Palmitoylated GLB1L4 transfers via exosomes to maintain sperm function in rat epididymis

in Reproduction
View More View Less
  • 1 College of Animal Science and Technology, Northwest A&F University, Yangling, China
  • 2 Shaanxi Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Northwest A&F University, Yangling, China
  • 3 College of Forestry, Northwest A&F University, Yangling, China
  • 4 Shaanxi Stem Cell Engineering Research Center, Northwest A&F University, Yangling, China

Correspondence should be addressed to W Dong: dongwuzi@nwsuaf.edu.cn or to F Yang: yangfangxia@nwsuaf.edu.cn

*(D Dong and J Yang contributed equally to this study)

Restricted access

Epididymal specific proteins play a crucial role in sperm maturation. Some of the post-translational modified proteins are transported from the caput to the cauda of the epididymis through exosomes which regulate the function of sperm in cauda epididymis. Rat beta-galactosidase-1-like protein 4 (GLB1L4) expressed specifically in the caput epididymis, localizes on the sperm; however, the regulatory ways in which GLB1L4 protein interacts with sperm to maintain sperm function are unclear. In this study, knockdown of rat GLB1L4 could inhibit in vitro capacitation of sperm in cauda epididymis and reduce the fertility of the male rats by injection of special lentivirus-shRNA into caput epididymis. Moreover, a considerable proportion of GLB1L4 proteins from rat caput epididymis were loaded on exosomes. The exosomes loaded GLB1L4 from in vitro primary rat caput epididymal epithelial cells could bind with spermatozoa in cauda epididymis. Further, the palmitoylation status of cysteine residues at the 12th and 15th sites of the protein molecule could significantly affect cellular localization of GLB1L4 protein. It was identified that most of GLB1L4 was palmitoylated in the presence of exosomes from primary caput epididymal cells and the level of palmitoylated GLB1L4 in the exosomes could be inhibited by 2-bromopalmitate (2-BP). These results suggested that the palmitoylated GLB1L4 from rat caput epididymis could be transported to the cauda epididymis to regulate the sperm function by exosomes.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 585 585 585
Full Text Views 11 11 11
PDF Downloads 12 12 12
  • Araki Y, Suzuki K, Matusik RJ, Obinata M & Orgebin-Crist MC 2002 Immortalized epididymal cell lines from transgenic mice overexpressing temperature-sensitive simian virus 40 large T-antigen gene. Journal of Andrology 23 854869. (https://doi.org/10.1002/j.1939-4640.2002.tb02344.x)

    • Search Google Scholar
    • Export Citation
  • Björkgren I & Sipilä P 2019 The impact of epididymal proteins on sperm function. Reproduction 158 R155R167. (https://doi.org/10.1530/REP-18-0589)

    • Search Google Scholar
    • Export Citation
  • Chamberlain LH & Shipsto MJ 2015 The physiology of protein S-acylation. Physiological Reviews 95 341376. (https://doi.org/10.1152/physrev.00032.2014)

    • Search Google Scholar
    • Export Citation
  • Chou MI, Hsieh YF, Wang M, Chang JT, Chang D, Zoual Mi & Tsay GJ 2010 In vitro and in vivo targeted delivery of IL-10 interfering RNA by JC virus-like particles. Journal of Biomedical Science 17 51. (https://doi.org/10.1186/1423-0127-17-51)

    • Search Google Scholar
    • Export Citation
  • Cooper TG 1998 Interactions between epididymal secretions and spermatozoa. Journal of Reproduction and Fertility: Supplement 53 119136. (https://doi.org/10.1023/A:1022582422932)

    • Search Google Scholar
    • Export Citation
  • Copreni E, Penzo M, Carrabino S & Conese M 2004 Lentivirus-mediated gene transfer to the respiratory epithelium: a promising approach to gene therapy of cystic fibrosis. Gene Therapy 11 (Supplement 1) S67S75. (https://doi.org/10.1038/sj.gt.3302372)

    • Search Google Scholar
    • Export Citation
  • Coumoul X & Deng CX 2006 RNAi in mice: a promising approach to decipher gene functions in vivo. Biochimie 88 637643. (https://doi.org/10.1016/j.biochi.2005.11.010)

    • Search Google Scholar
    • Export Citation
  • Das S, Saha S, Majumder GC & Dungdung SR 2010 Purification and characterization of a sperm motility inhibiting factor from caprine epididymal plasma. PLoS ONE 5 e12039. (https://doi.org/10.1371/journal.pone.0012039)

    • Search Google Scholar
    • Export Citation
  • Day CP, Carter J, Bonomi C, Esposito D, Crise B, Ortiz-Conde B, Hollingshead M & Merlino G 2009 Lentivirus-mediated bifunctional cell labeling for in vivo melanoma study. Pigment Cell and Melanoma Research 22 283295. (https://doi.org/10.1111/j.1755-148X.2009.00545.x)

    • Search Google Scholar
    • Export Citation
  • Du J, Wang L, Wang Y, Shen J, Pan C, Meng Y, Yang C, Ji H & Dong W 2016 Autophagy and apoptosis induced by Chinese giant salamander (Andrias davidianus) Iridovirus (CGSIV). Veterinary Microbiology 195 8795. (https://doi.org/10.1016/j.vetmic.2016.09.011)

    • Search Google Scholar
    • Export Citation
  • Dungdung SR & Majumder GC 2003 Isolation and identification of a novel motility-inhibiting factor from goat cauda sperm plasma membrane. Cellular and Molecular Biology 49 413420.

    • Search Google Scholar
    • Export Citation
  • Dunphy JT & Linder ME Signalling functions of protein palmitoylation 1998. Biochimica et Biophysica Acta 1436 245261. (https://doi.org/10.1016/s0005-2760(9800130-1)

    • Search Google Scholar
    • Export Citation
  • Eickhoff R, Wilhelm B, Renneberg H, Wennemuth G, Bacher M, Linder D, Bucal Ra, Seitz J & Meinhardt A 2001 Purification and characterization of macrophage migration inhibitory factor as a secretory protein from rat epididymis: evidences for alternative release and transfer to spermatozoa. Molecular Medicine 7 2735. (https://doi.org/10.1007/BF03401836)

    • Search Google Scholar
    • Export Citation
  • Ellerbrock K, Pera I, Hartung S & Ivell R 1994 Gene expression in the dog epididymis: a model for human epididymal function. International Journal of Andrology 17 314323. (https://doi.org/10.1111/j.1365-2605.1994.tb01262.x)

    • Search Google Scholar
    • Export Citation
  • Fan X, Rai A, Kambham N, Sung JF, Singh N, Petitt M, Dhal S, Agrawal R, Sutton RE & Druzin ML 2014 Endometrial VEGF induces placental sFLT1 and leads to pregnancy complications. Journal of Clinical Investigation 124 49414952. (https://doi.org/10.1172/JCI76864)

    • Search Google Scholar
    • Export Citation
  • Frenette G, Girouard J & Sullivan R 2006 Comparison between epididymosomes collected in the intraluminal compartment of the bovine caput and cauda epididymidis. Biology of Reproduction 75 885890. (https://doi.org/10.1095/biolreprod.106.054692)

    • Search Google Scholar
    • Export Citation
  • Frka K, Facchinello N, Del Vecchio C, Carpi A, Curtarello M, Venerando R, Angelin A, Parolin C, Bernardi P & Bonaldo P 2009 Lentiviral-mediated RNAi in vivo silencing of Col6a1, a gene with complex tissue specific expression pattern. Journal of Biotechnology 141 817. (https://doi.org/10.1016/j.jbiotec.2009.02.013)

    • Search Google Scholar
    • Export Citation
  • Gao H, Gao Y, Pang W, Pa Cn, Ji H & Dong W 2018 Iridoviral infection can be reduced by UCHL1-loaded exosomes from the testis of Chinese giant salamanders (Andrias davidianus). Veterinary Microbiology 224 5057. (https://doi.org/10.1016/j.vetmic.2018.08.025)

    • Search Google Scholar
    • Export Citation
  • Ghosh P, Mukherjee S, Bhoumik A & Dungdung SR 2018 A novel epididymal quiescence factor inhibits sperm motility by modulating NOS activity and intracellular NO-cGMP pathway. Journal of Cellular Physiology 233 43454359. (https://doi.org/10.1002/jcp.26275)

    • Search Google Scholar
    • Export Citation
  • Grillo CA, Tamashiro KL, Piroli GG, Melhorn S, Gass JT, Newsom RJ, Reznikov LR, Smith A, Wilson SP & Sakai RR 2007 Lentivirus-mediated downregulation of hypothalamic insulin receptor expression. Physiology and Behavior 92 691701. (https://doi.org/10.1016/j.physbeh.2007.05.043)

    • Search Google Scholar
    • Export Citation
  • Hannoush RN & Sun J 2010 The chemical toolbox for monitoring protein fatty acylation and prenylation. Nature Chemical Biology 6 498506. (https://doi.org/10.1038/nchembio.388)

    • Search Google Scholar
    • Export Citation
  • Harper SQ & Gonzalez-Alegre P 2008 Lentivirus-mediated RNA interference in mammalian neurons. Methods in Molecular Biology 442 95112. (https://doi.org/10.1007/978-1-59745-191-8_8)

    • Search Google Scholar
    • Export Citation
  • Hunnicutt GR, Koppel DE & Myles DG 1997 Analysis of the process of localization of fertilin to the sperm posterior head plasma membrane domain during sperm maturation in the epididymis. Developmental Biology 191 146159. (https://doi.org/10.1006/dbio.1997.8700)

    • Search Google Scholar
    • Export Citation
  • Jennings BC, Nadolski MJ, Ling Y, Baker MB, Harrison ML, Deschenes RJ & Linder ME 2009 2-Bromopalmitate and 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one inhibit DHHC-mediated palmitoylation in vitro. Journal of Lipid Research 50 233242. (https://doi.org/10.1194/jlr.M800270-JLR200)

    • Search Google Scholar
    • Export Citation
  • Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z & Lin H 2018 Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chemical Reviews 118 919–988. (https://doi.org/10.1021/acs.chemrev.6b00750)

    • Search Google Scholar
    • Export Citation
  • Jones R 1998 Plasma membrane structure and remodelling during sperm maturation in the epididymis. Journal of Reproduction and Fertility: Supplement 53 7384. (https://doi.org/10.1023/A:1022582422932)

    • Search Google Scholar
    • Export Citation
  • Koch S, Acebron SP, Herbst J, Hatiboglu G & Niehrs C 2015 Post-transcriptional Wnt signaling governs epididymal sperm maturation. Cell 163 12251236. (https://doi.org/10.1016/j.cell.2015.10.029)

    • Search Google Scholar
    • Export Citation
  • Krapf D, Ruan YC, Wertheimer EV, Battistone MA, Pawlak JB, Sanjay A, Pilder SH, Cuasnicu P, Breton S & Visconti PE 2012 cSrc is necessary for epididymal development and is incorporated into sperm during epididymal transit. Developmental Biology 369 4353. (https://doi.org/10.1016/j.ydbio.2012.06.017)

    • Search Google Scholar
    • Export Citation
  • Lanyon-Hogg T, Faronato M, Serwa RA & Tate EW 2017 Dynamic protein acylation: new substrates, mechanisms, and drug targets. Trends in Biochemical Sciences 42 566581. (https://doi.org/10.1016/j.tibs.2017.04.004)

    • Search Google Scholar
    • Export Citation
  • María-Eugenia Z & Gisou VDGF 2018 The molecular era of protein S-acylation: spotlight on structure, mechanisms, and dynamics. Critical Reviews in Biochemistry and Molecular Biology 53 420–451. (https://doi.org/10.1080/10409238.2018.1488804)

    • Search Google Scholar
    • Export Citation
  • Milligan G, Parenti M & Magee AI 1995 The dynamic role of palmitoylation in signal transduction. Trends in Biochemical Sciences 20 181187. (https://doi.org/10.1016/s0968-0004(0089004-0)

    • Search Google Scholar
    • Export Citation
  • Moreno-Gonzalo O, Fernandez-Delgado I & Sanchez-Madrid F 2018 Post-translational add-ons mark the path in exosomal protein sorting. Cellular and Molecular Life Sciences 75 119. (https://doi.org/10.1007/s00018-017-2690-y)

    • Search Google Scholar
    • Export Citation
  • Mühlbauer M, Cheely AW, Yenugu S & Jobin C 2008 Regulation and functional impact of lipopolysaccharide induced Nod2 gene expression in the murine epididymal epithelial cell line PC1. Immunology 124 256264. (https://doi.org/10.1111/j.1365-2567.2007.02763.x)

    • Search Google Scholar
    • Export Citation
  • Myles DG & Primakoff P 1984 Localized surface antigens of guinea pig sperm migrate to new regions prior to fertilization. Journal of Cell Biology 99 16341641. (https://doi.org/10.1083/jcb.99.5.1634)

    • Search Google Scholar
    • Export Citation
  • Myles DG, Koppel DE, Cowan AE, Phelps BM & Primakoff P 1987 Rearrangement of sperm surface antigens prior to fertilization. Annals of the New York Academy of Sciences 513 262273. (https://doi.org/10.1111/j.1749-6632.1987.tb25014.x)

    • Search Google Scholar
    • Export Citation
  • Nguyen TH, Bellodi-Privato M, Aubert D, Pichard V, Myara A, Trono D & Ferry N 2005 Therapeutic lentivirus-mediated neonatal in vivo gene therapy in hyperbilirubinemic Gunn rats. Molecular Therapy 12 852859. (https://doi.org/10.1016/j.ymthe.2005.06.482)

    • Search Google Scholar
    • Export Citation
  • Ni Y, Zhou Y, Chen WY, Zheng M, Yu J, Li C, Zhang Y & Shi QX 2009 HongrES1, a cauda epididymis-specific protein, is involved in capacitation of guinea pig sperm. Molecular Reproduction and Development 76 984993. (https://doi.org/10.1002/mrd.21063)

    • Search Google Scholar
    • Export Citation
  • Oh TK, Li MZ & Kim ST 2006 Gene therapy for diabetes mellitus in rats by intramuscular injection of lentivirus containing insulin gene. Diabetes Research and Clinical Practice 71 233240. (https://doi.org/10.1016/j.diabres.2005.08.005)

    • Search Google Scholar
    • Export Citation
  • Percherancier Y, Planchenault T, Valenzuela-Fernandez A, Virelizier JL, Arenzana-Seisdedos F & Bachelerie F 2001 Palmitoylation-dependent control of degradation, life span, and membrane expression of the CCR5 receptor. Journal of Biological Chemistry 276 3193631944. (https://doi.org/10.1074/jbc.M104013200)

    • Search Google Scholar
    • Export Citation
  • Resh MD 1999 Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochimica et Biophysica Acta 1451 116. (https://doi.org/10.1016/s0167-4889(9900075-0)

    • Search Google Scholar
    • Export Citation
  • Resh MD 2006 Use of analogs and inhibitors to study the functional significance of protein palmitoylation. Methods 40 191197. (https://doi.org/10.1016/j.ymeth.2006.04.013)

    • Search Google Scholar
    • Export Citation
  • Roberts KP, Wamstad JA, Ensrud KM & Hamilton DW 2003 Inhibition of capacitation-associated tyrosine phosphorylation signaling in rat sperm by epididymal protein Crisp-1. Biology of Reproduction 69 572581. (https://doi.org/10.1095/biolreprod.102.013771)

    • Search Google Scholar
    • Export Citation
  • Roberts KP, Ensrud KM, Wooters JL, Nolan MA, Johnston DS & Hamilton DW 2006 Epididymal secreted protein Crisp-1 and sperm function. Molecular and Cellular Endocrinology 250 122127. (https://doi.org/10.1016/j.mce.2005.12.034)

    • Search Google Scholar
    • Export Citation
  • Rodríguez CM, Kirby JL & Hinton BT 2001 Regulation of gene transcription in the epididymis. Reproduction 122 4148. (https://doi.org/10.1530/rep.0.1220041)

    • Search Google Scholar
    • Export Citation
  • Romancino DP, Buffa V, Caruso S, Ferrara I, Raccosta S, Notaro A, Campos Y, Noto R, Martorana V & Cupane A 2018 Palmitoylation is a post-translational modification of Alix regulating the membrane organization of exosome-like small extracellular vesicles. Biochimica et Biophysica Acta: General Subjects 1862 28792887. (https://doi.org/10.1016/j.bbagen.2018.09.004)

    • Search Google Scholar
    • Export Citation
  • Saewu A, Kadunganattil S, Raghupathy R, Kongmanas K, Diaz-Astudillo P, Hermo L & Tanphaichitr N 2017 Clusterin in the mouse epididymis: possible roles in sperm maturation and capacitation. Reproduction 154 867880. (https://doi.org/10.1530/REP-17-0518)

    • Search Google Scholar
    • Export Citation
  • Shen B, Wu N, Yang JM & Gould SJ 2011 Protein targeting to exosomes/microvesicles by plasma membrane anchors. Journal of Biological Chemistry 286 1438314395. (https://doi.org/10.1074/jbc.M110.208660)

    • Search Google Scholar
    • Export Citation
  • Shibata T, Hadano J, Kawasaki D, Dong X & Kawabata SI 2017 Drosophila TG-A transglutaminase is secreted via an unconventional Golgi-independent mechanism involving exosomes and two types of fatty acylations. Journal of Biological Chemistry 292 1072310734. (https://doi.org/10.1074/jbc.M117.779710)

    • Search Google Scholar
    • Export Citation
  • Sipilä P, Pujianto DA, Shariatmadari R, Nikkilä J, Lehtoranta M, Huhtaniemi IT & Poutanen M 2006 Differential endocrine regulation of genes enriched in initial segment and distal caput of the mouse epididymis as revealed by genome-wide expression profiling. Biology of Reproduction 75 240251. (https://doi.org/10.1095/biolreprod.105.047811)

    • Search Google Scholar
    • Export Citation
  • Snyder EM, Small CL, Bomgardner D, Xu B, Evanoff R, Griswold MD & Hinton BT 2010 Gene expression in the efferent ducts, epididymis, and vas deferens during embryonic development of the mouse. Developmental Dynamics 239 24792491. (https://doi.org/10.1002/dvdy.22378)

    • Search Google Scholar
    • Export Citation
  • Song Y, Zhang Z, Yu X, Yan M, Zhang X, Gu S, Stuart T, Liu C, Reiser J & Zhang Y 2006 Application of lentivirus-mediated RNAi in studying gene function in mammalian tooth development. Developmental Dynamics 235 13341344. (https://doi.org/10.1002/dvdy.20706)

    • Search Google Scholar
    • Export Citation
  • Sullivan R 2016 Epididymosomes: role of extracellular microvesicles in sperm maturation. Frontiers in Bioscience 8 106114. (https://doi.org/10.2741/s450)

    • Search Google Scholar
    • Export Citation
  • Sullivan R & Mieusset R 2016 The human epididymis: its function in sperm maturation. Human Reproduction Update 22 574587. (https://doi.org/10.1093/humupd/dmw015)

    • Search Google Scholar
    • Export Citation
  • Sullivan R, Frenette G & Girouard J 2007 Epididymosomes are involved in the acquisition of new sperm proteins during epididymal transit. Asian Journal of Andrology 9 483491. (https://doi.org/10.1111/j.1745-7262.2007.00281.x)

    • Search Google Scholar
    • Export Citation
  • Szabo-Taylor K, Ryan B, Osteikoetxea X, Szabo TG, Soda Br, Holub M, Nemeth A, Paloczi K, Pallinger É & Winyard P 2015 Oxidative and other posttranslational modifications in extracellular vesicle biology. Seminars in Cell and Developmental Biology 40 816. (https://doi.org/10.1016/j.semcdb.2015.02.012)

    • Search Google Scholar
    • Export Citation
  • Towne C & Aebischer P 2009 Lentiviral and adeno-associated vector-based therapy for motor neuron disease through RNAi. Methods in Molecular Biology 555 87108. (https://doi.org/10.1007/978-1-60327-295-7_7)

    • Search Google Scholar
    • Export Citation
  • van Hooijdonk LW, Ichwan M, Dijkmans TF, Schouten TG, de Backer MW, Adan RA, Verbeek FJ, Vreugdenhil E & Fitzsimons CP 2009 Lentivirus-mediated transgene delivery to the hippocampus reveals sub-field specific differences in expression. BMC Neuroscience 10 2. (https://doi.org/10.1186/1471-2202-10-2)

    • Search Google Scholar
    • Export Citation
  • Verweij FJ, De Heus C, Kroeze S, Cai H, Kieff E, Piersma SR, Jimenez CR, Middeldorp JM & Pegtel DM 2015 Exosomal sorting of the viral oncoprotein LMP1 is restrained by TRAF2 association at signalling endosomes. Journal of Extracellular Vesicles 4 26334. (https://doi.org/10.3402/jev.v4.26334)

    • Search Google Scholar
    • Export Citation
  • Vreeburg JT, Holland MK, Cornwall GA & Orgebin-Crist MC 1990 Secretion and transport of mouse epididymal proteins after injection of 35S-methionine. Biology of Reproduction 43 113120. (https://doi.org/10.1095/biolreprod43.1.113)

    • Search Google Scholar
    • Export Citation
  • Wan J, Roth AF, Bailey AO & Davis NG 2007 Palmitoylated proteins: purification and identification. Nature Protocols 2 15731584. (https://doi.org/10.1038/nprot.2007.225)

    • Search Google Scholar
    • Export Citation
  • Wang F, Chen L, Mao ZB, Shao JG, Tan C & Huang WD 2008 Lentivirus-mediated short hairpin RNA targeting the APRIL gene suppresses the growth of pancreatic cancer cells in vitro and in vivo. Oncology Reports 20 135139. (https://doi.org/10.3892/or.20.1.135)

    • Search Google Scholar
    • Export Citation
  • Wang YH, Wang ZX, Qiu Y, Xiong J, Chen YX, Miao DS & De W 2009 Lentivirus-mediated RNAi knockdown of insulin-like growth factor-1 receptor inhibits growth, reduces invasion, and enhances radiosensitivity in human osteosarcoma cells. Molecular and Cellular Biochemistry 327 257266. (https://doi.org/10.1007/s11010-009-0064-y)

    • Search Google Scholar
    • Export Citation
  • Wang Z, Luo J, Wang W, Zhao W & Lin X 2010 Characterization and culture of isolated primary dairy goat mammary gland epithelial cells. Sheng Wu Gong Cheng Xue Bao 26 11231127.

    • Search Google Scholar
    • Export Citation
  • Webb Y, Hermida-Matsumoto L & Resh MD 2000 Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. Journal of Biological Chemistry 275 261270. (https://doi.org/10.1074/jbc.275.1.261)

    • Search Google Scholar
    • Export Citation
  • Xie SM, Fang WY, Liu Z, Wang SX, Li X, Liu TF, Xie WB & Yao KT 2008 Lentivirus-mediated RNAi silencing targeting ABCC2 increasing the sensitivity of a human nasopharyngeal carcinoma cell line against cisplatin. Journal of Translational Medicine 6 55. (https://doi.org/10.1186/1479-5876-6-55)

    • Search Google Scholar
    • Export Citation
  • Xie S, Xu J, Ma W, Liu Q, Han J, Yao G, Huang X & Zhang Y 2013 Lcn5 promoter directs the region-specific expression of cre recombinase in caput epididymidis of transgenic mice. Biology of Reproduction 88 71. (https://doi.org/10.1095/biolreprod.112.104034)

    • Search Google Scholar
    • Export Citation
  • Xu W, Zhang X, Chen W, Fok KL, Rowlands DK, Chui YL & Chan HC 2010 Immunization with Bin1b decreases sperm motility with compromised fertility in rats. Fertility and Sterility 93 0-9580. (https://doi.org/10.1016/j.fertnstert.2008.10.066)

    • Search Google Scholar
    • Export Citation
  • Yang W, Di Vizio D, Kirchner M, Steen H & Freeman MR 2010 Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. Molecular and Cellular Proteomics 9 5470. (https://doi.org/10.1074/mcp.M800448-MCP200)

    • Search Google Scholar
    • Export Citation
  • Young LG & Goodman SA 1982 Analysis of lipid and protein components of ejaculated bull sperm surface and seminal plasma. Gamete Research 6 281291. (https://doi.org/10.1002/mrd.1120060310)

    • Search Google Scholar
    • Export Citation
  • Yu ZY, McKay K, Van Asperen P, Zheng M, Fleming J, Ginn SL, Kizana E, Latham M, Feneley MP & Kirkland PD 2007 Lentivirus vector-mediated gene transfer to the developing bronchiolar airway epithelium in the fetal lamb. Journal of Gene Medicine 9 429439. (https://doi.org/10.1002/jgm.1039)

    • Search Google Scholar
    • Export Citation
  • Zhen W, Li P, He B, Guo J & Zhang YL 2009 The novel epididymis-specific beta-galactosidase-like gene Glb1l4 is essential in epididymal development and sperm maturation in rats. Biology of Reproduction 80 696706. (https://doi.org/10.1095/biolreprod.108.071589)

    • Search Google Scholar
    • Export Citation
  • Zhou Y, Zheng M, Shi Q, Zhang L, Zhen W, Chen W & Zhang Y 2008 An epididymis-specific secretory protein HongrES1 critically regulates sperm capacitation and male fertility. PLoS ONE 3 e4106. (https://doi.org/10.1371/journal.pone.0004106)

    • Search Google Scholar
    • Export Citation
  • Zhou W, De Iuliis GN, Dun MD & Nixon B 2018 Characteristics of the epididymal luminal environment responsible for sperm maturation and storage. Frontiers in Endocrinology 9 59. (https://doi.org/10.3389/fendo.2018.00059)

    • Search Google Scholar
    • Export Citation
  • Zhu CF, Liu Q, Zhang L, Yuan HX, Zhen W, Zhang JS, Chen ZJ, Hall SH, French FS & Zhang YL 2007 RNase9, an androgen-dependent member of the RNase A family, is specifically expressed in the rat epididymis. Biology of Reproduction 76 6373. (https://doi.org/10.1095/biolreprod.106.054635)

    • Search Google Scholar
    • Export Citation