Does supplementation with mitochondria improve oocyte competence? A systematic review

in Reproduction
View More View Less
  • 1 Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Praceta, Coimbra, Portugal
  • 2 University of Coimbra, Faculty of Medicine, Azinhaga de Santa Comba, Celas, Coimbra, Portugal
  • 3 CNC – Center for Neuroscience and Cell Biology, CIBB, Azinhaga de Santa Comba, Celas, University of Coimbra, Coimbra, Portugal
  • 4 PhD Programme in Experimental Biology and Biomedicine, IIIUC – Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
  • 5 Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal

Correspondence should be addressed to A F Ferreira; Email: filipaferreira44@gmail.com
Restricted access

Mitochondrial supplementation was proposed as a complementary treatment to assisted reproductive technologies to improve oocyte competence and support post-fertilization development. This strategy is based on the fact that poor-quality/aged oocytes contain lower and dysfunctional mitochondria. However, the efficacy and safety of mitochondrial supplementation are still controversial. Therefore, this review summarizes the clinical/biological outcomes of mitochondrial supplementation, aiming to improve oocyte competence or explore the safety of this technique, and was based on an online search using PubMed and Web of Science, until September 2019. The studies included reported outcomes related to the efficacy and safety of mitochondrial supplementation either in human or animal models (bovine, porcine and mouse). Extracted data were organized according to study objective, the mitochondrial source and the main outcomes: fertilization/pregnancy rates, embryo development and adverse outcomes. Clinical pregnancy was not improved in the only randomized controlled trial published, although an increase was demonstrated in other non-randomized studies. Fertilization rate and embryo development were not different from control groups in the majority of studies, although performed in different contexts and using diverse sources of mitochondria. The safety of mitochondria transfer is still a concern, however, the euploid rate and the absence of reported congenital malformation from the clinical studies are reassuring. In summary, mitochondrial supplementation does not seem to cause harm although the benefit of improving oocyte competence is still unclear due to the diversity of methodological approaches and low-quality of the data available. Analyzed data support the need to investigate further, in both pre-clinical and clinical contexts.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 218 218 218
Full Text Views 18 18 18
PDF Downloads 18 18 18
  • Barritt J, Willadsen S, Brenner C & Cohen J 2001a Cytoplasmic transfer in assisted reproduction. Human Reproduction Update 7 4284 35. (https://doi.org/10.1093/humupd/7.4.428)

    • Search Google Scholar
    • Export Citation
  • Barritt JA, Brenner CA, Malter HE & Cohen J 2001b Mitochondria in human offspring derived from ooplasmic transplantation. Human Reproduction 16 51351 6. (https://doi.org/10.1093/humrep/16.3.513)

    • Search Google Scholar
    • Export Citation
  • Benkhalifa M, Ferreira YJ, Chahine H, Louanjli N, Miron P, Merviel P & Copin H 2014 Mitochondria: participation to infertility as source of energy and cause of senescence. International Journal of Biochemistry and Cell Biology 55 606 4. (https://doi.org/10.1016/j.biocel.2014.08.011)

    • Search Google Scholar
    • Export Citation
  • Betteridge KJ 2006 Farm animal embryo technologies: achievements and perspectives. Theriogenology 65 9059 13. (https://doi.org/10.1016/j.theriogenology.2005.09.005)

    • Search Google Scholar
    • Export Citation
  • Brenner CA, Barritt JA, Willadsen S & Cohen J 2000 Mitochondrial DNA heteroplasmy after human ooplasmic transplantation. Fertility and Sterility 74 57357 8. (https://doi.org/10.1016/s0015-0282(0000681-6)

    • Search Google Scholar
    • Export Citation
  • Bristol-Gould SK, Kreeger PK, Selkirk CG, Kilen SM, Mayo KE, Shea LD & Woodruff TK 2006 Fate of the initial follicle pool: empirical and mathematical evidence supporting its sufficiency for adult fertility. Developmental Biology 298 1491 54. (https://doi.org/10.1016/j.ydbio.2006.06.023)

    • Search Google Scholar
    • Export Citation
  • Cagnone GL, Tsai TS, Makanji Y, Matthews P, Gould J, Bonkowski MS, Elgass KD, Wong AS, Wu LE & Mckenzie M 2016 Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency. Scientific Reports 6 23229. (https://doi.org/10.1038/srep23229)

    • Search Google Scholar
    • Export Citation
  • Cecchino GN, Seli E, Alves Da Motta EL & García-Velasco JA 2018 The role of mitochondrial activity in female fertility and assisted reproductive technologies: overview and current insights. Reproductive Biomedicine Online 36 686697. (https://doi.org/10.1016/j.rbmo.2018.02.007)

    • Search Google Scholar
    • Export Citation
  • Chan CC, Liu VW, Lau EY, Yeung WS, Ng EH & Ho PC 2005 Mitochondrial DNA content and 4977 bp deletion in unfertilized oocytes. Molecular Human Reproduction 11 84384 6. (https://doi.org/10.1093/molehr/gah243)

    • Search Google Scholar
    • Export Citation
  • Chiaratti MR, Ferreira CR, Perecin F, Meo SC, Sangalli JR, Mesquita LG, De Carvalho Balieiro JC, Smith LC, Garcia JM & Meirelles FV 2011 Ooplast-mediated developmental rescue of bovine oocytes exposed to ethidium bromide. Reproductive Biomedicine Online 22 1721 83. (https://doi.org/10.1016/j.rbmo.2010.10.011)

    • Search Google Scholar
    • Export Citation
  • Cohen J, Scott R, Schimmel T, Levron J & Willadsen S 1997 Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. Lancet 350 18618 7. (https://doi.org/10.1016/S0140-6736(0562353-7)

    • Search Google Scholar
    • Export Citation
  • Cohen J, Scott R, Alikani M, Schimmel T, Munne S, Levron J, Wu L, Brenner C, Warner C & Willadsen S 1998 Ooplasmic transfer in mature human oocytes. Molecular Human Reproduction 4 2692 80. (https://doi.org/10.1093/molehr/4.3.269)

    • Search Google Scholar
    • Export Citation
  • Cozzolino M, Marin D & Sisti G 2019 New Frontiers in IVF: mtDNA and autologous germline mitochondrial energy transfer. Reproductive Biology and Endocrinology 17 55. (https://doi.org/10.1186/s12958-019-0501-z)

    • Search Google Scholar
    • Export Citation
  • Dale B, Wilding M, Botta G, Rasile M, Marino M, Di Matteo L, De Placido G & Izzo A 2001 Pregnancy after cytoplasmic transfer in a couple suffering from idiopathic infertility: case report. Human Reproduction 16 146914 72. (https://doi.org/10.1093/humrep/16.7.1469)

    • Search Google Scholar
    • Export Citation
  • Darbandi S, Darbandi M, Khorshid HR, Sadeghi MR, Al-Hasani S, Agarwal A, Shirazi A, Heidari M & Akhondi MM 2016 Experimental strategies towards increasing intracellular mitochondrial activity in oocytes: a systematic review. Mitochondrion 30 817. (https://doi.org/10.1016/j.mito.2016.05.006)

    • Search Google Scholar
    • Export Citation
  • Darbandi S, Darbandi M, Khorram Khorshid HR, Sadeghi MR, Agarwal A, Sengupta P, Al-Hasani S & Akhondi MM 2017 Ooplasmic transfer in human oocytes: efficacy and concerns in assisted reproduction. Reproductive Biology and Endocrinology 15 77. (https://doi.org/10.1186/s12958-017-0292-z)

    • Search Google Scholar
    • Export Citation
  • Diez-Juan A, Rubio C, Marin C, Martinez S, Al-Asmar N, Riboldi M, Díaz-Gimeno P, Valbuena D & Simón C 2015 Mitochondrial DNA content as a viability score in human euploid embryos: less is better. Fertility and Sterility 104 534 .e154 1.e1. (https://doi.org/10.1016/j.fertnstert.2015.05.022)

    • Search Google Scholar
    • Export Citation
  • Dumoulin JC, Coonen E, Bras M, Van Wissen LC, Ignoul-Vanvuchelen R, Bergers-Jansen JM, Derhaag JG, Geraedts JP & Evers JL 2000 Comparison of in-vitro development of embryos originating from either conventional in-vitro fertilization or intracytoplasmic sperm injection. Human Reproduction 15 40240 9. (https://doi.org/10.1093/humrep/15.2.402)

    • Search Google Scholar
    • Export Citation
  • Duran HE, Simsek-Duran F, Oehninger SC, Jones HW Jr & Castora FJ 2011 The association of reproductive senescence with mitochondrial quantity, function, and DNA integrity in human oocytes at different stages of maturation. Fertility and Sterility 96 38438 8. (https://doi.org/10.1016/j.fertnstert.2011.05.056)

    • Search Google Scholar
    • Export Citation
  • Eichenlaub-Ritter U 1998 Genetics of oocyte ageing. Maturitas 30 1431 69. (https://doi.org/10.1016/s0378-5122(9800070-x)

  • Eichenlaub-Ritter U, Wieczorek M, Luke S & Seidel T 2011 Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions. Mitochondrion 11 7837 96. (https://doi.org/10.1016/j.mito.2010.08.011)

    • Search Google Scholar
    • Export Citation
  • Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M, Hultenby K, Rustin P, Gustafsson CM & Larsson NG 2004 Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Human Molecular Genetics 13 9359 44. (https://doi.org/10.1093/hmg/ddh109)

    • Search Google Scholar
    • Export Citation
  • El Shourbagy SH, Spikings EC, Freitas M & St John JC 2006 Mitochondria directly influence fertilisation outcome in the pig. Reproduction 131 2332 45. (https://doi.org/10.1530/rep.1.00551)

    • Search Google Scholar
    • Export Citation
  • Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S & St John JC 2007 Mitochondrial DNA replication during differentiation of murine embryonic stem cells. Journal of Cell Science 120 402540 34. (https://doi.org/10.1242/jcs.016972)

    • Search Google Scholar
    • Export Citation
  • Fakih MH, Shmoury ME, Szeptycki J, Dela Cruz DB, Lux C, Verjee S, Burgess CM, Cohn G & Casper R 2015 The AUGMENTSM treatment: physician reported outcomes of the initial global patient experience. Journal of Fertilization: In Vitro, IVF-Worldwide, Reproductive Medicine, Genitics and Stem Cell Biology 3 154. (https://doi.org/10.4172/2375-4508.1000154)

    • Search Google Scholar
    • Export Citation
  • Fragouli E, Spath K, Alfarawati S, Kaper F, Craig A, Michel CE, Kokocinski F, Cohen J, Munne S & Wells D 2015 Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genetics 11 e1005241. (https://doi.org/10.1371/journal.pgen.1005241)

    • Search Google Scholar
    • Export Citation
  • Giritharan G, Li MW, Di Sebastiano F, Esteban FJ, Horcajadas JA, Lloyd KC, Donjacour A, Maltepe E & Rinaudo PF 2010 Effect of ICSI on gene expression and development of mouse preimplantation embryos. Human Reproduction 25 301230 24. (https://doi.org/10.1093/humrep/deq266)

    • Search Google Scholar
    • Export Citation
  • Gonzalez-Grajales LA, Favetta LA, King WA & Mastromonaco GF 2016 Lack of effects of ooplasm transfer on early development of interspecies somatic cell nuclear transfer bison embryos. BMC Developmental Biology 16 36. (https://doi.org/10.1186/s12861-016-0137-6)

    • Search Google Scholar
    • Export Citation
  • Gosden RG 2004 Germline stem cells in the postnatal ovary: is the ovary more like a testis? Human Reproduction Update 10 19319 5. (https://doi.org/10.1093/humupd/dmh023)

    • Search Google Scholar
    • Export Citation
  • Gosden RG & Johnson MH 2016 Can oocyte quality be augmented? Reproductive Biomedicine Online 32 5515 55. (https://doi.org/10.1016/j.rbmo.2016.04.001)

    • Search Google Scholar
    • Export Citation
  • Hashimoto S, Morimoto N, Yamanaka M, Matsumoto H, Yamochi T, Goto H, Inoue M, Nakaoka Y, Shibahara H & Morimoto Y 2017 Quantitative and qualitative changes of mitochondria in human preimplantation embryos. Journal of Assisted Reproduction and Genetics 34 573580. (https://doi.org/10.1007/s10815-017-0886-6)

    • Search Google Scholar
    • Export Citation
  • Hendriks WK, Colleoni S, Galli C, Paris DBBP, Colenbrander B & Stout TAE 2019 Mitochondrial DNA replication is initiated at blastocyst formation in equine embryos. Reproduction, Fertility, and Development 31 570578. (https://doi.org/10.1071/RD17387)

    • Search Google Scholar
    • Export Citation
  • Hooijmans CR, Rovers MM, De Vries RB, Leenaars M, Ritskes-Hoitinga M & Langendam MW 2014 SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology 14 43. (https://doi.org/10.1186/1471-2288-14-43)

    • Search Google Scholar
    • Export Citation
  • Hoseini FS, Salsabili N, Akbari-Asbagh F, Aflatoonian R & Aghaee-Bakhtiari SH 2016 Comparison of gene expression profiles in human germinal vesicle before and after cytoplasmic transfer from mature oocytes in Iranian infertile couples. Journal of Family and Reproductive Health 10 717 9.

    • Search Google Scholar
    • Export Citation
  • Hua S, Zhang Y, Li XC, Ma LB, Cao JW, Dai JP & Li R 2007 Effects of granulosa cell mitochondria transfer on the early development of bovine embryos in vitro. Cloning and Stem Cells 9 2372 46. (https://doi.org/10.1089/clo.2006.0020)

    • Search Google Scholar
    • Export Citation
  • Hua S, Lu C, Song Y, Li R, Liu X, Quan F, Wang Y, Liu J, Su F & Zhang Y 2012 High levels of mitochondrial heteroplasmy modify the development of ovine-bovine interspecies nuclear transferred embryos. Reproduction, Fertility, and Development 24 50150 9. (https://doi.org/10.1071/RD11091)

    • Search Google Scholar
    • Export Citation
  • Huang CC, Cheng TC, Chang HH, Chang CC, Chen CI, Liu J & Lee MS 1999 Birth after the injection of sperm and the cytoplasm of tripronucleate zygotes into metaphase II oocytes in patients with repeated implantation failure after assisted fertilization procedures. Fertility and Sterility 72 70270 6. (https://doi.org/10.1016/s0015-0282(9900309-x)

    • Search Google Scholar
    • Export Citation
  • Huang R, Fang C, Jia L, Cao G, Zhang Z & Liang X 2018 Mitochondrial transfer from autologous bone marrow mesenchymal stem cells improves oocyte quality. Fertility and Sterility 110 (Supplement) E190. (https://doi.org/10.1016/j.fertnstert.2018.07.556)

    • Search Google Scholar
    • Export Citation
  • Igarashi H, Takahashi T, Takahashi E, Tezuka N, Nakahara K, Takahashi K & Kurachi H 2005 Aged mouse oocytes fail to readjust intracellular adenosine triphosphates at fertilization. Biology of Reproduction 72 125612 61. (https://doi.org/10.1095/biolreprod.104.034926)

    • Search Google Scholar
    • Export Citation
  • Igarashi H, Takahashi T & Nagase S 2015 Oocyte aging underlies female reproductive aging: biological mechanisms and therapeutic strategies. Reproductive Medicine and Biology 14 159169. (https://doi.org/10.1007/s12522-015-0209-5)

    • Search Google Scholar
    • Export Citation
  • Igarashi H, Takahashi T, Abe H, Nakano H, Nakajima O & Nagase S 2016 Poor embryo development in post-ovulatory in vivo-aged mouse oocytes is associated with mitochondrial dysfunction, but mitochondrial transfer from somatic cells is not sufficient for rejuvenation. Human Reproduction 31 2331233 8. (https://doi.org/10.1093/humrep/dew203)

    • Search Google Scholar
    • Export Citation
  • Keefe DL, Niven-Fairchild T, Powell S & Buradagunta S 1995 Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertility and Sterility 64 5775 83. (https://doi.org/10.1016/S0015-0282(1657796-6)

    • Search Google Scholar
    • Export Citation
  • Klimczak AM, Pacheco LE, Lewis KE, Massahi N, Richards JP, Kearns WG, Saad AF & Crochet JR 2018 Embryonal mitochondrial DNA: relationship to embryo quality and transfer outcomes. Journal of Assisted Reproduction and Genetics 35 871877. (https://doi.org/10.1007/s10815-018-1147-z)

    • Search Google Scholar
    • Export Citation
  • Knox RV 2014 Impact of swine reproductive technologies on pig and global food production. Advances in Experimental Medicine and Biology 752 1311 60. (https://doi.org/10.1007/978-1-4614-8887-3_7)

    • Search Google Scholar
    • Export Citation
  • Kong LH, Liu Z, Li H, Zhu L & Xing FQ 2003 Pregnancy in a 46-year-old woman after autologous granular cell mitochondria transfer. Di Yi Jun Yi Da Xue Xue Bao 23 743, 747.

    • Search Google Scholar
    • Export Citation
  • Kristensen SG, Pors SE & Andersen CY 2017 Improving oocyte quality by transfer of autologous mitochondria from fully grown oocytes. Human Reproduction 32 725732. (https://doi.org/10.1093/humrep/dex043)

    • Search Google Scholar
    • Export Citation
  • Labarta E, De Los Santos MJ, Escribá MJ, Pellicer A & Herraiz S 2019a Mitochondria as a tool for oocyte rejuvenation. Fertility and Sterility 111 219226. (https://doi.org/10.1016/j.fertnstert.2018.10.036)

    • Search Google Scholar
    • Export Citation
  • Labarta E, De Los Santos MJ, Herraiz S, Escriba MJ, Marzal A, Buigues A & Pellicer A 2019b Autologous mitochondrial transfer as a complementary technique to intracytoplasmic sperm injection to improve embryo quality in patients undergoing in vitro fertilization-a randomized pilot study. Fertility and Sterility 111 8696. (https://doi.org/10.1016/j.fertnstert.2018.09.023)

    • Search Google Scholar
    • Export Citation
  • Lanzendorf SE, Mayer JF, Toner J, Oehninger S, Saffan DS & Muasher S 1999 Pregnancy following transfer of ooplasm from cryopreserved-thawed donor oocytes into recipient oocytes. Fertility and Sterility 71 57557 7. (https://doi.org/10.1016/s0015-0282(9800504-4)

    • Search Google Scholar
    • Export Citation
  • Lee WJ, Lee JH, Jeon RH, Jang SJ, Lee SC, Park JS, Lee SL, King WA & Rho GJ 2017 Supplement of autologous ooplasm into porcine somatic cell nuclear transfer embryos does not alter embryo development. Reproduction in Domestic Animals 52 437445. (https://doi.org/10.1111/rda.12929)

    • Search Google Scholar
    • Export Citation
  • Lei L & Spradling AC 2013 Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles. PNAS 110 858585 90. (https://doi.org/10.1073/pnas.1306189110)

    • Search Google Scholar
    • Export Citation
  • Li R, Wen B, Zhao H, Ouyang N, Ou S, Wang W, Han J & Yang D 2017 Embryo development after mitochondrial supplementation from induced pluripotent stem cells. Journal of Assisted Reproduction and Genetics 34 10271033. (https://doi.org/10.1007/s10815-017-0948-9)

    • Search Google Scholar
    • Export Citation
  • Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J & Moher D 2009 The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Medicine 6 e1000100. (https://doi.org/10.1371/journal.pmed.1000100)

    • Search Google Scholar
    • Export Citation
  • Liu Y, Wu C, Lyu Q, Yang D, Albertini DF, Keefe DL & Liu L 2007 Germline stem cells and neo-oogenesis in the adult human ovary. Developmental Biology 306 1121 20. (https://doi.org/10.1016/j.ydbio.2007.03.006)

    • Search Google Scholar
    • Export Citation
  • Liu Y, Han M, Li X, Wang H, Ma M, Zhang S, Guo Y, Wang S, Wang Y & Duan N 2017 Age-related changes in the mitochondria of human mural granulosa cells. Human Reproduction 32 24652473. (https://doi.org/10.1093/humrep/dex309)

    • Search Google Scholar
    • Export Citation
  • May-Panloup P, Chretien MF, Jacques C, Vasseur C, Malthiery Y & Reynier P 2005 Low oocyte mitochondrial DNA content in ovarian insufficiency. Human Reproduction 20 59359 7. (https://doi.org/10.1093/humrep/deh667)

    • Search Google Scholar
    • Export Citation
  • May-Panloup P, Boucret L, Chao De La Barca JM, Desquiret-Dumas V, Ferre-L’hotellier V, Moriniere C, Descamps P, Procaccio V & Reynier P 2016 Ovarian ageing: the role of mitochondria in oocytes and follicles. Human Reproduction Update 22 725743. (https://doi.org/10.1093/humupd/dmw028)

    • Search Google Scholar
    • Export Citation
  • Mishra P & Chan DC 2014 Mitochondrial dynamics and inheritance during cell division, development and disease. Nature Reviews: Molecular Cell Biology 15 6346 46. (https://doi.org/10.1038/nrm3877)

    • Search Google Scholar
    • Export Citation
  • Mobarak H, Heidarpour M, Tsai PJ, Rezabakhsh A, Rahbarghazi R, Nouri M & Mahdipour M 2019 Autologous mitochondrial microinjection; a strategy to improve the oocyte quality and subsequent reproductive outcome during aging. Cell and Bioscience 9 95. (https://doi.org/10.1186/s13578-019-0360-5)

    • Search Google Scholar
    • Export Citation
  • Motta PM, Nottola SA, Makabe S & Heyn R 2000 Mitochondrial morphology in human fetal and adult female germ cells. Human Reproduction 15 (Supplement 2) 1291 47. (https://doi.org/10.1093/humrep/15.suppl_2.129)

    • Search Google Scholar
    • Export Citation
  • Murakoshi Y, Sueoka K, Takahashi K, Sato S, Sakurai T, Tajima H & Yoshimura Y 2013 Embryo developmental capability and pregnancy outcome are related to the mitochondrial DNA copy number and ooplasmic volume. Journal of Assisted Reproduction and Genetics 30 136713 75. (https://doi.org/10.1007/s10815-013-0062-6)

    • Search Google Scholar
    • Export Citation
  • Nagai S, Kasai T, Hirata S, Hoshi K, Yanagimachi R & Huang T 2004 Cytoplasmic transfer in the mouse in conjunction with intracytoplasmic sperm injection. Reproductive Biomedicine Online 8 7580. (https://doi.org/10.1016/s1472-6483(1060500-7)

    • Search Google Scholar
    • Export Citation
  • Oktay K, Baltaci V, Sonmezer M, Turan V, Unsal E, Baltaci A, Aktuna S & Moy F 2015 Oogonial precursor cell-derived autologous mitochondria injection to improve outcomes in women with multiple IVF failures due to low oocyte quality: a clinical translation. Reproductive Sciences 22 1612161 7. (https://doi.org/10.1177/1933719115612137)

    • Search Google Scholar
    • Export Citation
  • Petr J, Rozinek J, Fulka J Jr & Jilek F 1994 Influence of cytoplasmic microinjection on meiotic competence in growing pig oocytes. Reproduction, Nutrition, Development 34 818 7. (https://doi.org/10.1051/rnd:19940109)

    • Search Google Scholar
    • Export Citation
  • Qi L, Chen X, Wang J, Lv B, Zhang J, Ni B & Xue Z 2019 Mitochondria: the panacea to improve oocyte quality? Annals of Translational Medicine 7 789. (https://doi.org/10.21037/atm.2019.12.02)

    • Search Google Scholar
    • Export Citation
  • Qiao J, Wang ZB, Feng HL, Miao YL, Wang Q, Yu Y, Wei YC, Yan J, Wang WH & Shen W 2014 The root of reduced fertility in aged women and possible therapentic options: current status and future perspects. Molecular Aspects of Medicine 38 5485. (https://doi.org/10.1016/j.mam.2013.06.001)

    • Search Google Scholar
    • Export Citation
  • Rastogi A, Joshi P, Contreras E & Gama V 2019 Remodeling of mitochondrial morphology and function: an emerging hallmark of cellular reprogramming. Cell Stress 3 181194. (https://doi.org/10.15698/cst2019.06.189)

    • Search Google Scholar
    • Export Citation
  • Reynier P, May-Panloup P, Chretien MF, Morgan CJ, Jean M, Savagner F, Barriere P & Malthiery Y 2001 Mitochondrial DNA content affects the fertilizability of human oocytes. Molecular Human Reproduction 7 42542 9. (https://doi.org/10.1093/molehr/7.5.425)

    • Search Google Scholar
    • Export Citation
  • Reznichenko AS, Huyser C & Pepper MS 2016 Mitochondrial transfer: implications for assisted reproductive technologies. Applied and Translational Genomics 11 4047. (https://doi.org/10.1016/j.atg.2016.10.001)

    • Search Google Scholar
    • Export Citation
  • Sansinena MJ, Lynn J, Bondioli KR, Denniston RS & Godke RA 2011 Ooplasm transfer and interspecies somatic cell nuclear transfer: heteroplasmy, pattern of mitochondrial migration and effect on embryo development. Zygote 19 1471 56. (https://doi.org/10.1017/S0967199410000419)

    • Search Google Scholar
    • Export Citation
  • Santos TA, El Shourbagy S & St John JC 2006 Mitochondrial content reflects oocyte variability and fertilization outcome. Fertility and Sterility 85 5845 91. (https://doi.org/10.1016/j.fertnstert.2005.09.017)

    • Search Google Scholar
    • Export Citation
  • Schatten H, Sun QY & Prather R 2014 The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reproductive Biology and Endocrinology 12 111. (https://doi.org/10.1186/1477-7827-12-111)

    • Search Google Scholar
    • Export Citation
  • Schon EA, Kim SH, Ferreira JC, Magalhaes P, Grace M, Warburton D & Gross SJ 2000 Chromosomal non-disjunction in human oocytes: is there a mitochondrial connection? Human Reproduction 15 (Supplement 2) 1601 72. (https://doi.org/10.1093/humrep/15.suppl_2.160)

    • Search Google Scholar
    • Export Citation
  • Schultz RM & Williams CJ 2002 The science of ART. Science 296 218821 90. (https://doi.org/10.1126/science.1071741)

  • Seifer DB, Dejesus V & Hubbard K 2002 Mitochondrial deletions in luteinized granulosa cells as a function of age in women undergoing in vitro fertilization. Fertility and Sterility 78 1046104 8. (https://doi.org/10.1016/s0015-0282(0204214-0)

    • Search Google Scholar
    • Export Citation
  • Sheng X, Yang Y, Zhou J, Yan G, Liu M, Xu L, Li Z, Jiang R, Diao Z & Zhen X 2019 Mitochondrial transfer from aged adipose-derived stem cells does not improve the quality of aged oocytes in C57BL/6 mice. Molecular Reproduction and Development 86 516529. (https://doi.org/10.1002/mrd.23129)

    • Search Google Scholar
    • Export Citation
  • Shoubridge EA & Wai T 2007 Mitochondrial DNA and the mammalian oocyte. Current Topics in Developmental Biology 77 87111. (https://doi.org/10.1016/S0070-2153(0677004-1)

    • Search Google Scholar
    • Export Citation
  • Srirattana K & St John JC 2018 Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer. Scientific Reports 8 7246. (https://doi.org/10.1038/s41598-018-25516-3)

    • Search Google Scholar
    • Export Citation
  • St John JC, Makanji Y, Johnson JL, Tsai TS, Lagondar S, Rodda F, Sun X, Pangestu M, Chen P & Temple-Smith P 2019 The transgenerational effects of oocyte mitochondrial supplementation. Scientific Reports 9 6694. (https://doi.org/10.1038/s41598-019-43135-4)

    • Search Google Scholar
    • Export Citation
  • Steuerwald NM, Bermudez MG, Wells D, Munne S & Cohen J 2007 Maternal age-related differential global expression profiles observed in human oocytes. Reproductive Biomedicine Online 14 70070 8. (https://doi.org/10.1016/s1472-6483(1060671-2)

    • Search Google Scholar
    • Export Citation
  • Takeda K, Tasai M, Iwamoto M, Onishi A, Tagami T, Nirasawa K, Hanada H & Pinkert CA 2005 Microinjection of cytoplasm or mitochondria derived from somatic cells affects parthenogenetic development of murine oocytes. Biology of Reproduction 72 13971 404. (https://doi.org/10.1095/biolreprod.104.036129)

    • Search Google Scholar
    • Export Citation
  • Takeda K, Srirattana K, Matsukawa K, Akagi S, Kaneda M, Tasai M, Nirasawa K, Pinkert CA, Parnpai R & Nagai T 2012 Influence of intergeneric/interspecies mitochondrial injection; parthenogenetic development of bovine oocytes after injection of mitochondria derived from somatic cells. Journal of Reproduction and Development 58 32332 9. (https://doi.org/10.1262/jrd.2011-013)

    • Search Google Scholar
    • Export Citation
  • Tatone C & Amicarelli F 2013 The aging ovary – the poor granulosa cells. Fertility and Sterility 99 121 7. (https://doi.org/10.1016/j.fertnstert.2012.11.029)

    • Search Google Scholar
    • Export Citation
  • Tsai TS & St John JC 2018 The effects of mitochondrial DNA supplementation at the time of fertilization on the gene expression profiles of porcine preimplantation embryos. Molecular Reproduction and Development 85 490504. (https://doi.org/10.1002/mrd.22985)

    • Search Google Scholar
    • Export Citation
  • Tsai HD, Hsieh YY, Hsieh JN, Chang CC, Yang CY, Yang JG, Cheng WL, Tsai FJ & Liu CS 2010 Mitochondria DNA deletion and copy numbers of cumulus cells associated with in vitro fertilization outcomes. Journal of Reproductive Medicine 55 49149 7.

    • Search Google Scholar
    • Export Citation
  • Tsai TS, Tyagi S & St John JC 2018 The molecular characterisation of mitochondrial DNA deficient oocytes using a pig model. Human Reproduction 33 942953. (https://doi.org/10.1093/humrep/dey052)

    • Search Google Scholar
    • Export Citation
  • Van Blerkom J, Davis PW & Lee J 1995 ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Human Reproduction 10 4154 24. (https://doi.org/10.1093/oxfordjournals.humrep.a135954)

    • Search Google Scholar
    • Export Citation
  • Van Blerkom J, Sinclair J & Davis P 1998 Mitochondrial transfer between oocytes: potential applications of mitochondrial donation and the issue of heteroplasmy. Human Reproduction 13 285728 68. (https://doi.org/10.1093/humrep/13.10.2857)

    • Search Google Scholar
    • Export Citation
  • Van Thuan N, Wakayama S, Kishigami S, Ohta H, Hikichi T, Mizutani E, Bui HT & Wakayama T 2006 Injection of somatic cell cytoplasm into oocytes before intracytoplasmic sperm injection impairs full-term development and increases placental weight in mice. Biology of Reproduction 74 8658 73. (https://doi.org/10.1095/biolreprod.105.047803)

    • Search Google Scholar
    • Export Citation
  • Wai T, Ao A, Zhang X, Cyr D, Dufort D & Shoubridge EA 2010 The role of mitochondrial DNA copy number in mammalian fertility. Biology of Reproduction 83 5262. (https://doi.org/10.1095/biolreprod.109.080887)

    • Search Google Scholar
    • Export Citation
  • Wang N, Satirapod C, Ohguchi Y, Park ES, Woods DC & Tilly JL 2017a Genetic studies in mice directly link oocytes produced during adulthood to ovarian function and natural fertility. Scientific Reports 7 10011. (https://doi.org/10.1038/s41598-017-10033-6)

    • Search Google Scholar
    • Export Citation
  • Wang ZB, Hao JX, Meng TG, Guo L, Dong MZ, Fan LH, Ouyang YC, Wang G, Sun QY & Ou XH 2017b Transfer of autologous mitochondria from adipose tissue-derived stem cells rescues oocyte quality and infertility in aged mice. Aging 9 24802488. (https://doi.org/10.18632/aging.101332)

    • Search Google Scholar
    • Export Citation
  • White YA, Woods DC, Takai Y, Ishihara O, Seki H & Tilly JL 2012 Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nature Medicine 18 4134 21. (https://doi.org/10.1038/nm.2669)

    • Search Google Scholar
    • Export Citation
  • Xu L, Mesalam A, Lee KL, Song SH, Khan I, Chowdhury MMR, Lv W & Kong IK 2019 Improves the in vitro developmental competence and reprogramming efficiency of cloned bovine embryos by additional complimentary cytoplasm. Cell Reprogram 21 5160. (https://doi.org/10.1089/cell.2018.0050)

    • Search Google Scholar
    • Export Citation
  • Yi YC, Chen MJ, Ho JY, Guu HF & Ho ES 2007 Mitochondria transfer can enhance the murine embryo development. Journal of Assisted Reproduction and Genetics 24 44544 9. (https://doi.org/10.1007/s10815-007-9161-6)

    • Search Google Scholar
    • Export Citation
  • Yuan J, Zhang D, Wang L, Liu M, Mao J, Yin Y, Ye X, Liu N, Han J & Gao Y 2013 No evidence for neo-oogenesis may link to ovarian senescence in adult monkey. Stem Cells 31 253825 50. (https://doi.org/10.1002/stem.1480)

    • Search Google Scholar
    • Export Citation
  • Zhang H, Zheng W, Shen Y, Adhikari D, Ueno H & Liu K 2012 Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries. PNAS 109 125801258 5. (https://doi.org/10.1073/pnas.1206600109)

    • Search Google Scholar
    • Export Citation
  • Zhang H, Liu L, Li X, Busayavalasa K, Shen Y, Hovatta O, Gustafsson & Liu K 2014 Life-long in vivo cell-lineage tracing shows that no oogenesis originates from putative germline stem cells in adult mice. PNAS 111 179831798 8. (https://doi.org/10.1073/pnas.1421047111)

    • Search Google Scholar
    • Export Citation
  • Zhang H, Menzies KJ & Auwerx J 2018 The role of mitochondria in stem cell fate and aging. Development 145 dev143420. (https://doi.org/10.1242/dev.143420)

    • Search Google Scholar
    • Export Citation