A sexually dimorphic murine model of IUGR induced by embryo transfer

in Reproduction
View More View Less
  • 1 Robinson Research Institute, University of Adelaide, Adelaide, Australia
  • 2 Adelaide Medical School, University of Adelaide, Adelaide, Australia
  • 3 Precision Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
  • 4 CSIRO Nutrition and Health, Adelaide, Australia
  • 5 College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia

Correspondence should be addressed to K L Gatford; Email: kathy.gatford@adelaide.edu.au
Restricted access

Animal models are needed to develop interventions to prevent or treat intrauterine growth restriction (IUGR). Foetal growth rates and effects of in utero exposures differ between sexes, but little is known about sex-specific effects of increasing litter size. We established a murine IUGR model using pregnancies generated by multiple embryo transfers, and evaluated sex-specific responses to increasing litter size. CBAF1 embryos were collected at gestation day 0.5 (GD0.5) and 6, 8, 10 or 12 embryos were transferred into each uterine horn of pseudopregnant female CD1 mice (n = 32). Foetal and placental outcomes were measured at GD18.5. In the main experiment, foetuses were genotyped (Sry) for analysis of sex-specific outcomes. The number of implantation sites (P = 0.033) and litter size (number of foetuses, P = 0.008) correlated positively with the number of embryos transferred, while placental weight correlated negatively with litter size (both P < 0.01). The relationship between viable litter size and foetal weight differed between sexes (interaction P = 0.002), such that foetal weights of males (P = 0.002), but not females (P = 0.233), correlated negatively with litter size. Placental weight decreased with increasing litter size (P < 0.001) and was lower in females than males (P = 0.020). Our results suggest that male foetuses grow as fast as permitted by nutrient supply, whereas the female maintains placental reserve capacity. This strategy reflecting sex-specific gene expression is likely to place the male foetus at greater risk of death in the event of a ‘second hit’.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 439 439 439
Full Text Views 11 11 11
PDF Downloads 5 5 5
  • Alexander BT 2003 Placental insufficiency leads to development of hypertension in growth-restricted offspring. Hypertension 41 457462. (https://doi.org/10.1161/01.HYP.0000053448.95913.3D)

    • Search Google Scholar
    • Export Citation
  • Al-Ghazali W, Chita SK, Chapman MG & Allan LD 1989 Evidence of redistribution of cardiac output in asymmetrical growth retardation. British Journal of Obstetrics and Gynaecology 96 697704. (https://doi.org/10.1111/j.1471-0528.1989.tb03285.x)

    • Search Google Scholar
    • Export Citation
  • Allen WR, Wilsher S, Turnbull C, Stewart F, Ousey J, Rossdale PD & Fowden AL 2002 Influence of maternal size on placental, fetal and postnatal growth in the horse. I. Development in utero. Reproduction 123 445453. (https://doi.org/10.1530/rep.0.1230445)

    • Search Google Scholar
    • Export Citation
  • Ashworth CJ, Haley CS, Aitken RP & Wilmut I 1990 Embryo survival and conceptus growth after reciprocal embryo transfer between Chinese Meishan and landrace × large white gilts. Reproduction 90 595603. (https://doi.org/10.1530/jrf.0.0900595)

    • Search Google Scholar
    • Export Citation
  • Australian Institute of Health Welfare 2019 Australia’s Mothers and Babies 2017 – In Brief, Perinatal Statistics Series no. 35, edn Cat. no. PER 100. Canberra: AIHW.

    • Search Google Scholar
    • Export Citation
  • Barker DJP 1994 Mothers, Babies, and Disease in Later Life. London: BMJ Publishing Group.

  • Berends LM & Ozanne SE 2012 Early determinants of type-2 diabetes. Best Practice and Research. Clinical Endocrinology and Metabolism 26 569580. (https://doi.org/10.1016/j.beem.2012.03.002)

    • Search Google Scholar
    • Export Citation
  • Blasco A, Argente MJ, Haley CS & Santacreu MA 1994 Relationships between components of litter size in unilaterally ovariectomized and intact rabbit does. Journal of Animal Science 72 30663072. (https://doi.org/10.2527/1994.72123066x)

    • Search Google Scholar
    • Export Citation
  • Bleker OP, Breur W & Huidekoper BL 1979 A study of birth weight, placental weight and mortality of twins as compared to singletons. British Journal of Obstetrics and Gynaecology 86 111118. (https://doi.org/10.1111/j.1471-0528.1979.tb10577.x)

    • Search Google Scholar
    • Export Citation
  • Briana DD, Gourgiotis D, Boutsikou M, Baka S, Hassiakos D, Vraila VM, Creatsas G & Malamitsi-Puchner A 2008 Perinatal bone turnover in term pregnancies: the influence of intrauterine growth restriction. Bone 42 307313. (https://doi.org/10.1016/j.bone.2007.10.002)

    • Search Google Scholar
    • Export Citation
  • Briana DD, Gourgiotis D, Georgiadis A, Boutsikou M, Baka S, Marmarinos A, Hassiakos D & Malamitsi-Puchner A 2012 Intrauterine growth restriction may not suppress bone formation at term, as indicated by circulating concentrations of undercarboxylated osteocalcin and Dickkopf-1. Metabolism 61 335340. (https://doi.org/10.1016/j.metabol.2011.07.008)

    • Search Google Scholar
    • Export Citation
  • Broere-Brown ZA, Baan E, Schalekamp-Timmermans S, Verburg BO, Jaddoe VWV & Steegers EA 2016 Sex-specific differences in fetal and infant growth patterns: a prospective population-based cohort study. Biology of Sex Differences 7 65. (https://doi.org/10.1186/s13293-016-0119-1)

    • Search Google Scholar
    • Export Citation
  • Bryan SM & Hindmarsh PC 2006 Normal and abnormal fetal growth. Hormone Research 65 (Supplement 3) 1927. (https://doi.org/10.1159/000091502)

    • Search Google Scholar
    • Export Citation
  • Care AS, Bourque SL, Morton JS, Hjartarson EP & Davidge ST 2015 Effect of advanced maternal age on pregnancy outcomes and vascular function in the rat. Hypertension 65 13241330. (https://doi.org/10.1161/HYPERTENSIONAHA.115.05167)

    • Search Google Scholar
    • Export Citation
  • Chahoud I & Paumgartten FJR 2005 Relationships between fetal body weight of Wistar rats at term and the extent of skeletal ossification. Brazilian Journal of Medical and Biological Research 38 565575. (https://doi.org/10.1590/s0100-879x2005000400010)

    • Search Google Scholar
    • Export Citation
  • Chavatte-Palmer P, Laigre P, Simonoff E, Chesné P, Challah-Jacques M & Renard JP 2008 In utero characterisation of fetal growth by ultrasound scanning in the rabbit. Theriogenology 69 859869. (https://doi.org/10.1016/j.theriogenology.2007.12.013)

    • Search Google Scholar
    • Export Citation
  • Clifton VL 2010 Review: sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta 31 (Supplement) S33S 39. (https://doi.org/10.1016/j.placenta.2009.11.010)

    • Search Google Scholar
    • Export Citation
  • Clifton VL, Engel P, Smith R, Gibson P, Brinsmead M & Giles WB 2009 Maternal and neonatal outcomes of pregnancies complicated by asthma in an Australian population. Australian and New Zealand Journal of Obstetrics and Gynaecology 49 619626. (https://doi.org/10.1111/j.1479-828X.2009.01077.x)

    • Search Google Scholar
    • Export Citation
  • Coan PM, Ferguson-Smith AC & Burton GJ 2004 Developmental dynamics of the definitive mouse placenta assessed by stereology. Biology of Reproduction 70 18061813. (https://doi.org/10.1095/biolreprod.103.024166)

    • Search Google Scholar
    • Export Citation
  • Coan PM, Angiolini E, Sandovici I, Burton GJ, Constancia M & Fowden AL 2008 Adaptations in placental nutrient transfer capacity to meet fetal growth demands depend on placental size in mice. Journal of Physiology 586 45674576. (https://doi.org/10.1113/jphysiol.2008.156133)

    • Search Google Scholar
    • Export Citation
  • Dashe JS, McIntire DD, Lucas MJ & Leveno KJ 2000 Effects of symmetric and asymmetric fetal growth on pregnancy outcomes. Obstetrics and Gynecology 96 321327. (https://doi.org/10.1016/s0029-7844(0000943-1)

    • Search Google Scholar
    • Export Citation
  • De Blasio MJ, Gatford KL, Robinson JS & Owens JA 2007 Placental restriction of fetal growth reduces size at birth and alters postnatal growth, feeding activity, and adiposity in the young lamb. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 292 R875R886. (https://doi.org/10.1152/ajpregu.00430.2006)

    • Search Google Scholar
    • Export Citation
  • Dobbins TA, Sullivan EA, Roberts CL & Simpson JM 2012 Australian national birthweight percentiles by sex and gestational age, 1998–2007. Medical Journal of Australia 197 291294. (https://doi.org/10.5694/mja11.11331)

    • Search Google Scholar
    • Export Citation
  • Eckstein P & McKeown T 1955 The influence of maternal age, parity and weight on litter size in guinea-pig. Journal of Endocrinology 12 115–119. (https://doi.org/10.1677/joe.0.0120115)

    • Search Google Scholar
    • Export Citation
  • Eriksson JG, Kajantie E, Osmond C, Thornburg K & Barker DJ 2010 Boys live dangerously in the womb. American Journal of Human Biology 22 330335. (https://doi.org/10.1002/ajhb.20995)

    • Search Google Scholar
    • Export Citation
  • Fleiss B, Wong F, Brownfoot F, Shearer IK, Baud O, Walker DW, Gressens P & Tolcos M 2019 Knowledge gaps and emerging research areas in intrauterine growth restriction-associated brain injury. Frontiers in Endocrinology 10 188. (https://doi.org/10.3389/fendo.2019.00188)

    • Search Google Scholar
    • Export Citation
  • Fowden AL, Sferruzzi-Perri AN, Coan PM, Constancia M & Burton GJ 2009 Placental efficiency and adaptation: endocrine regulation. Journal of Physiology 587 34593472. (https://doi.org/10.1113/jphysiol.2009.173013)

    • Search Google Scholar
    • Export Citation
  • French LR, Rutledge JJ & First NL 1979 Effect of age and parity on litter size in pigs. Journal of Reproduction and Fertility 57 5960. (https://doi.org/10.1530/jrf.0.0570059)

    • Search Google Scholar
    • Export Citation
  • Gabory A, Roseboom TJ, Moore T, Moore LG & Junien C 2013 Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biology of Sex Differences 4 5. (https://doi.org/10.1186/2042-6410-4-5)

    • Search Google Scholar
    • Export Citation
  • Gardosi J, Madurasinghe V, Williams M, Malik A & Francis A 2013 Maternal and fetal risk factors for stillbirth: population based study. BMJ 346 f108. (https://doi.org/10.1136/bmj.f108)

    • Search Google Scholar
    • Export Citation
  • Gardosi J, Francis A, Turner S & Williams M 2018 Customized growth charts: rationale, validation and clinical benefits. American Journal of Obstetrics and Gynecology 218 S609S618. (https://doi.org/10.1016/j.ajog.2017.12.011)

    • Search Google Scholar
    • Export Citation
  • Gatford KL, Boyce JM, Blackmore K, Smits RJ, Campbell RG & Owens PC 2004 Long-term, but not short-term, treatment with somatotropin during pregnancy in underfed pigs increases the body size of progeny at birth. Journal of Animal Science 82 93101. (https://doi.org/10.2527/2004.82193x)

    • Search Google Scholar
    • Export Citation
  • Gluckman PD, Morel PC, Ambler GR, Breier BH, Blair HT & McCutcheon SN 1992 Elevating maternal insulin-like growth factor-I in mice and rats alters the pattern of fetal growth by removing maternal constraint. Journal of Endocrinology 134 R1R3. (https://doi.org/10.1677/joe.0.134r001)

    • Search Google Scholar
    • Export Citation
  • Gootwine E, Spencer TE & Bazer FW 2007 Litter-size-dependent intrauterine growth restriction in sheep. Animal 1 547564. (https://doi.org/10.1017/S1751731107691897)

    • Search Google Scholar
    • Export Citation
  • Hancock SN, Oliver MH, McLean C, Jaquiery AL & Bloomfield FH 2012 Size at birth and adult fat mass in twin sheep are determined in early gestation. The Journal of Physiology 590 12731285. (https://doi.org/10.1113/jphysiol.2011.220699)

    • Search Google Scholar
    • Export Citation
  • Hayward CE, Lean S, Sibley CP, Jones RL, Wareing M, Greenwood SL & Dilworth MR 2016 Placental adaptation: what can we learn from birthweight:placental weight ratio? Frontiers in Physiology 7 28. (https://doi.org/10.3389/fphys.2016.00028)

    • Search Google Scholar
    • Export Citation
  • Hiersch L, Okby R, Freeman H, Rosen H, Nevo O, Barrett J & Melamed N 2020 Differences in fetal growth patterns between twins and singletons. Journal of Maternal-Fetal &Neonatal Medicine 33 2546–2555. (https://doi.org/10.1080/14767058.2018.1555705)

    • Search Google Scholar
    • Export Citation
  • Iffy L, Lavenhar MA, Jakobovits A & Kaminetzky HA 1983 The rate of early intrauterine growth in twin gestation. American Journal of Obstetrics and Gynecology 146 970972. (https://doi.org/10.1016/0002-9378(8390976-6)

    • Search Google Scholar
    • Export Citation
  • Ingemarsson I 2003 Gender aspects of preterm birth. BJOG 110 (Supplement 20) 3438. (https://doi.org/10.1016/s1470-0328(0300022-3)

  • Ishikawa H, Seki R, Yokonishi S, Yamauchi T & Yokoyama K 2006 Relationship between fetal weight, placental growth and litter size in mice from mid- to late-gestation. Reproductive Toxicology 21 267270. (https://doi.org/10.1016/j.reprotox.2005.08.002)

    • Search Google Scholar
    • Export Citation
  • Johnson LW, Moffatt RJ, Bartol FF & Pinkert CA 1996 Optimization of embryo transfer protocols for mice. Theriogenology 46 12671276. (https://doi.org/10.1016/s0093-691x(9600298-1)

    • Search Google Scholar
    • Export Citation
  • Kalisch-Smith JI, Simmons DG, Dickinson H & Moritz KM 2017 Review: Sexual dimorphism in the formation, function and adaptation of the placenta. Placenta 54 1016. (https://doi.org/10.1016/j.placenta.2016.12.008)

    • Search Google Scholar
    • Export Citation
  • Kaur H, Wilson RL, Care AS, Muhlhausler BS, Roberts CT & Gatford KL 2019 Validation studies of a fluorescent method to measure placental glucose transport in mice. Placenta 76 2329. (https://doi.org/10.1016/j.placenta.2019.01.014)

    • Search Google Scholar
    • Export Citation
  • Kent JP 1992 Birth sex ratios in sheep over six lambing seasons. Behavioral Ecology and Sociobiology 30 151155. (https://doi.org/10.1007/BF00166697)

    • Search Google Scholar
    • Export Citation
  • Koong LJ, Garrett WN & Rattray PV 1975 A description of the dynamics of fetal growth in sheep. Journal of Animal Science 41 10651068. (https://doi.org/10.2527/jas1975.4141065x)

    • Search Google Scholar
    • Export Citation
  • Kramer MS 2003 The epidemiology of adverse pregnancy outcomes: an overview. Journal of Nutrition 133 (Supplement 2) 1592S1596S. (https://doi.org/10.1093/jn/133.5.1592S)

    • Search Google Scholar
    • Export Citation
  • Land RB 1970 Genetic and phenotypic relationships between ovulation rate and body weight in the mouse. Genetical Research 15 171182. (https://doi.org/10.1017/s0016672300001506)

    • Search Google Scholar
    • Export Citation
  • Leon DA, Lithell HO, Vågerö D, Koupilová I, Mohsen R, Berglund L, Lithell UB & McKeigue PM 1998 Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15 000 Swedish men and women born 1915–1929. BMJ 317 241245. (https://doi.org/10.1136/bmj.317.7153.241)

    • Search Google Scholar
    • Export Citation
  • Leveno KJ, Santos-Ramos R, Duenholfter JH, Reisch JS & Whalley PJ 1979 Sonar cephalometry in twins: a table of biparietal diameters for normal twin fetuses and a comparison with singletons. American Journal of Obstetrics and Gynecology 135 727730. (https://doi.org/10.1016/0002-9378(7990382-x)

    • Search Google Scholar
    • Export Citation
  • Linask KK, Han M & Bravo-Valenzuela NJ 2014 Changes in vitelline and utero-placental hemodynamics: implications for cardiovascular development. Frontiers in Physiology 5 390. (https://doi.org/10.3389/fphys.2014.00390)

    • Search Google Scholar
    • Export Citation
  • López-Tello J, Barbero A, González-Bulnes A, Astiz S, Rodríguez M, Formoso-Rafferty N, Arias-Álvarez M & Rebollar PG 2015 Characterization of early changes in fetoplacental hemodynamics in a diet-induced rabbit model of IUGR. Journal of Developmental Origins of Health and Disease 6 454461. (https://doi.org/10.1017/S2040174415001385)

    • Search Google Scholar
    • Export Citation
  • Mao J, Zhang X, Sieli PT, Falduto MT, Torres KE & Rosenfeld CS 2010 Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta. PNAS 107 55575562. (https://doi.org/10.1073/pnas.1000440107)

    • Search Google Scholar
    • Export Citation
  • McClive PJ & Sinclair AH 2001 Rapid DNA extraction and PCR-sexing of mouse embryos. Molecular Reproduction and Development 60 225226. (https://doi.org/10.1002/mrd.1081)

    • Search Google Scholar
    • Export Citation
  • McLaren A 1965 Genetic and environmental effects on foetal and placental growth in mice. Journal of Reproduction and Fertility 9 7998. (https://doi.org/10.1530/jrf.0.0090079)

    • Search Google Scholar
    • Export Citation
  • McLaren A & Michie D 1960 Control of pre-natal growth in mammals. Nature 187 363365. (https://doi.org/10.1038/187363a0)

  • Murphy VE, Gibson PG, Giles WB, Zakar T, Smith R, Bisits AM, Kessell CG & Clifton VL 2003 Maternal asthma is associated with reduced female fetal growth. American Journal of Respiratory and Critical Care Medicine 168 13171323. (https://doi.org/10.1164/rccm.200303-374OC)

    • Search Google Scholar
    • Export Citation
  • Murphy VE, Gibson P, Talbot PI & Clifton VL 2005 Severe asthma exacerbations during pregnancy. Obstetrics and Gynecology 106 10461054. (https://doi.org/10.1097/01.AOG.0000185281.21716.02)

    • Search Google Scholar
    • Export Citation
  • Nakao K, Nakagata N & Katsuki M 1997 Simple and efficient vitrification procedure for cryopreservation of mouse embryos. Experimental Animals 46 231234. (https://doi.org/10.1538/expanim.46.231)

    • Search Google Scholar
    • Export Citation
  • National Health and Medical Research Council of Australia 2013 Australian Code Of Practice for the Care and Use of Animals for Scientific Purposes, 8th ed. Canberra: Australian Government Publishing Service.

    • Search Google Scholar
    • Export Citation
  • Norman NA & Bruce NW 1979 Fetal and placental weight relationships in the albino rat near term. Teratology 19 245250. (https://doi.org/10.1002/tera.1420190215)

    • Search Google Scholar
    • Export Citation
  • Ozaki T, Nishina H, Hanson MA & Poston L 2001 Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. Journal of Physiology 530 141152. (https://doi.org/10.1111/j.1469-7793.2001.0141m.x)

    • Search Google Scholar
    • Export Citation
  • Poudel R, Stanley JL, Rueda-Clausen CF, Andersson IJ, Sibley CP, Davidge ST & Baker PN 2013 Effects of resveratrol in pregnancy using murine models with reduced blood supply to the uterus. PLoS ONE 8 e64401. (https://doi.org/10.1371/journal.pone.0064401)

    • Search Google Scholar
    • Export Citation
  • Rattray PV, Garrett WN, East NE & Hinman N 1974 Growth, development and composition of the ovine conceptus and mammary gland during pregnancy. Journal of Animal Science 38 613626. (https://doi.org/10.2527/jas1974.383613x)

    • Search Google Scholar
    • Export Citation
  • Ravelli AC, Van Der Meulen JH, Osmond C, Barker DJ & Bleker OP 1999 Obesity at the age of 50 y in men and women exposed to famine prenatally. American Journal of Clinical Nutrition 70 811816. (https://doi.org/10.1093/ajcn/70.5.811)

    • Search Google Scholar
    • Export Citation
  • Roberts CT 2010 IFPA Award in Placentology Lecture: complicated interactions between genes and the environment in placentation, pregnancy outcome and long term health. Placenta 31 (Supplement) S47S53. (https://doi.org/10.1016/j.placenta.2010.01.001)

    • Search Google Scholar
    • Export Citation
  • Roberts CT, White CA, Wiemer NG, Ramsay A & Robertson SA 2003 Altered placental development in interleukin-10 null mutant mice. Placenta 24 (Supplement A) S94S99. (https://doi.org/10.1053/plac.2002.0949)

    • Search Google Scholar
    • Export Citation
  • Robles M, Peugnet PM, Valentino SA, Dubois C, Dahirel M, Aubrière MC, Reigner F, Serteyn D, Wimel L & Couturier-Tarrade A 2018 Placental alterations in structure and function in intra-uterine growth-retarded horses. Equine Veterinary Journal 50 405414. (https://doi.org/10.1111/evj.12761)

    • Search Google Scholar
    • Export Citation
  • Rödel HG, Bora A, Kaiser J, Kaetzke P, Khaschei M & Von Holst D 2004 Density-dependent reproduction in the European rabbit: a consequence of individual response and age-dependent reproductive performance. Oikos 104 529539. (https://doi.org/10.1111/j.0030-1299.2004.12691.x)

    • Search Google Scholar
    • Export Citation
  • Sandovici I, Hoelle K, Angiolini E & Constância M 2012 Placental adaptations to the maternal–fetal environment: implications for fetal growth and developmental programming. Reproductive Biomedicine Online 25 6889. (https://doi.org/10.1016/j.rbmo.2012.03.017)

    • Search Google Scholar
    • Export Citation
  • Tarrade A, Panchenko P, Junien C & Gabory A 2015 Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism. Journal of Experimental Biology 218 5058. (https://doi.org/10.1242/jeb.110320)

    • Search Google Scholar
    • Export Citation
  • Tischner M 1985 Embryo recovery from Polish pony mares and preliminary observations on foal size after transfer of embryos to large mares. Equine Veterinary Journal 17 9698. (https://doi.org/10.1111/j.2042-3306.1985.tb04605.x)

    • Search Google Scholar
    • Export Citation
  • Vatnick I, Schoknecht PA, Darrigrand R & Bell AW 1991 Growth and metabolism of the placenta after unilateral fetectomy in twin pregnant ewes. Journal of Developmental Physiology 15 351356.

    • Search Google Scholar
    • Export Citation
  • Vatten LJ & Skjærven R 2004 Offspring sex and pregnancy outcome by length of gestation. Early Human Development 76 4754. (https://doi.org/10.1016/j.earlhumdev.2003.10.006)

    • Search Google Scholar
    • Export Citation
  • Wallace JM, Bhattacharya S & Horgan GW 2013 Gestational age, gender and parity specific centile charts for placental weight for singleton deliveries in Aberdeen, UK. Placenta 34 269274. (https://doi.org/10.1016/j.placenta.2012.12.007)

    • Search Google Scholar
    • Export Citation
  • Walton A & Hammond J 1938 The maternal effects on growth and conformation in Shire horse-Shetland Pony crosses. Proceedings of the Royal Society of London Series B 125 311335. (https://doi.org/10.1098/rspb.1938.0029)

    • Search Google Scholar
    • Export Citation
  • Weinerman R, Ord T, Bartolomei MS, Coutifaris C & Mainigi M 2017 The superovulated environment, independent of embryo vitrification, results in low birthweight in a mouse model. Biology of Reproduction 97 133142. (https://doi.org/10.1093/biolre/iox067)

    • Search Google Scholar
    • Export Citation
  • Wigglesworth JS 1964 Experimental growth retardation in the foetal rat. Journal of Pathology and Bacteriology 88 113. (https://doi.org/10.1002/path.1700880102)

    • Search Google Scholar
    • Export Citation
  • Zamenhof S & van Marthens E 1984 Litter size, maternal parameters, and brain and body parameters of neonatal rats. Biology of the Neonate 45 296298. (https://doi.org/10.1159/000242020)

    • Search Google Scholar
    • Export Citation