Human spermatozoa activate neutrophil extracellular traps (NETs) in vitro. NETosis is an efficient mechanism through which polymorphonuclear neutrophils (PMN) capture sperm in vitro. The objective of this study was to establish the role of store-operated Ca+2 entry (SOCE) in human sperm-triggered NETs and its impact on sperm integrity and oocyte binding capacity. PMN isolated from donors were exposed to spermatozoa isolated from normozoospermic donors using the swim-up technique and were divided into the following groups: (1) sperm, (2) PMN, (3) PMN + sperm, (4) PMN (pretreated with 2-APB, SOCE inhibitor) + sperm, (5) (PMN + DNase) + sperm, and (6) (PMN + PMA) + sperm (positive control). NETs were quantified using PicoGreen® and visualised by scanning electron microscopy and immunofluorescence of extracellular DNA and neutrophil elastase. Plasma membrane, acrosome, and DNA integrity were analysed by flow cytometry, and oocyte binding was evaluated using the hemizona pellucida assay. Sperm-triggered NETosis negatively affected the sperm membrane and acrosome integrity and decreased the oocyte binding capacity. These effects were negated by an SOCE inhibitor, thus improving sperm function and achieving high oocyte binding capacity. The SOCE inhibitor significantly reduced NET formation compared with that in control PMN/sperm (P < 0.05). Collectively, these results advance the knowledge about the role of PMN in reproduction and will allow the development of strategies to block NET formation in situations of reduced fertilisation success.
Reproduction is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 1065 | 22 | 0 |
PDF Downloads | 765 | 28 | 0 |