SOCE-inhibitor reduced human sperm-induced formation of neutrophil extracellular traps

in Reproduction
Authors:
Fabiola Zambrano Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT – BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile

Search for other papers by Fabiola Zambrano in
Current site
Google Scholar
PubMed
Close
,
Liliana Silva Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany

Search for other papers by Liliana Silva in
Current site
Google Scholar
PubMed
Close
,
Pamela Uribe Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT – BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile

Search for other papers by Pamela Uribe in
Current site
Google Scholar
PubMed
Close
,
Ulrich Gärtner Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany

Search for other papers by Ulrich Gärtner in
Current site
Google Scholar
PubMed
Close
,
Anja Taubert Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany

Search for other papers by Anja Taubert in
Current site
Google Scholar
PubMed
Close
,
Mabel Schulz Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT – BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile

Search for other papers by Mabel Schulz in
Current site
Google Scholar
PubMed
Close
,
Raúl Sánchez Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT – BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile

Search for other papers by Raúl Sánchez in
Current site
Google Scholar
PubMed
Close
, and
Carlos Hermosilla Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany

Search for other papers by Carlos Hermosilla in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to R Sanchez; Email: raul.sanchez@ufrontera.cl
Restricted access
Rent on DeepDyve

Sign up for journal news

Human spermatozoa activate neutrophil extracellular traps (NETs) in vitro. NETosis is an efficient mechanism through which polymorphonuclear neutrophils (PMN) capture sperm in vitro. The objective of this study was to establish the role of store-operated Ca+2 entry (SOCE) in human sperm-triggered NETs and its impact on sperm integrity and oocyte binding capacity. PMN isolated from donors were exposed to spermatozoa isolated from normozoospermic donors using the swim-up technique and were divided into the following groups: (1) sperm, (2) PMN, (3) PMN + sperm, (4) PMN (pretreated with 2-APB, SOCE inhibitor) + sperm, (5) (PMN + DNase) + sperm, and (6) (PMN + PMA) + sperm (positive control). NETs were quantified using PicoGreen® and visualised by scanning electron microscopy and immunofluorescence of extracellular DNA and neutrophil elastase. Plasma membrane, acrosome, and DNA integrity were analysed by flow cytometry, and oocyte binding was evaluated using the hemizona pellucida assay. Sperm-triggered NETosis negatively affected the sperm membrane and acrosome integrity and decreased the oocyte binding capacity. These effects were negated by an SOCE inhibitor, thus improving sperm function and achieving high oocyte binding capacity. The SOCE inhibitor significantly reduced NET formation compared with that in control PMN/sperm (P < 0.05). Collectively, these results advance the knowledge about the role of PMN in reproduction and will allow the development of strategies to block NET formation in situations of reduced fertilisation success.

 

  • Collapse
  • Expand
  • Alghamdi AS, Lovaas BJ, Bird SL, Lamb GC, Rendahl AK, Taube PC & Foster DN 2009 Species-specific interaction of seminal plasma on sperm-neutrophil binding. Animal Reproduction Science 114 331344. (https://doi.org/10.1016/j.anireprosci.2008.10.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bottazzi B, Garlanda C, Cotena A, Moalli F, Jaillon S, Deban L & Mantovani A 2009 The long pentraxin PTX3 as a prototypic humoral pattern recognition receptor: interplay with cellular innate immunity. Immunological Reviews 227 918. (https://doi.org/10.1111/j.1600-065X.2008.00719.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brechard S & Tschirhart EJ 2008 Regulation of superoxide production in neutrophils: role of calcium influx. Journal of Leukocyte Biology 84 12231237. (https://doi.org/10.1189/jlb.0807553)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brinkmann V & Zychlinsky A 2007 Beneficial suicide: why neutrophils die to make NETs. Nature Reviews: Microbiology 5 577582. (https://doi.org/10.1038/nrmicro1710)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y & Zychlinsky A 2004 Neutrophil extracellular traps kill bacteria. Science 303 15321535. (https://doi.org/10.1126/science.1092385)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Conejeros I, Patterson R, Burgos RA, Hermosilla C & Werling D 2011 Induction of reactive oxygen species in bovine neutrophils is CD11b, but not dectin-1-dependent. Veterinary Immunology and Immunopathology 139 308312. (https://doi.org/10.1016/j.vetimm.2010.10.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Daigo K & Hamakubo T 2012 Host-protective effect of circulating pentraxin 3 (PTX3) and complex formation with neutrophil extracellular traps. Frontiers in Immunology 3 378. (https://doi.org/10.3389/fimmu.2012.00378)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Doni A, Paffoni A, Nebuloni M, Ragni G, Pasqualini F, Valentino S, Bonetti S, Mantovani A, Somigliana E & Garlanda C 2009 The long PENTRAXIN 3 is a soluble and cell-associated component of the human semen. International Journal of Andrology 32 255264. (https://doi.org/10.1111/j.1365-2605.2007.00845.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Donis-Maturano L, Sanchez-Torres LE, Cerbulo-Vazquez A, Chacon-Salinas R, Garcia-Romo GS, Orozco-Uribe MC, Yam-Puc JC, Gonzalez-Jimenez MA, Paredes-Vivas YL & Calderon-Amador J et al.2015 Prolonged exposure to neutrophil extracellular traps can induce mitochondrial damage in macrophages and dendritic cells. Springerplus 4 161. (https://doi.org/10.1186/s40064-015-0932-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fichtner T, Kotarski F, Gartner U, Conejeros I, Hermosilla C, Wrenzycki C & Taubert A 2020 Bovine sperm samples induce different NET phenotypes in a NADPH oxidase-, PAD4- and Ca++-dependent process. Biology of Reproduction 102 902914. (https://doi.org/10.1093/biolre/ioaa003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Franken DR, Burkman LJ, Oehninger SC, Coddington CC, Veeck LL, Kruger TF, Rosenwaks Z & Hodgen GD 1989 Hemizona assay using salt-stored human oocytes: evaluation of zona pellucida capacity for binding human spermatozoa. Gamete Research 22 1526. (https://doi.org/10.1002/mrd.1120220103)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS & Fulda S et al.2012 Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death and Differentiation 19 107120. (https://doi.org/10.1038/cdd.2011.96)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gupta AK, Giaglis S, Hasler P & Hahn S 2014 Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A. PLoS ONE 9 e97088. (https://doi.org/10.1371/journal.pone.0097088)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hahn S, Giaglis S, Hoesli I & Hasler P 2012 Neutrophil NETs in reproduction: from infertility to preeclampsia and the possibility of fetal loss. Frontiers in Immunology 3 362. (https://doi.org/10.3389/fimmu.2012.00362)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leshner M, Wang S, Lewis C, Zheng H, Chen XA, Santy L & Wang Y 2012 PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Frontiers in Immunology 3 307. (https://doi.org/10.3389/fimmu.2012.00307)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lippolis JD, Reinhardt TA, Goff JP & Horst RL 2006 Neutrophil extracellular trap formation by bovine neutrophils is not inhibited by milk. Veterinary Immunology and Immunopathology 113 248255. (https://doi.org/10.1016/j.vetimm.2006.05.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maldjian A, Pizzi F, Gliozzi T, Cerolini S, Penny P & Noble R 2005 Changes in sperm quality and lipid composition during cryopreservation of boar semen. Theriogenology 63 411421. (https://doi.org/10.1016/j.theriogenology.2004.09.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marin-Esteban V, Turbica I, Dufour G, Semiramoth N, Gleizes A, Gorges R, Beau I, Servin AL, Lievin-Le Moal V & Sandre C et al.2012 Afa/Dr diffusely adhering Escherichia coli strain C1845 induces neutrophil extracellular traps that kill bacteria and damage human enterocyte-like cells. Infection and Immunity 80 18911899. (https://doi.org/10.1128/IAI.00050-12)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martinelli S, Urosevic M, Daryadel A, Oberholzer PA, Baumann C, Fey MF, Dummer R, Simon HU & Yousefi S 2004 Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation. Journal of Biological Chemistry 279 4412344132. (https://doi.org/10.1074/jbc.M405883200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Muller K, Pomorski T, Muller P & Herrmann A 1999 Stability of transbilayer phospholipid asymmetry in viable ram sperm cells after cryotreatment. Journal of Cell Science 112 1120.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Munoz-Caro T, Lendner M, Daugschies A, Hermosilla C & Taubert A 2015a NADPH oxidase, MPO, NE, ERK1/2, p38 MAPK and Ca2+ influx are essential for Cryptosporidium parvum-induced NET formation. Developmental and Comparative Immunology 52 245254. (https://doi.org/10.1016/j.dci.2015.05.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Munoz-Caro T, Mena Huertas SJ, Conejeros I, Alarcon P, Hidalgo MA, Burgos RA, Hermosilla C & Taubert A 2015b Eimeria bovis-triggered neutrophil extracellular trap formation is CD11b-, ERK 1/2-, p38 MAP kinase- and SOCE-dependent. Veterinary Research 46 23. (https://doi.org/10.1186/s13567-015-0155-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oh H, Siano B & Diamond S 2008 Neutrophil isolation protocol. Journal of Visualized Experiments 23 745. (https://doi.org/10.3791/745)

  • Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, Lohmeyer J & Preissner KT 2012 Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS ONE 7 e32366. (https://doi.org/10.1371/journal.pone.0032366)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schulz M, Zambrano F, Schuppe HC, Wagenlehner F, Taubert A, Gaertner U, Sanchez R & Hermosilla C 2019a Monocyte-derived extracellular trap (MET) formation induces aggregation and affects motility of human spermatozoa in vitro. Systems Biology in Reproductive Medicine 65 357366. (https://doi.org/10.1080/19396368.2019.1624873)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schulz M, Zambrano F, Schuppe HC, Wagenlehner F, Taubert A, Ulrich G, Sanchez R & Hermosilla C 2019b Determination of leucocyte extracellular traps (ETs) in seminal fluid (ex vivo) in infertile patients – a pilot study. Andrologia 51 e13356. (https://doi.org/10.1111/and.13356)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Silva LM, Caro TM, Gerstberger R, Vila-Vicosa MJ, Cortes HC, Hermosilla C & Taubert A 2014 The apicomplexan parasite Eimeria arloingi induces caprine neutrophil extracellular traps. Parasitology Research 113 27972807. (https://doi.org/10.1007/s00436-014-3939-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Strzemienski PJ 1989 Effect of bovine seminal plasma on neutrophil phagocytosis of bull spermatozoa. Journal of Reproduction and Fertility 87 519528. (https://doi.org/10.1530/jrf.0.0870519)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taylor U, Rath D, Zerbe H & Schuberth HJ 2008 Interaction of intact porcine spermatozoa with epithelial cells and neutrophilic granulocytes during uterine passage. Reproduction in Domestic Animals 43 166175. (https://doi.org/10.1111/j.1439-0531.2007.00872.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Urban CF, Reichard U, Brinkmann V & Zychlinsky A 2006 Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cellular Microbiology 8 668676. (https://doi.org/10.1111/j.1462-5822.2005.00659.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Waterhouse KE, Hofmo PO, Tverdal A & Miller RR 2006 Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm. Reproduction 131 887894. (https://doi.org/10.1530/rep.1.01049)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • World Health Organization 2010 WHO Laboratory Manual for the Examination and Processing of Human Semen. Geneva, Switzerland: WHO Press.

  • Yanagimachi R, Lopata A, Odom CB, Bronson RA, Mahi CA & Nicolson GL 1979 Retention of biologic characteristics of zona pellucida in highly concentrated salt solution: the use of salt-stored eggs for assessing the fertilizing capacity of spermatozoa. Fertility and Sterility 31 562574. (https://doi.org/10.1016/s0015-0282(1644004-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zambrano F, Carrau T, Gartner U, Seipp A, Taubert A, Felmer R, Sanchez R & Hermosilla C 2016 Leukocytes coincubated with human sperm trigger classic neutrophil extracellular traps formation, reducing sperm motility. Fertility and Sterility 106 1053 .e11060.e1. (https://doi.org/10.1016/j.fertnstert.2016.06.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zambrano F, Schulz M, Pilatz A, Wagenlehner F, Schuppe HC, Conejeros I, Uribe P, Taubert A, Sanchez R & Hermosilla C 2020 Increase of leucocyte-derived extracellular traps (ETs) in semen samples from human acute epididymitis patients – a pilot study. Journal of Assisted Reproduction and Genetics 37 22232231. (https://doi.org/10.1007/s10815-020-01883-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou X, Xia XY & Huang YF 2010 Updated detection of the function of sperm plasma membrane. Zhonghua Nan Ke Xue (National Journal of Andrology) 16 745748.