Human sperm tsRNA as potential biomarker and therapy target for male fertility

in Reproduction
View More View Less
  • 1 College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
  • 2 Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
  • 3 Chengdu Xinan Women’s Hospital, Jinjiang District, Chengdu, China

Correspondence should be addressed to W Zeng: zengwenxian2015@126.com or to H Lu: lhz780823@snut.edu.cn or to X Meng: 281623851@qq.com

*(X Chen and Q Sun contributed equally to this work)

Restricted access

Infertility caused by male factors is routinely diagnosed by assessing traditional semen parameters. Growing evidence has indicated that the tsRNAs carried in sperm act as epigenetic factors and potential biomarkers for the assessment of sperm quality. We recently demonstrated that tRNAGln-TTG derived small RNAs played notable roles in the first cleavage of a porcine embryo. However, the function of human sperm tRNAGln-TTG derived small RNAs as a diagnostic biomarker and its role in early embryo development remains unclear. In this study, we found that human sperm tRNAGln-TTG derived small RNAs were highly associated with sperm quality. By microinjecting the antisense sequence into human tripronuclear (3PN) zygotes followed by single-cell RNA-sequencing, we found that human sperm tRNAGln-TTG derived small RNAs participated in the development of a human embryo. Furthermore, Gln-TTGs might influence embryonic genome activation by modulating noncoding RNA processing. These findings demonstrated that human sperm tRNAGln-TTG derived small RNAs could be potential diagnostic biomarkers and could be used as a clinical target for male infertility.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 1340 1340 636
Full Text Views 54 54 31
PDF Downloads 40 40 23
  • Abe KI, Funaya S, Tsukioka D, Kawamura M, Suzuki Y, Suzuki MG, Schultz RM & Aoki F 2018 Minor zygotic gene activation is essential for mouse preimplantation development. PNAS 115 E6780E6788. (https://doi.org/10.1073/pnas.1804309115)

    • Search Google Scholar
    • Export Citation
  • Adamson GD, De Mouzon J, Chambers GM, Zegers-Hochschild F, Mansour R, Ishihara O, Banker M & Dyer S 2018 International Committee for Monitoring Assisted Reproductive Technology: world report on assisted reproductive technology, 2011. Fertility and Sterility 110 10671080. (https://doi.org/10.1016/j.fertnstert.2018.06.039)

    • Search Google Scholar
    • Export Citation
  • Balaban B, Brison D, Calderon G, Catt J, Conaghan J, Cowan L, Ebner T, Gardner D, Hardarson T & Lundin K 2011 The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Human Reproduction 26 12701283. (https://doi.org/10.1093/humrep/der037)

    • Search Google Scholar
    • Export Citation
  • Balakier H 1993 Tripronuclear human zygotes: the first cell cycle and subsequent development. Human Reproduction 8 1892189 7. (https://doi.org/10.1093/oxfordjournals.humrep.a137955)

    • Search Google Scholar
    • Export Citation
  • Boostanfar R, Shapiro B, Levy M, Rosenwaks Z, Witjes H, Stegmann BJ, Elbers J, Gordon K, Mannaerts BPursue Investigators 2015 Large, comparative, randomized double-blind trial confirming noninferiority of pregnancy rates for corifollitropin alfa compared with recombinant follicle-stimulating hormone in a gonadotropin-releasing hormone antagonist controlled ovarian stimulation protocol in older patients undergoing in vitro fertilization. Fertility and Sterility 104 94.e1–103.e1. (https://doi.org/10.1016/j.fertnstert.2015.04.018)

    • Search Google Scholar
    • Export Citation
  • Chen Q, Yan MH, Cao ZH, Li X, Zhang YF, Shi JC, Feng GH, Peng HY, Zhang XD & Zhang Y 2016a Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351 397400. (https://doi.org/10.1126/science.aad7977)

    • Search Google Scholar
    • Export Citation
  • Chen Q, Yan W & Duan EK 2016b Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nature Reviews: Genetics 17 733743. (https://doi.org/10.1038/nrg.2016.106)

    • Search Google Scholar
    • Export Citation
  • Chen X, Zheng Y, Lei A, Zhang H, Niu H, Li X, Zhang P, Liao M, Lv Y & Zhu Z 2020 Early cleavage of preimplantation embryos is regulated by tRNA(Gln-TTG)-derived small RNAs present in mature spermatozoa. Journal of Biological Chemistry 295 10885–10900. (https://doi.org/10.1074/jbc.RA120.013003)

    • Search Google Scholar
    • Export Citation
  • Dahl JA, Jung I, Aanes H, Greggains GD, Manaf A, Lerdrup M, Li G, Kuan S, Li B & Lee AY 2016 Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537 548552. (https://doi.org/10.1038/nature19360)

    • Search Google Scholar
    • Export Citation
  • Eckersley-Maslin MA, Alda-Catalinas C & Reik W 2018 Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nature Reviews: Molecular Cell Biology 19 436450. (https://doi.org/10.1038/s41580-018-0008-z)

    • Search Google Scholar
    • Export Citation
  • Emara MM, Ivanov P, Hickman T, Dawra N, Tisdale S, Kedersha N, Hu GF & Anderson P 2010 Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. Journal of Biological Chemistry 285 1095910968. (https://doi.org/10.1074/jbc.M109.077560)

    • Search Google Scholar
    • Export Citation
  • Fricker R, Brogli R, Luidalepp H, Wyss L, Fasnacht M, Joss O, Zywicki M, Helm M, Schneider A & Cristodero M 2019 A tRNA half modulates translation as stress response in Trypanosoma brucei. Nature Communications 10 118. (https://doi.org/10.1038/s41467-018-07949-6)

    • Search Google Scholar
    • Export Citation
  • Fu HJ, Feng JJ, Liu Q, Sun F, Tie Y, Zhu J, Xing RY, Sun ZX & Zheng XF 2009 Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Letters 583 437442. (https://doi.org/10.1016/j.febslet.2008.12.043)

    • Search Google Scholar
    • Export Citation
  • Godia M, Swanson G & Krawetz SA 2018 A history of why fathers’ RNA matters. Biology of Reproduction 99 147159. (https://doi.org/10.1093/biolre/ioy007)

    • Search Google Scholar
    • Export Citation
  • Goodarzi H, Liu XH, Nguyen HCB, Zhang S, Fish L & Tavazoie SF 2015 Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 161 790802. (https://doi.org/10.1016/j.cell.2015.02.053)

    • Search Google Scholar
    • Export Citation
  • Goodrich R, Johnson G & Krawetz SA 2007 The preparation of human spermatozoal RNA for clinical analysis. Archives of Andrology 53 16116 7. (https://doi.org/10.1080/01485010701216526)

    • Search Google Scholar
    • Export Citation
  • Graf A, Krebs S, Heininen-Brown M, Zakhartchenko V, Blum H & Wolf E 2014 Genome activation in bovine embryos: review of the literature and new insights from RNA sequencing experiments. Animal Reproduction Science 149 4658. (https://doi.org/10.1016/j.anireprosci.2014.05.016)

    • Search Google Scholar
    • Export Citation
  • Hennebicq S, Blagosklonov O, Eustache F, Papaxanthos A, Drouineaud V, Guillemain C, Mirallie S, Delepine B, Rives N & Berthaut I 2018 Donor sperm insemination after failed intra-couple intracytoplasmic sperm injection. Systems Biology in Reproductive Medicine 64 130137. (https://doi.org/10.1080/19396368.2017.1382608)

    • Search Google Scholar
    • Export Citation
  • Hu L, Du J, Lv H, Zhao J, Chen M, Wang Y, Wu F, Liu F, Chen X & Zhang J 2018 Influencing factors of pregnancy loss and survival probability of clinical pregnancies conceived through assisted reproductive technology. Reproductive Biology and Endocrinology 16 74. (https://doi.org/10.1186/s12958-018-0390-6)

    • Search Google Scholar
    • Export Citation
  • Hua M, Liu W, Chen Y, Zhang F, Xu B, Liu S, Chen G, Shi H & Wu L 2019 Identification of small non-coding RNAs as sperm quality biomarkers for in vitro fertilization. Cell Discovery 5 20. (https://doi.org/10.1038/s41421-019-0087-9)

    • Search Google Scholar
    • Export Citation
  • Ivanov P, Emara MM, Villen J, Gygi SP & Anderson P 2011 Angiogenin-induced tRNA fragments inhibit translation initiation. Molecular Cell 43 613623. (https://doi.org/10.1016/j.molcel.2011.06.022)

    • Search Google Scholar
    • Export Citation
  • Jenkins TG, Aston KI, Meyer TD, Hotaling JM, Shamsi MB, Johnstone EB, Cox KJ, Stanford JB, Porucznik CA & Carrell DT 2016 Decreased fecundity and sperm DNA methylation patterns. Fertility and Sterility 105 51 .e157 .e1. (https://doi.org/10.1016/j.fertnstert.2015.09.013)

    • Search Google Scholar
    • Export Citation
  • Jenkins TG, Aston KI, James ER & Carrell DT 2017 Sperm epigenetics in the study of male fertility, offspring health, and potential clinical applications. Systems Biology in Reproductive Medicine 63 6976. (https://doi.org/10.1080/19396368.2016.1274791)

    • Search Google Scholar
    • Export Citation
  • Jodar M, Sendler E, Moskovtsev SI, Librach CL, Goodrich R, Swanson S, Hauser R, Diamond MP & Krawetz SA 2015 Absence of sperm RNA elements correlates with idiopathic male infertility. Science Translational Medicine 7 295re6. (https://doi.org/10.1126/scitranslmed.aab1287)

    • Search Google Scholar
    • Export Citation
  • Kelley AS, Qin Y, Marsh EE & Dupree JM 2019 Disparities in accessing infertility care in the United States: results from the National Health and Nutrition Examination Survey, 2013–2016. Fertility and Sterility 112 562568. (https://doi.org/10.1016/j.fertnstert.2019.04.044)

    • Search Google Scholar
    • Export Citation
  • Kim HK, Fuchs G, Wang SC, Wei W, Zhang Y, Park H, Roy-Chaudhuri B, Li P, Xu JP & Chu K 2017 A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature 552 57–62. (https://doi.org/10.1038/nature25005)

    • Search Google Scholar
    • Export Citation
  • Li L, Lu X & Dean J 2013 The maternal to zygotic transition in mammals. Molecular Aspects of Medicine 34 9199 38. (https://doi.org/10.1016/j.mam.2013.01.003)

    • Search Google Scholar
    • Export Citation
  • Liu X, Wang C, Liu W, Li J, Li C, Kou X, Chen J, Zhao Y, Gao H & Wang H 2016 Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537 558562. (https://doi.org/10.1038/nature19362)

    • Search Google Scholar
    • Export Citation
  • Mortimer D 2018 The functional anatomy of the human spermatozoon: relating ultrastructure and function. Molecular Human Reproduction 24 567592. (https://doi.org/10.1093/molehr/gay040)

    • Search Google Scholar
    • Export Citation
  • Munne S & Cohen J 1998 Chromosome abnormalities in human embryos. Human Reproduction Update 4 8428 55. (https://doi.org/10.1093/humupd/4.6.842)

    • Search Google Scholar
    • Export Citation
  • Olds-Clarke P 2003 Unresolved issues in mammalian fertilization. International Review of Cytology 232 1291 84. (https://doi.org/10.1016/s0074-7696(0332004-2)

    • Search Google Scholar
    • Export Citation
  • Ostrup O, Olbricht G, Ostrup E, Hyttel P, Collas P & Cabot R 2013 RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions. PLoS ONE 8 e61547. (https://doi.org/10.1371/journal.pone.0061547)

    • Search Google Scholar
    • Export Citation
  • Peng HY, Shi JC, Zhang Y, Zhang H, Liao SY, Li W, Lei L, Han CS, Ning LN & Cao YJ 2012 A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Research 22 16091612. (https://doi.org/10.1038/cr.2012.141)

    • Search Google Scholar
    • Export Citation
  • Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S & Sandberg R 2014 Full-length RNA-seq from single cells using Smart-seq2. Nature Protocols 9 171181. (https://doi.org/10.1038/nprot.2014.006)

    • Search Google Scholar
    • Export Citation
  • Platts AE, Dix DJ, Chemes HE, Thompson KE, Goodrich R, Rockett JC, Rawe VY, Quintana S, Diamond MP & Strader LF 2007 Success and failure in human spermatogenesis as revealed by teratozoospermic RNAs. Human Molecular Genetics 16 7637 7 3. (https://doi.org/10.1093/hmg/ddm012)

    • Search Google Scholar
    • Export Citation
  • Schulz KN & Harrison MM 2019 Mechanisms regulating zygotic genome activation. Nature Reviews: Genetics 20 221234. (https://doi.org/10.1038/s41576-018-0087-x)

    • Search Google Scholar
    • Export Citation
  • Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW & Sun FY 2016 Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351 391396. (https://doi.org/10.1126/science.aad6780)

    • Search Google Scholar
    • Export Citation
  • Sharma U, Sun F, Conine CC, Reichholf B, Kukreja S, Herzog VA, Ameres SL & Rando OJ 2018 Small RNAs are trafficked from the epididymis to developing mammalian sperm. Developmental Cell 46 481 .e6494.e6. (https://doi.org/10.1016/j.devcel.2018.06.023)

    • Search Google Scholar
    • Export Citation
  • Sobala A & Hutvagner G 2011 Transfer RNA-derived fragments: origins, processing, and functions. Wiley Interdisciplinary Reviews: RNA 2 853862. (https://doi.org/10.1002/wrna.96)

    • Search Google Scholar
    • Export Citation
  • Tadros W & Lipshitz HD 2009 The maternal-to-zygotic transition: a play in two acts. Development 136 303330 42. (https://doi.org/10.1242/dev.033183)

    • Search Google Scholar
    • Export Citation
  • Turner KA, Rambhatla A, Schon S, Agarwal A, Krawetz SA, Dupree JM & Avidor-Reiss T 2020 Male infertility is a women’s health issue-research and clinical evaluation of male infertility is needed. Cells 9 990. (https://doi.org/10.3390/cells9040990)

    • Search Google Scholar
    • Export Citation
  • Wu J, Huang B, Chen H, Yin Q, Liu Y, Xiang Y, Zhang B, Liu B, Wang Q & Xia W 2016 The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534 65265 7. (https://doi.org/10.1038/nature18606)

    • Search Google Scholar
    • Export Citation
  • Yamasaki S, Ivanov P, Hu GF & Anderson P 2009 Angiogenin cleaves tRNA and promotes stress-induced translational repression. Journal of Cell Biology 185 3542. (https://doi.org/10.1083/jcb.200811106)

    • Search Google Scholar
    • Export Citation
  • Yan L, Yang M, Guo H, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X & Yan J 2013 Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nature Structural and Molecular Biology 20 1131113 9. (https://doi.org/10.1038/nsmb.2660)

    • Search Google Scholar
    • Export Citation
  • Zhang B, Zheng H, Huang B, Li W, Xiang Y, Peng X, Ming J, Wu X, Zhang Y & Xu Q 2016 Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537 553557. (https://doi.org/10.1038/nature19361)

    • Search Google Scholar
    • Export Citation