Impact of nicotinamide mononucleotide on transplanted mouse ovarian tissue

in Reproduction
View More View Less
  • 1 Fertility and Research Centre, School of Women’s and Children’s Health, University of New South Wales Sydney, New South Wales, Australia
  • 2 Laboratory for Ageing Research, School of Medical Sciences, University of New South Wales Sydney, New South Wales, Australia
  • 3 Reproductive Services, Royal Women’s Hospital, Melbourne IVF, Melbourne, Victoria, Australia

Correspondence should be addressed to R B Gilchrist; Email: r.gilchrist@unsw.edu.au
Restricted access

Ovarian tissue cryopreservation and future transplantation is the only strategy to preserve the fertility of young female adolescent and prepubertal patients. The primary challenge to ovarian graft longevity is the substantial loss of primordial follicles during the period of ischaemia post-transplantation. Nicotinamide mononucleotide (NMN), a precursor of the essential metabolite NAD+, is known to reduce ischaemic damage. Therefore, the objective of the current study was to assess the impact of short- and long-term NMN administration on follicle number and health following ovarian tissue transplantation. Hemi-ovaries from C57Bl6 mice (n = 8–12/group) were transplanted under the kidney capsule of bilaterally ovariectomised severe combined immunodeficient (SCID) mice. Recipient mice were administered either normal drinking water or water supplemented with NMN (2 g/L) for either 14 or 56 days. At the end of each treatment period, ovarian transplants were collected. There was no effect of NMN on the resumption of oestrous or length of oestrous cycles. Transplantation significantly reduced the total number of follicles with the greatest impact observed at the primordial follicle stage. We report that NMN did not prevent this loss. While NMN did not significantly impact the proportion of apoptotic follicles, NMN normalised PCNA expression at the primordial and intermediate stages but not at later stages. In conclusion, NMN administration did not prevent ovarian follicle loss under the conditions of this study.

Supplementary Materials

    • Supplementary Figure: Follicle numbers in Day 0 non-transplanted control ovaries and in ovarian grafts in recipients administered either normal water or water supplemented with NMN (2g/L). On Day 14 (A) and Day 56 (B) ovarian transplants were collected and follicle number per section was determined and compared to Day 0 non-transplanted tissue. Data are presented as mean ± 95% CI. ***, P < 0.0001; **, P < 0.001; *, P < 0.05.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 906 906 126
Full Text Views 87 87 13
PDF Downloads 60 60 12
  • Amorim CA, David A, Dolmans MM, Camboni A, Donnez J & Van Langendonckt A 2011 Impact of freezing and thawing of human ovarian tissue on follicular growth after long-term xenotransplantation. Journal of Assisted Reproduction and Genetics 28 11571165. (https://doi.org/10.1007/s10815-011-9672-z)

    • Search Google Scholar
    • Export Citation
  • Anderson RA & Wallace WHB 2011 Fertility preservation in girls and young women. Clinical Endocrinology 75 409419. (https://doi.org/10.1111/j.1365-2265.2011.04100.x)

    • Search Google Scholar
    • Export Citation
  • Anderson RA, Mitchell RT, Kelsey TW, Spears N, Telfer EE & Wallace WHB 2015 Cancer treatment and gonadal function: experimental and established strategies for fertility preservation in children and young adults. Lancet: Diabetes and Endocrinology 3 556567. (https://doi.org/10.1016/S2213-8587(1500039-X)

    • Search Google Scholar
    • Export Citation
  • Ayunandari S, Winkler-Crepaz K, Paulitsch M, Wagner C, Zavadil C, Manzi C, Ziehr SC, Wildt L & Hofer-Tollinger S 2016 Follicular growth after xenotransplantation of cryopreserved/thawed human ovarian tissue in SCID mice: dynamics and molecular aspects. Journal of Assisted Reproduction and Genetics 33 15851593. (https://doi.org/10.1007/s10815-016-0769-2)

    • Search Google Scholar
    • Export Citation
  • Baird DT, Webb R, Campbell BK, Harkness LM & Gosden RG 1999 Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at -196C. Endocrinology 140 462471. (https://doi.org/10.1210/endo.140.1.6453)

    • Search Google Scholar
    • Export Citation
  • Bertoldo MJ, Bernard J, Duffard N, Tsikis G, Alves S, Calais L, Uzbekova S, Monniaux D, Mermillod P & Locatelli Y 2016a Inhibitors of c-jun phosphorylation impede ovine primordial follicle activation. Molecular Human Reproduction 22 338349. (https://doi.org/10.1093/molehr/gaw012)

    • Search Google Scholar
    • Export Citation
  • Bertoldo MJ, Guibert E, Faure M, Guillou F, Rame C, Nadal-Desbarats L, Foretz M, Viollet B, Dupont J & Froment P 2016b Specific deletion of AMP-activated protein kinase (α1AMPK) in mouse Sertoli cells modifies germ cell quality. Molecular and Cellular Endocrinology 423 96112. (https://doi.org/10.1016/j.mce.2016.01.001)

    • Search Google Scholar
    • Export Citation
  • Bertoldo MJ, Caldwell ASL, Riepsamen AH, Lin D, Gonzalez MB, Robker RL, Ledger WL, Gilchrist RB, Handelsman DJ & Walters KA 2019 A hyperandrogenic environment causes intrinsic defects that are detrimental to follicular dynamics in a PCOS mouse model. Endocrinology 160 699715. (https://doi.org/10.1210/en.2018-00966)

    • Search Google Scholar
    • Export Citation
  • Bertoldo MJ, Listijono DR, Ho W-HJ, Riepsamen AH, Goss DM, Richani D, Jin XL, Mahbub S, Campbell JM & Habibalahi A et al. 2020 NAD+ repletion rescues female fertility during reproductive aging. Cell Reports 30 1670 .e71681.e7. (https://doi.org/10.1016/j.celrep.2020.01.058)

    • Search Google Scholar
    • Export Citation
  • Bonkowski MS & Sinclair DA 2016 Slowing aging by design: the rise of NAD+ and sirtuin-activating compounds. Nature Reviews: Molecular Cell Biology 17 679690. (https://doi.org/10.1038/nrm.2016.93)

    • Search Google Scholar
    • Export Citation
  • Canto C, Menzies KJ & Auwerx J 2015 NAD+ metabolism and teh control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metabolism 22 3153. (https://doi.org/10.1016/j.cmet.2015.05.023)

    • Search Google Scholar
    • Export Citation
  • Cozzi A, Cipriani G, Fossati S, Faraco G, Formentini L, Min W, Cortes U, Wang ZQ, Moroni F & Chiarugi A 2006 Poly(ADP-ribose) accumulation and enhancement of postischemic brain damage in 110-kDa poly(ADP-ribose) glycohydrolase null mice. Journal of Cerebral Blood Flow and Metabolism 26 684695. (https://doi.org/10.1038/sj.jcbfm.9600222)

    • Search Google Scholar
    • Export Citation
  • Das A, Huang GX, Bonkowski MS, Longchamp A, Li C, Schultz MB, Kim L-J, Osborne B, Joshi S & Lu Y et al. 2018 Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging. Cell 173 74 .e2089.e20. (https://doi.org/10.1016/j.cell.2018.02.008)

    • Search Google Scholar
    • Export Citation
  • Dath C, Van Eyck AS, Dolmans MM, Romeu L, Delle Vigne L, Donnez J & Van Langendonckt A 2010 Xenotransplantation of human ovarian tissue to nude mice: comparison between four grafting sites. Human Reproduction 25 17341743. (https://doi.org/10.1093/humrep/deq131)

    • Search Google Scholar
    • Export Citation
  • De Vos M, Smitz J & Woodruff TK 2014 Fertility preservation in women with cancer. Lancet 384 13021310. (https://doi.org/10.1016/S0140-6736(1460834-5)

    • Search Google Scholar
    • Export Citation
  • Di Emildio G, Falone S, Vitti M, D'Alessandro AM, Vento M, Di Pietro C, Amicarelli F & Tatone C 2014 SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging. Human Reproduction 29 20062017. (https://doi.org/10.1093/humrep/deu160)

    • Search Google Scholar
    • Export Citation
  • Dolmans MM, Martinez-Madrid B, Gadisseux E, Guiot Y, Yuan WY, Torre A, Camboni A, Van Langendonckt A & Donnez J 2007 Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction 134 253262. (https://doi.org/10.1530/REP-07-0131)

    • Search Google Scholar
    • Export Citation
  • Donnez J & Dolmans MM 2010 Cryopreservation and transplantation of ovarian tissue. Clinical Obstetrics and Gynecology 53 787796. (https://doi.org/10.1097/GRF.0b013e3181f97a55)

    • Search Google Scholar
    • Export Citation
  • Donnez J & Dolmans MM 2014 Transplantation of ovarian tissue. Best Practice and Research Clinical Obstetrics and Gynaecology 28 11881197. (https://doi.org/10.1016/j.bpobgyn.2014.09.003)

    • Search Google Scholar
    • Export Citation
  • Donnez J & Dolmans MM 2017 Fertility preservation in women. New England Journal of Medicine 377 16571665. (https://doi.org/10.1056/NEJMra1614676)

    • Search Google Scholar
    • Export Citation
  • Eliasson MJ, Kampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM & Snyder SH et al. 1997 Poly(ADP-robose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nature Medicine 3 10891095. (https://doi.org/10.1038/nm1097-1089)

    • Search Google Scholar
    • Export Citation
  • Endres M, Wang ZQ, Namura S, Waeber C & Moskowitz MA 1997 Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. Journal of Cerebral Blood Flow and Metabolism 17 11431151. (https://doi.org/10.1097/00004647-199711000-00002)

    • Search Google Scholar
    • Export Citation
  • Fang EF, Lautrop S, Hou Y, Demarest TG, Croteau DL, Mattson MP & Bohr VA 2017 NAD+ in aging: molecular mechanisms and translational implications. Trends in Molecular Medicine 23 899916. (https://doi.org/10.1016/j.molmed.2017.08.001)

    • Search Google Scholar
    • Export Citation
  • Gao JM, Yan J, Li R, Li M, Yan LY, Wang TR, Zhao HC, Zhao Y, Yu Y & Qiao J 2013 Improvement in teh quality of heterotopic allotranplanted mouse ovarian tissues with basic fibroblast growth factor and fibrin hydrogel. Human Reproduction 28 27842793. (https://doi.org/10.1093/humrep/det296)

    • Search Google Scholar
    • Export Citation
  • Gavish Z, Peer G, Roness H, Cohen Y & Meirow D 2014 Follicle activation and ‘burn-out’ contribute to post-transplantation follicle loss in ovarian tissue grafts: the effect of graft thickness. Human Reproduction 29 989996. (https://doi.org/10.1093/humrep/deu015)

    • Search Google Scholar
    • Export Citation
  • Gavish Z, Spector I, Peer G, Schlatt S, Wistuba J, Roness H & Meirow D 2018 Follicle activation is a significant and immediate cause of follicle loss after ovarian tissue transplantation. Journal of Assisted Reproduction and Genetics 35 6169. (https://doi.org/10.1007/s10815-017-1079-z)

    • Search Google Scholar
    • Export Citation
  • Gook DA, McCully BA, Edgar DH & McBain JC 2001 Development of antral follicles in human cryopreserved ovarian tissue following xenografting. Human Reproduction 16 417422. (https://doi.org/10.1093/humrep/16.3.417)

    • Search Google Scholar
    • Export Citation
  • Ho WHJ, Listijono D, Bertoldo MJ, Li SYC, Youngsen N, Brady N, Kordowitzki P, Turner N, Morris MJ & Gilchrist RB et al. 2017 Protection and restoration of female fertility during gonadotoxic chemotherapy by elevating NAD+. In Proceedings of the 48th Annual Conference of the Society for Reproductive Biology, Perth, Australia.

    • Search Google Scholar
    • Export Citation
  • Iljas JD, Wei Z & Homer HA 2020 Sirt1 sustains female fertility by slowing age-related decline in oocyte quality required for post-fertilization embryo development. Aging Cell 19 e13204. (https://doi.org/10.1111/acel.13204)

    • Search Google Scholar
    • Export Citation
  • Jeruss JS & Woodruff TK 2009 Preservation of fertility in cancer patients. New England Journal of Medicine 360 902911. (https://doi.org/10.1056/NEJMra0801454)

    • Search Google Scholar
    • Export Citation
  • Lee J, Kong HS, Kim EJ, Youm HW, Lee JR, Suh CS & Kim SH 2016 Ovarian injury during cryopreservation and transplantation in mice: a comparative study between cryoinjury and ischemic injury. Human Reproduction 31 18271837. (https://doi.org/10.1093/humrep/dew144)

    • Search Google Scholar
    • Export Citation
  • Liang J, Wang P, Wei J, Bao C & Han D 2015 Nicotinamide mononucleotide adenylyltransferase 1 protects neural cells against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke through AMP-activated protein kinase activation. Neurochemical Research 40 11021110. (https://doi.org/10.1007/s11064-015-1569-2)

    • Search Google Scholar
    • Export Citation
  • Liu J, Van der Elst J, Van den Broecke R & Dhont M 2002 Early massive follicle loss and apoptosis in heterotopically grafted newborn mouse ovaries. Human Reproduction 17 605611. (https://doi.org/10.1093/humrep/17.3.605)

    • Search Google Scholar
    • Export Citation
  • Mahmoodi M, Mehranjani MS, Shariatzadeh SMA, Eimani H & Shahverdi A 2015 N-acetylcysteine improves function and follicular survival in mice ovarian grafts through inhibition of oxidative stress. Reproductive Biomedicine Online 30 101110. (https://doi.org/10.1016/j.rbmo.2014.09.013)

    • Search Google Scholar
    • Export Citation
  • Marinova MB, Ho W-HJ, Bertoldo MJ, Selesniemi K, Homer HA, Walsh WR, Sinclair DA, Walters KA, Gilchrist RB & Wu LE 2020 NMN supplementation rescues chemotherapy induced bone ageing. In Proceedings of the Cold Spring Harbour Laboratory Mechanisms of Aging Conference.

    • Search Google Scholar
    • Export Citation
  • Martinez-Madrid B, Donnez J, Van Eyck AS, Veiga-Lopez A, Dolmans MM & Van Langendonckt A 2009 Chick embryo chorioallantoic membrane (CAM) model: a useful tool to study short-term transplantation of cryopreserved human ovarian tissue. Fertility and Sterility 91 285292. (https://doi.org/10.1016/j.fertnstert.2007.11.026)

    • Search Google Scholar
    • Export Citation
  • McCord JM 1985 Oxygen-derived free radicals in postischemic tissue injury. New England Journal of Medicine 312 159163. (https://doi.org/10.1056/NEJM198501173120305)

    • Search Google Scholar
    • Export Citation
  • Meirow D, Ra'anani H & Biderman H 2014 Ovarian tissue cryopreservation and transplantation: a realistic, effective technology for fertility preservation. Methods in Molecular Biology 1154 455473. (https://doi.org/10.1007/978-1-4939-0659-8_21)

    • Search Google Scholar
    • Export Citation
  • Miao Y, Cui Z, Gao Q, Rui R & Xiong B 2020 Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes. Cell Reports 32 107987. (https://doi.org/10.1016/j.celrep.2020.107987)

    • Search Google Scholar
    • Export Citation
  • Mori V, Amici A, Mazzola F, Di Stefano M, Conforti L, Magni G, Ruggieri S, Raffaelli N & Orsomando G 2014 Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues. PLoS ONE 9 e113939. (https://doi.org/10.1371/journal.pone.0113939)

    • Search Google Scholar
    • Export Citation
  • Myers M, Britt KL, Wreford NGM, Ebling FJP & Kerr JB 2004 Methods for quantifying follicular numbers within the mouse ovary. Reproduction 127 569580. (https://doi.org/10.1530/rep.1.00095)

    • Search Google Scholar
    • Export Citation
  • Ortega HH, Salvetti NR & Padmanabhan V 2009 Developmental programming: prenatal androgen excess disrupts ovarian steroid receptor balance. Reproduction 137 865877. (https://doi.org/10.1530/REP-08-0491)

    • Search Google Scholar
    • Export Citation
  • Park JH, Long A, Owens K & Kristian T 2016 Nicotinamide mononucleotide inhibits post-ischemic NAD+ degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiology of Disease 95 102110. (https://doi.org/10.1016/j.nbd.2016.07.018)

    • Search Google Scholar
    • Export Citation
  • Rajman L, Chwalek K & Sinclair DA 2018 Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metabolism 27 529547. (https://doi.org/10.1016/j.cmet.2018.02.011)

    • Search Google Scholar
    • Export Citation
  • Roness H & Meirow D 2019 Follicle reserve loss in ovarian tissue transplantation. Reproduction 158 F35F44. (https://doi.org/10.1530/REP-19-0097)

    • Search Google Scholar
    • Export Citation
  • Salvetti NR, Ortega HH, Veiga-Lopez A & Padmanabhan V 2012 Developmental programming: impact of prenatal testosterone excess on ovarian cell proliferation and apoptotic factors in sheep. Biology of Reproduction 87 22, 110. (https://doi.org/10.1095/biolreprod.112.100024)

    • Search Google Scholar
    • Export Citation
  • Smitz JEJ & Cortvrindt RG 2002 The earliest stages of folliculogenesis in vitro. Reproduction 123 185202. (https://doi.org/10.1530/rep.0.1230185)

    • Search Google Scholar
    • Export Citation
  • Stoop D, Cobo A & Silber S 2014 Fertility preservation for age-related fertility decline. Lancet 384 13111319. (https://doi.org/10.1016/S0140-6736(1461261-7)

    • Search Google Scholar
    • Export Citation
  • Stringer J, Groenewegen E, Liew SH & Hutt K 2020 NMN does not protect the ovarian reserve from cancer treatments. Reproduction 159 105113. (https://doi.org/10.1530/REP-19-0337)

    • Search Google Scholar
    • Export Citation
  • Tatone C, De Emilio G, Barbonetti A, Carta G, Luciano AM, Falone S & Amicarelli F 2018 Sirtuins in gamete biology and reproductive physiology: emerging roles and therapeutic potential in female and male infertility. Human Reproduction Update 24 267289. (https://doi.org/10.1093/humupd/dmy003)

    • Search Google Scholar
    • Export Citation
  • Tuncer AA, Bozkurt HF, Koken T, Dogan N, Pektas MK & Embleton DB 2016 The protective effects of alpha-lipoic acide and coenzyme Q10 combination on ovarian ischemia-reperfusion injury: an experimental study. Advances in Medicine 2016 3415046.

    • Search Google Scholar
    • Export Citation
  • Usta U, Inan M, Erbas H, Aydogdu N, Puyan FO & Altaner S 2008 Tissue damage in rat ovaries subjected to torsion and detorsion: effects of L-carnitine and N-acetyl cysteine. Pediatric Surgery International 24 567573. (https://doi.org/10.1007/s00383-008-2123-y)

    • Search Google Scholar
    • Export Citation
  • Van Eyck AS, Jordan BF, Gallez B, Heilier JF, Van Langendonckt A & Donnez J 2009 Electron paramagnetic resonance as a tool to evaluate human ovarian tissue reoxygenation after xenografting. Fertility and Sterility 92 374381. (https://doi.org/10.1016/j.fertnstert.2008.05.012)

    • Search Google Scholar
    • Export Citation
  • Van Eyck AS, Bouzin C, Feron O, Romeu L, Van Langendonckt A, Donnez J & Dolmans MM 2010 Both host and graft vessels contribute to revascularization of xenograft human ovarian tissue in a murine model. Fertility and Sterility 93 16761685. (https://doi.org/10.1016/j.fertnstert.2009.04.048)

    • Search Google Scholar
    • Export Citation
  • Walters KA, Allan CM, Jimenez M, Lim PR, Davey RA, Zajac JD, Illingworth P & Handelsman DJ 2007 Female mice haploinsufficient for an inactivated androgen receptor (AR) exhibit age-dependent defects that resemble the AR null phenotype of dysfunctional late follicle development, ovulation, and fertility. Endocrinology 148 36743684. (https://doi.org/10.1210/en.2007-0248)

    • Search Google Scholar
    • Export Citation
  • Wang P, Xu TY, Guan YF, Tian WW, Viollet B, Rui YC, Zhai QW, Su DF & Miao CY 2011 Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway. Annals of Neurology 69 360374. (https://doi.org/10.1002/ana.22236)

    • Search Google Scholar
    • Export Citation
  • Wei CC, Kong YY, Hua X, Li GQ, Zheng SL, Cheng MH, Wang P & Miao CY 2017 NAD replenishment with nicotinamide mononucleotide protects blood-brain barrier integrity and attenuates delayed tissue plasminogen activator-induced haemorrhagic transformation after cerebral ischaemia. British Journal of Pharmacology 174 38233836. (https://doi.org/10.1111/bph.13979)

    • Search Google Scholar
    • Export Citation
  • Yamamoto T, Byun J, Zhai P, Ikeda Y, Oka S & Sadoshima J 2014 Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS ONE 9 e98972. (https://doi.org/10.1371/journal.pone.0098972)

    • Search Google Scholar
    • Export Citation
  • Yang Q, Cong L, Wang Y, Luo X, Li H, Wang H, Zhu J, Dai S, Jin H & Yao G et al. 2020 Increasing ovarian NAD+ levels improve mitochondrial functions and reverse ovarian aging. Free Radical Biology and Medicine 156 110. (https://doi.org/10.1016/j.freeradbiomed.2020.05.003)

    • Search Google Scholar
    • Export Citation
  • Zhang Y, Xia X, Yan J, Yan L, Lu C, Zhu X, Wang T, Yin T, Li R & Chang HM et al. 2017 Mesemchymal stem cell-derived angiogenin promotes primordial follicle survival and angiogenesis in transplanted human ovarian tissue. Reproductive Biology and Endocrinology 15 18. (https://doi.org/10.1186/s12958-017-0235-8)

    • Search Google Scholar
    • Export Citation