee, Knoxville, Tennessee, USA

Search for other papers by Brian K Whitlock in
Current site
Google Scholar
PubMed
Close
, and
Budhan S Pukazhenthi Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA

Search for other papers by Budhan S Pukazhenthi in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to B S Pukazhenthi; Email: pukazhenthib@si.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

The endometrium, the inner uterine lining, is composed of cell layers that come in direct contact with an embryo during early pregnancy and later with the fetal placenta. The endometrium is responsible for signals associated with normal reproductive cyclicity as well as maintenance of pregnancy. In the mare, functionally competent in vitro models of the endometrium have not been successful. Furthermore, the ability to study various reproductive processes in vitro may allow critical evaluation of signaling pathways involved in the reproductive diseases of animals that cannot be handled frequently, such as various wildlife species. Here we report the establishment of organoids, 3D structures, derived from fresh and frozen–thawed equine endometrium (Equus ferus caballus and E. f. przewalskii). Although organoids from domestic mares responded to exogenous hormonal stimuli, organoids from Przewalski’s horse failed to respond to exogenous hormones. The present study represents a ‘first’ for any large animal model or endangered species. These physiologically functional organoids may facilitate improved understanding of normal reproductive mechanisms, uterine pathologies, and signaling mechanisms between the conceptus and endometrium and may lead to the development of novel bioassays for drug discovery.

 

  • Collapse
  • Expand
  • Aisenbrey EA & Murphy WL 2020 Synthetic alternatives to Matrigel. Nature Reviews Materials 5 539551. (https://doi.org/10.1038/s41578-020-0199-8)

  • Annandale A, Stroehle RM, Schulman ML, Sibeko-Matjila KP, Fosgate GT, Handler J, Vemming DC & Clift SJ 2018 Influence of cycle stage, age and endometrial biopsy score on oxytocin receptor distribution and gene expression in the cervix and uterus of non-pregnant mares. Theriogenology 120 19. (https://doi.org/10.1016/j.theriogenology.2018.07.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Atli MO, Guzeloglu A & Dinc DA 2011 Expression of wingless type (WNT) genes and their antagonists at mRNA levels in equine endometrium during the estrous cycle and early pregnancy. Animal Reproduction Science 125 94102. (https://doi.org/10.1016/j.anireprosci.2011.04.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aupperle H, Ozgen SSchoon HA, Schoon D, Hoppen HO, Sieme H & Tannapfel A 2000 Cyclical endometrial steroid hormone receptor expression and proliferation intensity in the mare. Equine Veterinary Journal 32 228232. (https://doi.org/10.2746/042516400776563554)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boretto M, Cox B, Noben M, Hendriks N, Fassbender A, Roose H, Amant F, Timmerman D, Tomassetti C & Vanhie A et al. 2017 Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development 144 17751786. (https://doi.org/10.1242/dev.148478)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clevers H 2016 Modeling development and disease with organoids. Cell 165 15861597. (https://doi.org/10.1016/j.cell.2016.05.082)

  • Collins CW, Songsasen NS, Vick MM, Wolfe BA, Weiss RB, Keefer CL & Monfort SL 2012 Abnormal reproductive patterns in Przewalski’s mares are associated with a loss in gene diversity. Biology of Reproduction 86 28. (https://doi.org/10.1095/biolreprod.111.092676)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Collins CW, Monfort SL, Vick MM, Wolfe BA, Weiss RB, Keefer CL & Songsasen N 2014 Oral and injectable synthetic progestagens effectively manipulate the estrous cycle in the Przewalski’s Horse (Equus ferus przewalskii). Animal Reproduction Science 148 4252. (https://doi.org/10.1016/j.anireprosci.2014.03.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Collins A, Miles GJ, Wood J, MacFarlane M, Pritchard C & Moss E 2020 Patient-derived explants, xenografts and organoids: 3-dimensional patient-relevant pre-clinical models in endometrial cancer. Gynecologic Oncology 156 251259. (https://doi.org/10.1016/j.ygyno.2019.11.020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Der Sarkissian C, Ermini L, Schubert M, Yang M, Librado P, Fumagalli M, Jónsson H, Bar-Gal G, Albrechtsen A & Vieira F et al. 2015 Evolutionary genomics and conservation of the endangered Przewalski’s Horse. Current Biology 25 25772583. (https://doi.org/10.1016/j.cub.2015.08.032)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fitzgerald HC, Dhakal P, Behura SK, Schust DJ & Spencer TE 2019 Self-renewing endometrial epithelial organoids of the human uterus. PNAS 116 2313223142. (https://doi.org/10.1073/pnas.1915389116)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galvão A, Valente L, Skarzynski DJ, Szóstek A, Piotrowska-Tomala K, Rebordão MR, Mateus L & Ferreira-Dias G 2013 Effect of cytokines and ovarian steroids on equine endometrial function: an in vitro study. Reproduction, Fertility, and Development 25 985997. (https://doi.org/10.1071/RD12153)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garner DL & Johnson LA 1995 Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biology of Reproduction 53 276284. (https://doi.org/10.1095/biolreprod53.2.276)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hartt LS, Carling SJ, Joyce MM, Johnson GA, Vanderwall DK & Ott TL 2005 Temporal and spatial associations of oestrogen receptor alpha and progesterone receptor in the endometrium of cyclic and early pregnant mares. Reproduction 130 241250. (https://doi.org/10.1530/rep.1.00596)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haslam SZ, Drolet A, Smith K, Tan M & Aupperlee M 2008 Progestin-regulated luminal cell and myoepithelial cell-specific responses in mammary organoid culture. Endocrinology 149 20982107. (https://doi.org/10.1210/en.2007-1398)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang B, Li T, Alonso-Gonzalez L, Gorre R, Keatley S, Green A, Turner P, Kallingappa PK, Verma V & Oback B 2011 A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLoS ONE 6 e24501. (https://doi.org/10.1371/journal.pone.0024501)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huch M, Dorrell C, Boj SF, Van Es JH, Li VS, Van De Wetering M, Sato T, Hamer K, Sasaki N & Finegold MJ et al. 2013 In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494 247250. (https://doi.org/10.1038/nature11826)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kalpokas I, Perdigón F, Rivero R, Talmon M, Sartore I & Viñoles C 2010 Effect of a povidone-iodine intrauterine infusion on progesterone levels and endometrial steroid receptor expression in mares. Acta Veterinaria Scandinavica 52 66. (https://doi.org/10.1186/1751-0147-52-66)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, Van Boxtel R, Wongvipat J, Dowling CM, Gao D, Begthel H & Sachs N et al. 2014 Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159 163175. (https://doi.org/10.1016/j.cell.2014.08.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kaushik G, Ponnusamy MP & Batra SK 2018 Concise review: current status of three-dimensional organoids as preclinical models. Stem Cells 36 13291340. (https://doi.org/10.1002/stem.2852)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Keith L, Ball BA, Scoggin K, Esteller-Vico A, Woodward EM, Troedsson MH & Squires EL 2013 Diestrus administration of oxytocin prolongs luteal maintenance and reduces plasma PGFM concentrations and endometrial COX-2 expression in mares. Theriogenology 79 616624. (https://doi.org/10.1016/j.theriogenology.2012.11.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kenney RM & Doig PA 1986 Equine endometrial biopsy. In Current Therapy in Theriogenology 723729. Ed. Morrow DA. Philadelphia: Saunders WB.

  • Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, Berger H, Mollenkopf HJ, Mangler M & Sehouli J et al. 2015 The Notch and Wnt pathways regulate stemness and differentiation in human Fallopian tube organoids. Nature Communications 6 8989. (https://doi.org/10.1038/ncomms9989)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim KA, Wagle M, Tran K, Zhan X, Dixon MA, Liu S, Gros D, Korver W, Yonkovich S & Tomasevic N et al. 2008 R-spondin family members regulate the Wnt pathway by a common mechanism. Molecular Biology of the Cell 19 25882596. (https://doi.org/10.1091/mbc.e08-02-0187)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • King SR, Boyd L, Zimmermann W & Kendall BE 2015 Equus ferus. IUCN RED List of Threatened Species 2015 e.T41763A97204950. (https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T41763A45172856.en)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koyanagi M, Takahashi J, Arakawa Y, Doi D, Fukuda H, Hayashi H, Narumiya S & Hashimoto N 2008 Inhibition of the Rho/ROCK pathway reduces apoptosis during transplantation of embryonic stem cell-derived neural precursors. Journal of Neuroscience Research 86 270280. (https://doi.org/10.1002/jnr.21502)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP & Knoblich JA 2013 Cerebral organoids model human brain development and microcephaly. Nature 501 373379. (https://doi.org/10.1038/nature12517)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Langhans SA 2018 Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Frontiers in Pharmacology 9 6. (https://doi.org/10.3389/fphar.2018.00006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lapko L, Böttcher D, Theuß T, Klug J & Schoon HA 2017 Establishment and characterization of a coculture system of equine endometrial epithelial and stromal cells. Reproduction in Domestic Animals 52 327334. (https://doi.org/10.1111/rda.12915)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li X, Krawetz R, Liu S, Meng G & Rancourt DE 2009 ROCK inhibitor improves survival of cryopreserved serum/feeder-free single human embryonic stem cells. Human Reproduction 24 580589. (https://doi.org/10.1093/humrep/den404)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Livak KJ & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25 402408. (https://doi.org/10.1006/meth.2001.1262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Monfort SL, Arthur NP & Wildt DE 1991 Monitoring ovarian function and pregnancy by evaluating excretion of urinary oestrogen conjugates in semi-free-ranging Przewalski’s horses (Equus przewalskii). Journal of Reproduction and Fertility 91 155164. (https://doi.org/10.1530/jrf.0.0910155)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Monfort SL, Arthur NP & Wildt DE 1994 Reproduction in the Przewalski’s horse. In Przewalski’s Horse 173193. Eds Boyd L, Houpt KA. Albany: State University of New York.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perrini C, Strillacci MG, Bagnato A, Esposti P, Marini MG, Corradetti B, Bizzaro D, Idda A, Ledda S & Capra E et al. 2016 Microvesicles secreted from equine amniotic-derived cells and their potential role in reducing inflammation in endometrial cells in an in-vitro model. Stem Cell Research and Therapy 7 169. (https://doi.org/10.1186/s13287-016-0429-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Powell RH & Behnke MS 2017 WRN conditioned media is sufficient for in vitro propagation of intestinal organoids from large farm and small companion animals. Biology Open 6 698705. (https://doi.org/10.1242/bio.021717)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pukazhenthi BS, Johnson A, Guthrie HD, Songsasen N, Padilla LR, Wolfe BA, da Silva MC, Alvarenga MA & Wildt DE 2014 Improved sperm cryosurvival in diluents containing amides versus glycerol in the Przewalski’s horse (Equus ferus przewalskii). Cryobiology 68 205214. (https://doi.org/10.1016/j.cryobiol.2014.01.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pukazhenthi BS, Nagashima J, Travis AJ, Costa GM, Escobar EN, França LR & Wildt DE 2015 Slow freezing, but not vitrification supports complete spermatogenesis in cryopreserved, neonatal sheep testicular xenografts. PLoS ONE 10 e0123957. (https://doi.org/10.1371/journal.pone.0123957)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • R Core Team 2014 R: A Language and Environment for Statistical Computing, Vol. 2013. Vienna, Austria: R Foundation for Statistical Computing, .3-900051-07-0

  • Rebordão MR, Galvão A, Pinto-Bravo P, Pinheiro J, Gamboa S, Silva E, Mateus L & Ferreira-Dias G 2017 Endometrial prostaglandin synthases, ovarian steroids, and oxytocin receptors in mares with oxytocin-induced luteal maintenance. Theriogenology 87 193204. (https://doi.org/10.1016/j.theriogenology.2016.08.028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Samuel CA, Ricketts SW, Rossdale PD, Steven DH & Thurley KW 1979 Scanning electron microscope studies of the endometrium of the cyclic mare. Journal of Reproduction and Fertility: Supplement 27 287292.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Santos VG, Castro T, Bettencourt EM & Ginther OJ 2015 Oxytocin induction of pulses of a prostaglandin metabolite and luteolysis in mares. Theriogenology 83 730738. (https://doi.org/10.1016/j.theriogenology.2014.11.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sato T & Clevers H 2015 SnapShot: growing organoids from stem cells. Cell 161 1700.e1–1700.e1. (https://doi.org/10.1016/j.cell.2015.06.028)

  • Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van Den Brink S, Van Houdt WJ, Pronk A, Van Gorp J & Siersema PD et al. 2011 Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141 17621772. (https://doi.org/10.1053/j.gastro.2011.07.050)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schwinghamer R, Massolo A, Knight C & Klein C 2018 Equine endometrial explants undergo significant degenerative changes in culture. Anatomical Record 301 148153. (https://doi.org/10.1002/ar.23701)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sharp DC, Thatcher MJ, Salute ME & Fuchs AR 1997 Relationship between endometrial oxytocin receptors and oxytocin-induced prostaglandin F2α release during the oestrous cycle and early pregnancy in pony mares. Journal of Reproduction and Fertility 109 137144. (https://doi.org/10.1530/jrf.0.1090137)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Silva ES, Scoggin KE, Canisso IF, Troedsson MH, Squires EL & Ball BA 2014 Expression of receptors for ovarian steroids and prostaglandin E2 in the endometrium and myometrium of mares during estrus, diestrus and early pregnancy. Animal Reproduction Science 151 169181. (https://doi.org/10.1016/j.anireprosci.2014.11.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sinn HP, Schneeweiss A, Keller M, Schlombs K, Laible M, Seitz J, Lakis S, Veltrup E, Altevogt P & Eidt S et al. 2017 Comparison of immunohistochemistry with PCR for assessment of ER, PR, and Ki-67 and prediction of pathological complete response in breast cancer. BMC Cancer 17 124. (https://doi.org/10.1186/s12885-017-3111-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Starbuck GR, Stout TA, Lamming GE, Allen WR & Flint AP 1998 Endometrial oxytocin receptor and uterine prostaglandin secretion in mares during the oestrous cycle and early pregnancy. Journal of Reproduction and Fertility 113 173179. (https://doi.org/10.1530/jrf.0.1130173)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stout TA, Lamming GE & Allen WR 2000 Oxytocin and its endometrial receptor are integral to luteolysis in the cycling mare. Journal of Reproduction and Fertility: Supplement 56 281287.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Szóstek AZ, Siemieniuch MJ, Galvão AM, Lukasik K, Zieba D, Ferreira-Dias GM & Skarzynski DJ 2012a Effects of cell storage and passage on basal and oxytocin-regulated prostaglandin secretion by equine endometrial epithelial and stromal cells. Theriogenology 77 16981708. (https://doi.org/10.1016/j.theriogenology.2011.12.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Szóstek AZ, Siemieniuch MJ, Lukasik K, Galvao AM, Ferreira-Dias GM & Skarzynski DJ 2012b mRNA transcription of prostaglandin synthases and their products in the equine endometrium in the course of fibrosis. Theriogenology 78 768776. (https://doi.org/10.1016/j.theriogenology.2012.03.024)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Szóstek AZ, Galvao AM, Ferreira-Dias GM & Skarzynski DJ 2014 Ovarian steroids affect prostaglandin production in equine endometrial cells in vitro. Journal of Endocrinology 220 263276. (https://doi.org/10.1530/JOE-13-0185)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Takahashi H, Iga K, Sato T, Takahashi M & Okano A 2001 Isolation and culture of bovine endometrial epithelial cells in a serum-free culture system. Journal of Reproduction and Development 47 181187. (https://doi.org/10.1262/jrd.47.181)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thompson RE, Johnson AK, Prado TM, Premanandan C, Brown ME, Whitlock BK & Pukazhenthi BS 2019 Dimethyl sulfoxide maintains structure and function of cryopreserved equine endometrial explants. Cryobiology 91 9096. (https://doi.org/10.1016/j.cryobiol.2019.10.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thompson RE, Brown ME, Helmick K, Whitlock BK & Pukazhenthi BS 2020 Persian onager (Equus hemionus onager) endometrial explant cryopreservation and in vitro culture. Animal Reproduction Science 217 106459. (https://doi.org/10.1016/j.anireprosci.2020.106459)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ, Farrell L, Hollinshead M, Marsh SGE, Brosens JJ & Critchley HO et al. 2017 Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nature Cell Biology 19 568577. (https://doi.org/10.1038/ncb3516)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa SI & Muguruma K et al. 2007 A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnology 25 681686. (https://doi.org/10.1038/nbt1310)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wiwatpanit T, Murphy AR, Lu Z, Urbanek M, Burdette JE, Woodruff TK & Kim JJ 2020 Scaffold-free endometrial organoids respond to excess androgens associated with polycystic ovarian syndrome. Journal of Clinical Endocrinology and Metabolism 105 769780. (https://doi.org/10.1210/clinem/dgz100)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xie Y, Park ES, Xiang D & Li Z 2018 Long-term organoid culture reveals enrichment of organoid-forming epithelial cells in the fimbrial portion of mouse fallopian tube. Stem Cell Research 32 5160. (https://doi.org/10.1016/j.scr.2018.08.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P & Smith A 2008 The ground state of embryonic stem cell self-renewal. Nature 453 519523. (https://doi.org/10.1038/nature06968)

    • PubMed
    • Search Google Scholar
    • Export Citation