Similarities between bovine and human germline development revealed by single-cell RNA sequencing

in Reproduction
View More View Less
  • 1 Department of Animal Science, University of California, Davis, California, USA

Correspondence should be addressed to P J Ross; Email: pross@ucdavis.edu
Restricted access

The germ cell lineage ensures the creation of new individuals and perpetuates the genetic information across generations. Primordial germ cells are pioneers of gametes and exist transiently during development until they differentiate into oogonia in females, or spermatogonia in males. Little is known about the molecular characteristics of primordial germ cells in cattle. By performing single-cell RNA-sequencing, quantitative real-time PCR, and immunofluorescence analyses of fetal gonads between 40 and 90 days of fetal age, we evaluated the molecular signatures of bovine germ cells at the initial stages of gonadal development. Our results indicate that at 50 days of fetal age, bovine primordial germ cells were in the early stages of development, expressing genes of early primordial germ cells, including transcriptional regulators of human germline specification (e.g. SOX17, TFAP2C, and PRDM1). Bovine and human primordial germ cells also share expression of KIT, EPCAM, ITGA6, and PDPN genes coding for membrane-bound proteins, and an asynchronous pattern of differentiation. Additionally, the expression of members of Notch, Nodal/Activin, and BMP signaling cascades in the bovine fetal ovary, suggests that these pathways are involved in the interaction between germ cells and their niche. Results of this study provide insights into the mechanisms involved in the development of bovine primordial germ cells and put in evidence similarities between the bovine and human germline.

Supplementary Materials

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 1535 1535 1535
Full Text Views 27 27 27
PDF Downloads 17 17 17
  • Aksoy I, Jauch R, Chen J, Dyla M, Divakar U, Bogu GK, Teo R, Leng Ng CK, Herath W & Lili S 2013 Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm. EMBO Journal 32 938953. (https://doi.org/10.1038/emboj.2013.31)

    • Search Google Scholar
    • Export Citation
  • Anderson RA, Fulton N, Cowan G, Coutts S & Saunders PTK 2007 Conserved and divergent patterns of expression of DAZL, VASA and OCT4 in the germ cells of the human fetal ovary and testis. BMC Developmental Biology 7 136. (https://doi.org/10.1186/1471-213X-7-136)

    • Search Google Scholar
    • Export Citation
  • Bartholomew RA & Parks JE 2007 Identification, localization, and sequencing of fetal bovine VASA homolog. Animal Reproduction Science 101 241251. (https://doi.org/10.1016/j.anireprosci.2006.09.017)

    • Search Google Scholar
    • Export Citation
  • Barton LJ, LeBlanc MG & Lehmann R 2016 Finding their way: themes in germ cell migration. Current Opinion in Cell Biology 42 128137. (https://doi.org/10.1016/j.ceb.2016.07.007)

    • Search Google Scholar
    • Export Citation
  • Birk OS, Caslano DE, Wassif CA, Cogilatl T, Zhaos L, Zhao Y, Grinberg A, Huang SP, Kreidberg JA, Parker KL et al. 2000 The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403 909913. (https://doi.org/10.1038/35002622)

    • Search Google Scholar
    • Export Citation
  • Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S, Yashiro K, Chawengsaksophak K, Wilson MJ & Rossant J 2006 Retinoid signaling determines germ cell fate in mice. Science 312 596600. (https://doi.org/10.1126/science.1125691)

    • Search Google Scholar
    • Export Citation
  • Campolo F, Gori M, Favaro R, Nicolis S, Pellegrini M, Botti F, Rossi P, Jannini EA & Dolci S 2013 Essential role of Sox2 for the establishment and maintenance of the germ cell line. Stem Cells 31 14081421. (https://doi.org/10.1002/stem.1392)

    • Search Google Scholar
    • Export Citation
  • Cantú AV & Laird DJ 2017 A pilgrim’s progress: seeking meaning in primordial germ cell migration. Stem Cell Research 24 181187. (https://doi.org/10.1016/j.scr.2017.07.017)

    • Search Google Scholar
    • Export Citation
  • Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen L & Steemers FJ 2019 The single-cell transcriptional landscape of mammalian organogenesis. Nature 566 496502. (https://doi.org/10.1038/s41586-019-0969-x)

    • Search Google Scholar
    • Export Citation
  • Chen D, Liu W, Zimmerman J, Pastor WA, Kim R, Hosohama L, Ho J, Aslanyan M, Gell JJ & Jacobsen SE 2018 The TFAP2C-regulated OCT4 naive enhancer is involved in human germline formation. Cell Reports 25 3591 .e53602.e5. (https://doi.org/10.1016/j.celrep.2018.12.011)

    • Search Google Scholar
    • Export Citation
  • Chen D, Sun N, Hou L, Kim R, Faith J, Aslanyan M, Tao Y, Zheng Y, Fu J & Liu W 2019 Human primordial germ cells are specified from lineage-primed progenitors. Cell Reports 29 4568 .e54582.e5. (https://doi.org/10.1016/j.celrep.2019.11.083)

    • Search Google Scholar
    • Export Citation
  • Delaney C, Schnell A, Cammarata LV, Yao‐Smith A, Regev A, Kuchroo VK & Singer M 2019 Combinatorial prediction of marker panels from single cell transcriptomic data. Molecular Systems Biology 15 e9005. (https://doi.org/10.15252/msb.20199005)

    • Search Google Scholar
    • Export Citation
  • DesCôteaux L, Gnemmi G & Colloton J 2009 Practical Atlas of Ruminant and Camelid Reproductive Ultrasonography. Ames, Iowa: Wiley-Blackwell. (https://doi.org/10.1002/9781119265818)

    • Search Google Scholar
    • Export Citation
  • Driancourt MA, Reynaud K, Cortvrindt R & Smitz J 2000 Roles of KIT and KIT LIGAND in ovarian function. Reviews of Reproduction 5 143152. (https://doi.org/10.1530/ror.0.0050143)

    • Search Google Scholar
    • Export Citation
  • Erickson BH 1966 Development and radio-response of the prenatal bovine ovary. Reproduction 11 97105. (https://doi.org/10.1530/jrf.0.0110097)

    • Search Google Scholar
    • Export Citation
  • Feng YM, Liang GJ, Pan B, Qin XS, Zhang XF, Chen CL, Li L, Cheng SF, De Felici M & Shen W 2014 Notch pathway regulates female germ cell meiosis progression and early oogenesis events in fetal mouse. Cell Cycle 13 782791. (https://doi.org/10.4161/cc.27708)

    • Search Google Scholar
    • Export Citation
  • Gokulakrishnan P, Kumar RR, Sharma BD, Mendiratta SK & Sharma D 2012 Sex determination of cattle meat by polymerase chain reaction amplification of the DEAD box protein (DDX3X/DDX3Y) gene. Asian-Australasian Journal of Animal Sciences 25 733737. (https://doi.org/10.5713/ajas.2012.12003)

    • Search Google Scholar
    • Export Citation
  • Gropp A & Ohno S 1966 The presence of a common embryonic blastema for ovarian and testicular parenchymal (follicular, interstitial and tubular) cells in cattle, Bos taurus. Zeitschrift für Zellforschung und Mikroskopische Anatomie 74 505528. (https://doi.org/10.1007/BF00496841)

    • Search Google Scholar
    • Export Citation
  • Guo F, Yan L, Guo H, Li L, Hu B, Zhao Y, Yong J, Hu Y, Wang X & Wei Y 2015 The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell 161 14371452. (https://doi.org/10.1016/j.cell.2015.05.015)

    • Search Google Scholar
    • Export Citation
  • Haab BB 2012 Using lectins in biomarker research: addressing the limitations of sensitivity and availability. Proteomics: Clinical Applications 6 346350. (https://doi.org/10.1002/prca.201200014)

    • Search Google Scholar
    • Export Citation
  • Hammes A, Guo JK, Lutsch G, Leheste JR, Landrock D, Ziegler U, Gubler MC & Schedl A 2001 Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106 319329. (https://doi.org/10.1016/s0092-8674(01)00453-6)

    • Search Google Scholar
    • Export Citation
  • Huang da W, Sherman BT & Lempicki RA 2009 Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4 4457. (https://doi.org/10.1038/nprot.2008.211)

    • Search Google Scholar
    • Export Citation
  • Hummitzsch K, Irving-Rodgers HF, Hatzirodos N, Bonner W, Sabatier L, Reinhardt DP, Sado Y, Ninomiya Y, Wilhelm D & Rodgers RJ 2013 A new model of development of the mammalian ovary and follicles. PLoS ONE 8 e55578. (https://doi.org/10.1371/journal.pone.0055578)

    • Search Google Scholar
    • Export Citation
  • Hu YC, Okumura LM & Page DC 2013 Gata4 Is Required for Formation of the Genital Ridge in Mice. PLoS Genetics 9 1003629. (https://doi.org/10.1371/journal.pgen.1003629)

    • Search Google Scholar
    • Export Citation
  • Ideta A, Yamashita S, Seki-Soma M, Yamaguchi R, Chiba S, Komaki H, Ito T, Konishi M, Aoyagi Y & Sendai Y 2016 Generation of exogenous germ cells in the ovaries of sterile NANOS3-null beef cattle. Scientific Reports 6 24983. (https://doi.org/10.1038/srep24983)

    • Search Google Scholar
    • Export Citation
  • Irie N, Weinberger L, Tang WWC, Kobayashi T, Viukov S, Manor YS, Dietmann S, Hanna JH & Surani MA 2015 SOX17 is a critical specifier of human primordial germ cell fate. Cell 160 253268. (https://doi.org/10.1016/j.cell.2014.12.013)

    • Search Google Scholar
    • Export Citation
  • Jameson SA, Natarajan A, Cool J, DeFalco T, Maatouk DM, Mork L, Munger SC & Capel B 2012 Temporal transcriptional profiling of somatic and germ cells reveals biased lineage priming of sexual fate in the fetal mouse gonad. PLoS Genetics 8 e1002575. (https://doi.org/10.1371/journal.pgen.1002575)

    • Search Google Scholar
    • Export Citation
  • Jorgez CJ, Klysik M, Jamin SP, Behringer RR & Matzuk MM 2004 Granulosa Cell-Specific Inactivation of Follistatin Causes Female Fertility Defects. Molecular Endocrinology 18 953967. (https://doi.org/10.1210/me.2003-0301)

    • Search Google Scholar
    • Export Citation
  • Kobayashi T & Surani MA 2018 On the origin of the human germline. Development 145 dev150433. (https://doi.org/10.1242/dev.150433)

  • Kobayashi T, Zhang H, Tang WWC, Irie N, Withey S, Klisch D, Sybirna A, Dietmann S, Contreras DA & Webb R 2017 Principles of early human development and germ cell program from conserved model systems. Nature 546 416420. (https://doi.org/10.1038/nature22812)

    • Search Google Scholar
    • Export Citation
  • Kojima Y, Sasaki K, Yokobayashi S, Sakai Y, Nakamura T, Yabuta Y, Nakaki F, Nagaoka S, Woltjen K & Hotta A 2017 Evolutionarily distinctive transcriptional and signaling programs drive human germ cell lineage specification from pluripotent stem cells. Cell Stem Cell 21 517 .e5532.e5. (https://doi.org/10.1016/j.stem.2017.09.005)

    • Search Google Scholar
    • Export Citation
  • Koubova J, Menke DB, Zhou Q, Cape B, Griswold MD & Page DC 2006 Retinoic acid regulates sex-specific timing of meiotic initiation in mice. PNAS 103 24742479. (https://doi.org/10.1073/pnas.0510813103)

    • Search Google Scholar
    • Export Citation
  • Kritzenberger M & Wrobel KH 2004 Histochemical in situ identification of bovine embryonic blood cells reveals differences to the adult haematopoietic system and suggests a close relationship between haematopoietic stem cells and primordial germ cells. Histochemistry and Cell Biology 121 273289. (https://doi.org/10.1007/s00418-004-0629-5)

    • Search Google Scholar
    • Export Citation
  • Kusaka M, Katoh-Fukui Y, Ogawa H, Miyabayashi K, Baba T, Shima Y, Sugiyama N, Sugimoto Y, Okuno Y, Kodama R et al. 2010 Abnormal epithelial cell polarity and ectopic Epidermal Growth Factor Receptor (EGFR) expression induced in Emx2 KO Embryonic Gonads. Endocrinology 151 58935904. (https://doi.org/10.1210/en.2010-0915)

    • Search Google Scholar
    • Export Citation
  • Lavoir MC, Basrur PK & Betteridge KJ 1994 Isolation and identification of germ cells from fetal bovine ovaries. Molecular Reproduction and Development 37 413424. (https://doi.org/10.1002/mrd.1080370408)

    • Search Google Scholar
    • Export Citation
  • Lawson KA, Dunn NR, Roelen BAJ, Zeinstra LM, Davis AM, Wright CVE, Korving JPWFM & Hogan BLM 1999 Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes and Development 13 424436. (https://doi.org/10.1101/gad.13.4.424)

    • Search Google Scholar
    • Export Citation
  • Lee WS, Otsuka F, Moore RK & Shimasaki S 2001 Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat1. Biology of Reproduction 65 994999. (https://doi.org/10.1095/biolreprod65.4.994)

    • Search Google Scholar
    • Export Citation
  • Leichthammer F, Baunack E & Brem G 1990 Behavior of living primordial germ cells of livestock in vitro. Theriogenology 33 12211230. (https://doi.org/10.1016/0093-691X(9090040-Z)

    • Search Google Scholar
    • Export Citation
  • Li L, Dong J, Yan L, Yong J, Liu X, Hu Y, Fan X, Wu X, Guo H & Wang X 2017 Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 20 858.e4873.e4. (https://doi.org/10.1016/j.stem.2017.03.007)

    • Search Google Scholar
    • Export Citation
  • Lin IY, Chiu FL, Yeang CH, Chen HF, Chuang CY, Yang SY, Hou PS, Sintupisut N, Ho HN & Kuo HC 2014 Suppression of the SOX2 neural effector gene by PRDM1 promotes human germ cell fate in embryonic stem cells. Stem Cell Reports 2 189204. (https://doi.org/10.1016/j.stemcr.2013.12.009)

    • Search Google Scholar
    • Export Citation
  • Lolicato F, Marino R, Paronetto MP, Pellegrini M, Dolci S, Geremia R & Grimaldi P 2008 Potential role of Nanos3 in maintaining the undifferentiated spermatogonia population. Developmental Biology 313 725738. (https://doi.org/10.1016/j.ydbio.2007.11.011)

    • Search Google Scholar
    • Export Citation
  • Luo X, Ikeda Y & Parker KL 1994 A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77 481490. (https://doi.org/10.1016/0092-8674(94)90211-9)

    • Search Google Scholar
    • Export Citation
  • Luo H, Zhou Y, Li Y & Li Q 2013 Splice variants and promoter methylation status of the bovine vasa homology (Bvh) gene may be involved in bull spermatogenesis. BMC Genetics 14 58. (https://doi.org/10.1186/1471-2156-14-58)

    • Search Google Scholar
    • Export Citation
  • McLaren A & Southee D 1997 Entry of mouse embryonic germ cells into meiosis. Developmental Biology 187 107113. (https://doi.org/10.1006/dbio.1997.8584)

    • Search Google Scholar
    • Export Citation
  • Miyamoto N, Yoshida M, Kuratani S, Matsuo I & Aizawa S 1997 Defects of urogenital development in mice lacking Emx2. Development 124 16531664.

  • Mork L, Maatouk D, McMahon JA, Guo JJ, Zhang P, McMahon AP, McMahon JA & Capel B 2012 Temporal differences in granulosa cell specification in the ovary reflect distinct follicle fates. Biology of Reproduction 87 128128. (https://doi.org/10.1095/biolreprod.111.095208)

    • Search Google Scholar
    • Export Citation
  • Nikolic A, Volarevic V, Armstrong L, Lako M & Stojkovic M 2016 Primordial germ cells: current knowledge and perspectives. Stem Cells International 2016 1741072. (https://doi.org/10.1155/2016/1741072)

    • Search Google Scholar
    • Export Citation
  • Nilsson EE & Skinner MK 2003 Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biology of Reproduction 69 12651272. (https://doi.org/10.1095/biolreprod.103.018671)

    • Search Google Scholar
    • Export Citation
  • Ohinata Y, Payer B, O’Carroll D, Ancelin K, Ono Y, Sano M, Barton SC, Obukhanych T, Nussenzweig M & Tarakhovsky A 2005 Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436 207213. (https://doi.org/10.1038/nature03813)

    • Search Google Scholar
    • Export Citation
  • Ohno S & Gropp A 1965 Embryological basis for germ cell chimerism in mammals. Cytogenetics 4 251261. (https://doi.org/10.1159/000129862)

  • Pauklin S & Vallier L 2015 Activin/nodal signalling in stem cells. Development 142 607619. (https://doi.org/10.1242/dev.091769)

  • Pennetier S, Uzbekova S, Perreau C, Papillier P, Mermillod P & Dalbiès-Tran R 2004 Spatio-temporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15,andVASA in adult bovine tissues, oocytes, and preimplantation embryos1. Biology of Reproduction 71 13591366. (https://doi.org/10.1095/biolreprod.104.030288)

    • Search Google Scholar
    • Export Citation
  • Pepling ME & Spradling AC 1998 Female mouse germ cells form synchronously dividing cysts. Development 125 33233328.

  • Perrett RM, Turnpenny L, Eckert JJ, O’Shea M, Sonne SB, Cameron IT, Wilson DI, Meyts ER-D & Hanley NA 2008 The early human germ cell lineage does not express SOX2 during in vivo development or upon in vitro culture1. Biology of Reproduction 78 852858. (https://doi.org/10.1095/biolreprod.107.066175)

    • Search Google Scholar
    • Export Citation
  • Rastetter RH, Bernard P, Palmer JS, Chassot AA, Chen H, Western PS, Ramsay RG, Chaboissier MC & Wilhelm D 2014 Marker genes identify three somatic cell types in the fetal mouse ovary. Developmental Biology 394 242252. (https://doi.org/10.1016/j.ydbio.2014.08.013)

    • Search Google Scholar
    • Export Citation
  • Rossi RODS, Costa JJN, Silva AWB, Saraiva MVA, Van Den Hurk R & Silva JRV 2016 The bone morphogenetic protein system and the regulation of ovarian follicle development in mammals. Zygote 24 117. (https://doi.org/10.1017/S096719941400077X)

    • Search Google Scholar
    • Export Citation
  • Saitou M, Barton SC & Surani MA 2002 A molecular programme for the specification of germ cell fate in mice. Nature 418 293300. (https://doi.org/10.1038/nature00927)

    • Search Google Scholar
    • Export Citation
  • Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, Kurimoto K, Ohta H, Moritoki Y, Iwatani C & Tsuchiya H 2015 Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 17 178194. (https://doi.org/10.1016/j.stem.2015.06.014)

    • Search Google Scholar
    • Export Citation
  • Sasaki K, Nakamura T, Okamoto I, Yabuta Y, Iwatani C, Tsuchiya H, Seita Y, Nakamura S, Shiraki N & Takakuwa T 2016 The germ cell fate of cynomolgus monkeys is specified in the nascent amnion. Developmental Cell 39 169185. (https://doi.org/10.1016/j.devcel.2016.09.007)

    • Search Google Scholar
    • Export Citation
  • Seki Y, Yamaji M, Yabuta Y, Sano M, Shigeta M, Matsui Y, Saga Y, Tachibana M, Shinkai Y & Saitou M 2007 Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development 134 26272638. (https://doi.org/10.1242/dev.005611)

    • Search Google Scholar
    • Export Citation
  • Sohni A, Tan K, Song HW, Burow D, de Rooij DG, Laurent L, Hsieh TC, Rabah R, Hammoud SS & Vicini E 2019 The neonatal and adult human testis defined at the single-cell level. Cell Reports 26 1501 .e41517.e4. (https://doi.org/10.1016/j.celrep.2019.01.045)

    • Search Google Scholar
    • Export Citation
  • Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius M, Smibert P & Satija R 2019 Comprehensive integration of single-cell data. Cell 177 1888 .e211902.e21. (https://doi.org/10.1016/j.cell.2019.05.031)

    • Search Google Scholar
    • Export Citation
  • Sugawa F, Araúzo Bravo MJ, Yoon J, Kim KP, Aramaki S, Wu G, Stehling M, Psathaki OE, Hübner K & Schöler HR 2015 Human primordial germ cell commitment in vitro associates with a unique PRDM14 expression profile. EMBO Journal 34 10091024. (https://doi.org/10.15252/embj.201488049)

    • Search Google Scholar
    • Export Citation
  • Sybirna A, Tang WWC, Pierson Smela M, Dietmann S, Gruhn WH, Brosh R & Surani MA 2020 A critical role of PRDM14 in human primordial germ cell fate revealed by inducible degrons. Nature Communications 11 1282. (https://doi.org/10.1038/s41467-020-15042-0)

    • Search Google Scholar
    • Export Citation
  • Tang WWC, Dietmann S, Irie N, Leitch HG, Floros VI, Bradshaw CR, Hackett JA, Chinnery PF & Surani MA 2015 A unique gene regulatory network resets the human germline epigenome for development. Cell 161 14531467. (https://doi.org/10.1016/j.cell.2015.04.053)

    • Search Google Scholar
    • Export Citation
  • Tang WWC, Kobayashi T, Irie N, Dietmann S & Surani MA 2016 Specification and epigenetic programming of the human germ line. Nature Reviews: Genetics 17 585600. (https://doi.org/10.1038/nrg.2016.88)

    • Search Google Scholar
    • Export Citation
  • Umeda R, Satouh Y, Takemoto M, Nakada-Nakura Y, Liu K, Yokoyama T, Shirouzu M, Iwata S, Nomura N & Sato K 2020 Structural insights into tetraspanin CD9 function. Nature Communications 11 1606. (https://doi.org/10.1038/s41467-020-15459-7)

    • Search Google Scholar
    • Export Citation
  • Vanorny DA & Mayo KE 2017 The role of Notch signaling in the mammalian ovary. Reproduction 153 R187R204. (https://doi.org/10.1530/REP-16-0689)

    • Search Google Scholar
    • Export Citation
  • Vanorny DA, Prasasya RD, Chalpe AJ, Kilen SM & Mayo KE 2014 Notch signaling regulates ovarian follicle formation and coordinates follicular growth. Molecular Endocrinology 28 499511. (https://doi.org/10.1210/me.2013-1288)

    • Search Google Scholar
    • Export Citation
  • Wagner M, Yoshihara M, Douagi I, Damdimopoulos A, Panula S, Petropoulos S, Lu H, Pettersson K, Palm K & Katayama S 2020 Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nature Communications 11 1147. (https://doi.org/10.1038/s41467-020-14936-3)

    • Search Google Scholar
    • Export Citation
  • Western P, Maldonado-Saldivia J, van den Bergen J, Hajkova P, Saitou M, Barton S & Surani MA 2005 Analysis of Esg1 expression in pluripotent cells and the germline reveals similarities with Oct4 and Sox2 and differences between human pluripotent cell lines. Stem Cells 23 14361442. (https://doi.org/10.1634/stemcells.2005-0146)

    • Search Google Scholar
    • Export Citation
  • Woods DC & Tilly JL 2013 Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries. Nature Protocols 8 966988. (https://doi.org/10.1038/nprot.2013.047)

    • Search Google Scholar
    • Export Citation
  • Wrobel KH & Süß F 1998 Identification and temporospatial distribution of bovine primordial germ cells prior to gonadal sexual differentiation. Anatomy and Embryology 197 451467. (https://doi.org/10.1007/s004290050156)

    • Search Google Scholar
    • Export Citation
  • Xu J & Gridley T 2013 Notch2 is required in somatic cells for breakdown of ovarian germ-cell nests and formation of primordial follicles. BMC Biology 11 13. (https://doi.org/10.1186/1741-7007-11-13)

    • Search Google Scholar
    • Export Citation
  • Yabuta Y, Kurimoto K, Ohinata Y, Seki Y & Saitou M 2006 Gene expression dynamics during germline specification in mice identified by quantitative single-cell gene expression profiling1. Biology of Reproduction 75 705716. (https://doi.org/10.1095/biolreprod.106.053686)

    • Search Google Scholar
    • Export Citation
  • Yamaji M, Seki Y, Kurimoto K, Yabuta Y, Yuasa M, Shigeta M, Yamanaka K, Ohinata Y & Saitou M 2008 Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nature Genetics 40 10161022. (https://doi.org/10.1038/ng.186)

    • Search Google Scholar
    • Export Citation
  • Yokobayashi S, Okita K, Nakagawa M, Nakamura T, Yabuta Y, Yamamoto T & Saitou M 2017 Clonal variation of human induced pluripotent stem cells for induction into the germ cell fate. Biology of Reproduction 96 11541166. (https://doi.org/10.1093/biolre/iox038)

    • Search Google Scholar
    • Export Citation
  • Zarate-Garcia L, Lane SIR, Merriman JA & Jones KT 2016 FACS-sorted putative oogonial stem cells from the ovary are neither DDX4-positive nor germ cells. Scientific Reports 6 27991. (https://doi.org/10.1038/srep27991)

    • Search Google Scholar
    • Export Citation
  • Zheng W, Zhang H, Gorre N, Risal S, Shen Y & Liu K 2014 Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions. Human Molecular Genetics 23 920928. (https://doi.org/10.1093/hmg/ddt486)

    • Search Google Scholar
    • Export Citation