Functional attributes of seminal proteins in bull fertility: a systematic review

in Reproduction
View More View Less
  • 1 Programa de Pós-Graduação em Medicina Veterinária, Departamento de Medicina Veterinária, Universidade Federal de Viçosa, Vicosa, Brasil
  • 2 Departamento de Biologia Geral, Universidade Federal de Viçosa, Vicosa, Brasil
  • 3 Department of Animal and Dairy Sciences, Mississippi State University, Mississippi, USA
  • 4 Departamento de Ciência Animal, Universidade Federal do Ceará, Fortaleza, Brasil

Correspondence should be addressed to M Machado-Neves: mariana.mneves@ufv.br or to A A Moura: arlindo.moura@gmail.com
Restricted access

Proteomic approaches have been widely used in reproductive studies to uncover protein biomarkers of bull fertility. Seminal plasma is one of the most relevant sources of these proteins that may influence sperm physiology. Nonetheless, there are still gaps in existing knowledge in the functional attributes of seminal proteins. Thus, we reviewed the relationships between seminal plasma proteins and bull fertility by conducting a systematic review with data obtained from 71 studies. This review showed that the associations related to fertility improvement with the use of total seminal plasma proteins are still controversial. None of the studies explored the sperm fertilizing ability following these interactions. By contrast, the exposure to a single protein, such as osteopontin, binder of sperm proteins, and heparin binding proteins, can increment sperm motility, capacitation, and fertilizing ability by modulating intracellular calcium concentrations, removing lipids from sperm membranes, and regulating the acrosome reaction. Variations in protein analyses and the protein contents and their abundances between animals contributed to the difficulty of establishing protein biomarkers of fertilizing potential of the bull sperm. Indeed, the heterogenicity of methodologies was a limitation of this review. Standardized methods of seminal protein analyses, as well as sperm endpoints, may minimize such discrepancies. In conclusion, potential biomarkers of sperm parameters are still to be established. Future studies should evaluate protein isoforms and how they interact with sperm to ascertain their biological functions.

Supplementary Materials

    • Supplementary Table 1. Characteristics of studies (n=71) evaluating the associations and effects of seminal plasma proteins on bull fertility.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 571 571 355
Full Text Views 54 54 38
PDF Downloads 78 78 54
  • Alghamdi AS, Lovaas BJ, Bird SL, Lamb GC, Rendahl AK, Taube PC & Foster DN 2009 Species-specific interaction of seminal plasma on sperm-neutrophil binding. Animal Reproduction Science 114 331344. (https://doi.org/10.1016/j.anireprosci.2008.10.015)

    • Search Google Scholar
    • Export Citation
  • Alghamdi AS, Funnell BJ, Bird SL, Lamb GC, Rendahl AK, Taube PC & Foster DN 2010 Comparative studies on bull and stallion seminal DNase activity and interaction with semen extender and spermatozoa. Animal Reproduction Science 121 249258. (https://doi.org/10.1016/j.anireprosci.2010.06.003)

    • Search Google Scholar
    • Export Citation
  • Almadaly E, Hoshino Y, Ueta T, Mukoujima K, Shukry M, Farrag F, El-Kon I, Kita K & Murase T 2015 Desalted and lyophilized bovine seminal plasma delays induction of the acrosome reaction in frozen-thawed bovine spermatozoa in response to calcium ionophore. Theriogenology 83 175185. (https://doi.org/10.1016/j.theriogenology.2014.09.004)

    • Search Google Scholar
    • Export Citation
  • Alvarez-Gallardo H, Kjelland ME, Moreno JF, Welsh Jr TH, Randel RD, Lammoglia MA, Pérez-Martínez M, Lara-Sagahón AV, Esperón-Sumano AE & Romo S 2013 Gamete therapeutics: recombinant protein adsorption by sperm for increasing fertility via artificial insemination. PLoS ONE 8 e65083. (https://doi.org/10.1371/journal.pone.0065083)

    • Search Google Scholar
    • Export Citation
  • Amann RP, Hammerstedt RH & Shabanowitz RB 1999 Exposure of human, boar, or bull sperm to a synthetic peptide increases binding to an egg-membrane substrate. Journal of Andrology 20 3441. (https://doi.org/10.1002/j.1939-4640.1999.tb02493.x)

    • Search Google Scholar
    • Export Citation
  • Aquila S, Rago V, Guido C, Casaburi I, Zupo S & Carpino A 2008 Leptin and leptin receptor in pig spermatozoa: evidence of their involvement in sperm capacitation and survival. Reproduction 136 2332. (https://doi.org/10.1530/REP-07-0304)

    • Search Google Scholar
    • Export Citation
  • Aslam MKM, Kumaresan A, Sharma VK, Tajmul M, Chhillar S, Chakravarty AK, Manimaran A, Mohanty TK, Srinivasan A & Yadav S 2014 Identification of putative fertility markers in seminal plasma of crossbred bulls through differential proteomics. Theriogenology 82 1254 .e11262 .e1. (https://doi.org/10.1016/j.theriogenology.2014.08.007)

    • Search Google Scholar
    • Export Citation
  • Assumpção TI, Torres Júnior RAA, Sousa MV & Ricart CAO 2005 Correlation between fertility and levels of protein, sugar and free amino acids in seminal plasma of Nelore bulls. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 57 5561. (https://doi.org/10.1590/S0102-09352005000100008)

    • Search Google Scholar
    • Export Citation
  • Assumpção TI, Yoneyama KAG, Pallaoro R, Kitagawa C & Alberton C 2013 Proteins and sugars profile from the seminal plasma and its relationship with andrological parameters of Nelore bulls. Bioscience Journal 29 940945.

    • Search Google Scholar
    • Export Citation
  • Bailey R & Griswold MD 1999 Clusterin in the male reproductive system: localization and possible function. Molecular and Cellular Endocrinology 151 1723. (https://doi.org/10.1016/s0303-7207(9900016-7)

    • Search Google Scholar
    • Export Citation
  • Baker J, Hardy MP, Zhou J, Bondy C, Lupu F, Bellve AR & Efstratiadis A 1996 Effects of an IGF1 gene null mutation on mouse reproduction. Molecular Endocrinology 10 903918. (https://doi.org/10.1210/mend.10.7.8813730)

    • Search Google Scholar
    • Export Citation
  • Belleannée C, Labas V, Teixeira-Gomes AP, Gatti JL, Dacheux JL & Dacheux F 2011 Identification of luminal and secreted proteins in bull epididymis. Journal of Proteomics 74 5978. (https://doi.org/10.1016/j.jprot.2010.07.013)

    • Search Google Scholar
    • Export Citation
  • Bellin ME, Hawkins HE & Ax RL 1994 Fertility of range beef bulls grouped according to presence or absence of heparin-binding proteins in sperm membranes and seminal fluid. Journal of Animal Science 72 24412448. (https://doi.org/10.2527/1994.7292441x)

    • Search Google Scholar
    • Export Citation
  • Bellin ME, Hawkins HE, Oyarzo JN, Vanderboom RJ & Ax RL 1996 Monoclonal antibody detection of heparin-binding proteins on sperm corresponds to increased fertility of bulls. Journal of Animal Science 74 173182. (https://doi.org/10.2527/1996.741173x)

    • Search Google Scholar
    • Export Citation
  • Bergeron A, Crête MH, Brindle Y & Manjunath P 2004 Low-density lipoprotein fraction from hen’s egg yolk decreases the binding of the major proteins of bovine seminal plasma to sperm and prevents lipid efflux from the sperm membrane. Biology of Reproduction 70 708717. (https://doi.org/10.1095/biolreprod.103.022996)

    • Search Google Scholar
    • Export Citation
  • Blom E 1950 A one-minute live-dead sperm stain by means of eosin-nigrosin. Fertility and Sterility 1 176177. (https://doi.org/10.1016/S000215-93780282(51169145030125-0X)

    • Search Google Scholar
    • Export Citation
  • Boe-Hansen GB, Rego JPA, Crisp JM, Moura AA, Nouwens AS, Li Y, Venus B, Burns BM & McGowan MR 2015 Seminal plasma proteins and their relationship with percentage of morphologically normal sperm in 2-year-old Brahman (Bos indicus) bulls. Animal Reproduction Science 162 2030. (https://doi.org/10.1016/j.anireprosci.2015.09.003)

    • Search Google Scholar
    • Export Citation
  • Boe-Hansen GB, Rêgo JPA, Satake N, Venus B, Sadowski P, Nouwens A, Li Y & McGowan M 2020 Effects of increased scrotal temperature on semen quality and seminal plasma proteins in Brahman bulls. Molecular Reproduction and Development 87 574597. (https://doi.org/10.1002/mrd.23328)

    • Search Google Scholar
    • Export Citation
  • Butler ML, Bormann JM, Weaber RL, Grieger DM & Rolf MM 2020 Selection for bull fertility: a review. Translational Animal Science 4 423441. (https://doi.org/10.1093/tas/txz174)

    • Search Google Scholar
    • Export Citation
  • Calvete JJ, Mann K, Sanz L, Raia M & Töpfer-Petersen E 1996 The primary structure of BSP-30K, a major lipid-, gelatin-, and heparin binding glycoprotein of bovine seminal plasma. FEBS Letters 399 147152. (https://doi.org/10.1016/s0014-5793(9601310-5)

    • Search Google Scholar
    • Export Citation
  • Camargo M, Intasqui P & Bertolla RP 2018 Understanding the seminal plasma proteome and its role in male fertility. Basic and Clinical Andrology 28 6. (https://doi.org/10.1186/s12610-018-0071-5)

    • Search Google Scholar
    • Export Citation
  • Cancel AM, Chapman DA & Killian GJ 1995 Osteopontin is the 55-kilodalton fertility-associated protein in Holstein bull seminal plasma. Biology of Reproduction 57 12931301. (https://doi.org/https://10.1095/biolreprod57.6.1293)

    • Search Google Scholar
    • Export Citation
  • Cheema SR & Babbar B 2008 Sperm membrane/seminal plasma proteins reflects semen quality in cross-bred cattle bulls. Indian Journal of Animal Research 42 242247.

    • Search Google Scholar
    • Export Citation
  • Cross NL 2000 Sphingomyelin modulates capacitation of human sperm in vitro. Biology of Reproduction 63 11291134. (https://doi.org/10.1095/biolreprod63.4.1129)

    • Search Google Scholar
    • Export Citation
  • Dalton JC, Deragon L, Vasconcelos JLM, Lopes CN, Peres RFG & Ahmadzadech A 2012 Fertility-associated antigen on Nelore bull sperm and reproductive outcomes following first-service fixed-time AT of Nelore cows and heifers. Theriogenology 77 389394. (https://doi.org/10.1016/j.theriogenology.2011.08.011)

    • Search Google Scholar
    • Export Citation
  • D’Amours O, Bordeleau LJ, Frenette G, Blondin P, Leclerc P & Sullivan R 2012 Binder of sperm 1 and epididymal sperm binding protein 1 are associated with different bull sperm subpopulations. Reproduction 143 759771. (https://doi.org/10.1530/REP-11-0392)

    • Search Google Scholar
    • Export Citation
  • Dostàlova Z, Calvette JJ, Sanz L, Hettel C, Riedel D, Schöneck C, Einspainer R & Töpfer-Petersen E 1994 Immunolocalization and quantitation of acidic seminal fluid protein (aSFP) in ejaculated, swim-up, and capacitated bull spermatozoa. Biochemlogical Chemistry Hoppe-Seyler 375 457461. (https://doi.org/10.1515/bchm3.1994.375.7.457)

    • Search Google Scholar
    • Export Citation
  • Erikson DW, Way AL, Chapman DA & Killian GJ 2007 Detection of osteopontin on Holstein bull spermatozoa, in cauda epididymal fluid and testis homogenates, and its potential role in bovine fertilization. Reproduction 133 909917. (https://doi.org/10.1530/REP-06-0228)

    • Search Google Scholar
    • Export Citation
  • Fernandez-Fuertes B, Narciandi F, O´Farrely C, Kelly AK, Fair S, Meade KG, Patrick L & Lonergan P 2016 Cauda epididymis-specific beta-defensin 126 promotes sperm motility but not fertilizing ability in cattle. Biology of Reproduction 95 122. (https://doi.org/10.1095/biolreprod.116.138792)

    • Search Google Scholar
    • Export Citation
  • Ferreira CESR, Haas CS, Goulart KL, Rovani MT, Cardoso FF, Schneider A, Gasperin BDG & Lucia Jr PT 2017 Expression of paraoxonase types 1, 2 and 3 in reproductive tissues and activity of paraoxonase type 1 in the serum and seminal plasma of bulls. Andrologia 50 e12923. (https://doi.org/10.1111/and.12923)

    • Search Google Scholar
    • Export Citation
  • Fouchécourt S, Charpigny G, Reinaud P, Dumont P & Dacheux JL 2002 Mammalian lipocalin-type prostaglandin D2 synthase in the fluids of the male genital tract: putative biochemical and physiological functions. Biology of Reproduction 66 458467. (https://doi.org/10.1095/biolreprod66.2.458)

    • Search Google Scholar
    • Export Citation
  • Gerena RL, Irikura D, Urade Y, Eguchi N, Chapman NDA & Killian GJ 1998 Identification of a fertility-associated protein in bull seminal plasma as lipocalin-type prostaglandin D synthase. Biology of Reproduction 58 826833. (https://doi.org/10.1095/biolreprod58.3.826)

    • Search Google Scholar
    • Export Citation
  • Gomes FP, Diedrich JK, Saviola AJ, Memili E, Moura AA & Yates 3rd JR 2020 EThcD and 213 nm UVPD for top-down analysis of bovine seminal plasma proteoforms on electrophoretic and chromatographic time frames. Analytical Chemistry 92 29792987. (https://doi.org/10.1021/acs.analchem.9b03856)

    • Search Google Scholar
    • Export Citation
  • Gonçalves RF, Wolinetz DCCD & Killian GJ 2007 Influence of arginine-glycine-aspartic acid (RGD), integrins (alphaV and alpha5) and osteopontin on bovine sperm-egg binding, and fertilization in vitro. Theriogenology 67 468474. (https://doi.org/10.1016/j.theriogenology.2006.08.013)

    • Search Google Scholar
    • Export Citation
  • Gonçalves RF, Chapman DA, Bertolla RP, Eder I & Killian GJ 2008a Pre-treatment of cattle semen or oocytes with purified milk osteopontin affects in vitro fertilization and embryo development. Animal Reproduction Science 108 375383. (https://doi.org/10.1016/j.anireprosci.2007.09.006)

    • Search Google Scholar
    • Export Citation
  • Gonçalves RF, Barnabe VH & Killian GJ 2008b Pre-treatment of cattle sperm and/or oocyte with antibody to lipocalin type prostaglandin D synthase inhibits in vitro fertilization and increases sperm–oocyte binding. Animal Reproduction Science 106 188193. (https://doi.org/10.1016/j.anireprosci.2007.12.019)

    • Search Google Scholar
    • Export Citation
  • Gwathmey TM, Ignotz GG, Mueller JL, Manjunath P & Suarez SS 2006 Bovine seminal plasma proteins PDC-109, BSP-A3, and BSP-30-kDa share functional roles in storing sperm in the oviduct. Biology of Reproduction 75 501507. (https://doi.org/10.1095/biolreprod.106.053306)

    • Search Google Scholar
    • Export Citation
  • Hammerstedt RH, Cramer PG & Barbato GE 1997 A Method and Use of Polypeptide in Sperm-Egg Binding to Enhance or Decrease Fertility. International Patent Publication Number wO/97/25620, pp. 142. Geneva: World Intellectual Property Organization.

    • Search Google Scholar
    • Export Citation
  • Harayama H, Minami K, Kishida K & Noda T 2017 Protein biomarkers for male artificial insemination subfertility in bovine spermatozoa. Reproductive Medicine and Biology 16 8998. (https://doi.org/10.1002/rmb2.12021)

    • Search Google Scholar
    • Export Citation
  • Henricks DM, Kouba AJ, Lackey BR, Boone WR & Gray SL 1998 Identification of insulin-like growth factor I in bovine seminal plasma and its receptor on spermatozoa: influence on sperm motility. Biology of Reproduction 59 330337. (https://doi.org/10.1095/biolreprod59.2.330)

    • Search Google Scholar
    • Export Citation
  • Hoeflich A, Reichenbach HD, Schwartz J, Grupp T, Weber MM, Föll J & Wolf E 1999 Insulin-like growth factors and IGF-binding proteins in bovine seminal plasma. Domestic Animal Endocrinology 17 3951. (https://doi.org/10.1095/biolreprod59.2.33010.1016/s0739-7240(9900023-5)

    • Search Google Scholar
    • Export Citation
  • Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M & Langendam MW 2014 SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology 14 43. (https://doi.org/10.1186/1471-2288-14-43)

    • Search Google Scholar
    • Export Citation
  • Humphreys DT, Carver JA, Easterbrook-Smith SB & Wilson MR 1999 Clusterin has chaperone-like activity similar to that of small heat shock proteins. Journal of Biological Chemistry 274 68756881. (https://doi.org/10.1074/jbc.274.11.6875)

    • Search Google Scholar
    • Export Citation
  • Janiszewska E & Kratz EM 2019 Could the glycosylation analysis of seminal plasma clusterin become a novel male infertility biomarker? Molecular Reproduction and Development 87 515524. (https://doi.org/10.1002/mrd.23340)

    • Search Google Scholar
    • Export Citation
  • Jobim MIM, Oberst ER, Salbego CG, Souza DO, Wald VB, Tramontina F & Mattos RC 2004 Two-dimensional polyacrylamide gel electrophoresis of bovine seminal plasma proteins and their relation with semen freezability. Theriogenology 61 255266. (https://doi.org/10.1016/s0093-691x(0300230-9)

    • Search Google Scholar
    • Export Citation
  • Johnson GA, Burghardt RC, Bazer FW & Spencer TE 2003 Osteopontin: roles in implantation and placentation. Biology of Reproduction 69 14581471. (https://doi.org/10.1095/biolreprod.103.020651)

    • Search Google Scholar
    • Export Citation
  • Juyena NS & Stelletta C 2012 Seminal plasma: an essential attribute to spermatozoa. Journal of Andrology 33 536551. (https://doi.org/10.2164/jandrol.110.012583)

    • Search Google Scholar
    • Export Citation
  • Kabuga JD & Appiah P 1992 A note on the ease of handling and flight distance of Bos indicus, Bos taurus and its crosses. Animal Production 54 309311.

    • Search Google Scholar
    • Export Citation
  • Karunakaran M & Devanathan TG 2015 Evaluation of bull semen for fertility-associated protein, in vitro characters and fertility. Journal of Applied Animal Research 45 136144. (https://doi.org/10.1080/09712119.2015.1129343)

    • Search Google Scholar
    • Export Citation
  • Kasimanickam RK, Kasimanickam VR, Arangasamy A & Kastelic JP 2019 Sperm and seminal plasma proteomics of high- versus low-fertility Holstein bulls. Theriogenology 126 4148. (https://doi.org/10.1016/j.theriogenology.2018.11.032)

    • Search Google Scholar
    • Export Citation
  • Killian GJ, Chapman DA & Rogowski LA 1993 Fertility-associated proteins in Holstein bull seminal plasma. Biology of Reproduction 49 12021207. (https://doi.org/10.1095/biolreprod49.6.1202)

    • Search Google Scholar
    • Export Citation
  • Kishimoto Y, Hiraiwa M & O’Brien JS 1992 Saposins: structure, function, distribution, and molecular genetics. Journal of Lipid Research 33 12551267. (https://doi.org/10.1016/S0022-2275(2040540-1)

    • Search Google Scholar
    • Export Citation
  • Kohsaka T, Hamano K, Sasada H, Watanabe S, Ogine T, Suzuki E, Nishida S, Takahara H & Sato E 2003 Seminal immunoreactive relaxin in domestic animals and its relationship to sperm motility as a possible index for predicting the fertilizing ability of sires. International Journal of Andrology 26 115120. (https://doi.org/10.1046/j.1365-2605.2003.00409.x)

    • Search Google Scholar
    • Export Citation
  • Krishnan G, Kumarasamy P, Chitravelan V & Karunakaram M 2015 Effect of fertility associated proteins on lipid peroxidation production in Holstein Friesian semen. Indian Journal of Animal Research 85 11761180.

    • Search Google Scholar
    • Export Citation
  • Krishnan G, Kumarasamy P, Chitravelan V & Karunakaram M 2016a The presence of heparin binding proteins and their impact on semen quality of Holstein Friesian bulls. Indian Journal of Animal Sciences 86 392396.

    • Search Google Scholar
    • Export Citation
  • Krishnan G, Kumarasamy P, Chitravelan V & Karunakaram M 2016b Sperm mitochondrial membrane potential and motility pattern in the Holstein bull semen positive for heparin binding proteins. Indian Journal of Animal Research 86 528534.

    • Search Google Scholar
    • Export Citation
  • Lackey BR, Boone WR, Gray SL & Henricks DM 1998 Computer-assisted sperm motion analysis of bovine sperm treated with insulin-like growth factor I and II: implications as motility regulators and chemokinetic factors. Archives of Andrology 41 115125. (https://doi.org/10.3109/01485019808987953)

    • Search Google Scholar
    • Export Citation
  • Lampiao F & du Plessis SS 2008 Insulin and leptin enhance human sperm motility, acrosome reaction and nitric oxide production. Asian Journal of Andrology 10 799807. (https://doi.org/10.1111/j.1745-7262.2008.00421.x)

    • Search Google Scholar
    • Export Citation
  • Li C, Sun Y, Yi K, Ma Y, Sun Y, Zhang W & Zhou X 2010 Detection of nerve growth factor (NGF) and its specific receptor (TrkA) in ejaculated bovine sperm, and the effects of NGF on sperm function. Theriogenology 74 16151622. (https://doi.org/10.1016/j.theriogenology.2010.06.033)

    • Search Google Scholar
    • Export Citation
  • Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J & Moher D 2009 The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339 b2700. (https://doi.org/10.1136/bmj.b2700)

    • Search Google Scholar
    • Export Citation
  • Lyons A, Narciandi F, Donnellan E, Romero-Aguirregomezcorta J, Farrelly CO, Lonergan P, Meade KG & Fair S 2018 Recombinant β-defensin 126 promotes bull sperm binding to bovine oviductal epithelia. Reproductiveon, Fertility, and Development 30 14721481. (https://doi.org/10.1071/RD17415)

    • Search Google Scholar
    • Export Citation
  • Magalhães MJ, Martins LF, Senra RL, Santos TF, Okano DS, Pereira PRG, Faria-Campos A, Campos SVA, Guimarães JD & Baracat-Pereira CBMC 2016 Differential abundances of four forms of BSP1 in the seminal plasma of Bos taurus indicus bulls with different patterns of semen freezability. Theriogenology 86 766 .e2777.e2. (https://doi.org/10.1016/j.theriogenology.2016.02.030)

    • Search Google Scholar
    • Export Citation
  • Manjunath P & Thérien I 2002 Role of seminal plasma phospholipid-binding proteins in sperm membrane lipid modification that occurs during capacitation. Journal of Reproductive Immunology 53 109119. (https://doi.org/10.1016/s0165-0378(0100098-5)

    • Search Google Scholar
    • Export Citation
  • Marques VA, Goulart RF & Feliciano Silva AED 2000 Variations of protein profiles and calcium and phospholipase A(2) concentrations in thawed bovine semen and their relation to acrosome reaction. Genetics and Molecular Biology 23 825829. (https://doi.org/10.1590/S1415-47572000000400020)

    • Search Google Scholar
    • Export Citation
  • McCauley TC, Zhang H, Bellin ME & Ax RL 1999 Purification and characterization of fertility-associated antigen (FAA) in bovine seminal fluid. Molecular Reproduction and Development 54 145153. (https://doi.org/10.1002/(SICI)1098-2795(199910)54:2<145::AID-MRD6>3.0.CO;2-6)

    • Search Google Scholar
    • Export Citation
  • McCauley TC, Zhang HM, Bellin ME & Ax RL 2001 Identification of a heparin-binding protein in bovine seminal fluid as tissue inhibitor of metalloproteinases-2. Molecular Reproduction and Development 58 336341. (https://doi.org/10.1002/1098-2795(200103)58:3<336::AID-MRD12>3.0.CO;2-Z)

    • Search Google Scholar
    • Export Citation
  • Menezes EB, de Oliveira RV, van Tilburg MF, Barbosa EA, Nascimento NV, Velho ALMCSALMCS, Moreno FB, Moreira RA, Monteiro-Moreira ACO & Carvalho GMC et al. 2017 Proteomic analysis of seminal plasma from locally-adapted ‘Curraleiro Pé-Duro bulls’ (Bos taurus): identifying biomarkers involved in sperm physiology in endangered animals for conservation of biodiversity. Animal Reproduction Science 183 86101. (https://doi.org/10.1016/j.anireprosci.2017.05.014)

    • Search Google Scholar
    • Export Citation
  • Miah AG, Salma U, Tareq K, Kohsaka T & Tsujii H 2007 Effect of relaxin on the motility, acrosome reaction and utilization of glucose of fresh and frozen-thawed bovine spermatozoa. Animal Science Journal 78 495502. (https://doi.org/10.1111/j.1740-0929.2007.00468.x)

    • Search Google Scholar
    • Export Citation
  • Miah AG, Salma U, Sinha PB, Hölker M, Tesfaye D, Cinar MU, Tsujii H & Schellander K 2011 Intracellular signaling cascades induced by relaxin in the stimulation of capacitation and acrosome reaction in fresh and frozen-thawed bovine spermatozoa. Animal Reproduction Science 125 3041. (https://doi.org/10.1016/j.anireprosci.2011.03.010)

    • Search Google Scholar
    • Export Citation
  • Miller DJ, Winer MA & Ax RL 1990 Heparin-binding proteins from seminal plasma bind to bovine spermatozoa and modulate capacitation by heparin. Biology of Reproduction 42 899915. (https://doi.org/10.1095/biolreprod42.6.899)

    • Search Google Scholar
    • Export Citation
  • Mocé E & Graham JK 2008 In vitro evaluation of sperm quality. Animal Reproduction Science 105 104118. (https://doi.org/10.1016/j.anireprosci.2007.11.016)

    • Search Google Scholar
    • Export Citation
  • Monaco E, Gasparrini B, Boccia L, De Rosa A, Attanasio L, Zicarelli L & Killian G 2009 Effect of osteopontin (OPN) on in vitro embryo development in cattle. Theriogenology 71 450457. (https://doi.org/10.1016/j.theriogenology.2008.08.012)

    • Search Google Scholar
    • Export Citation
  • Montanholi YR, Fontoura AB, Diel de Amorim M, Foster RA, Chenier T & Miller SP 2016 Seminal plasma protein concentrations vary with feed efficiency and fertility-related measures in young beef bulls. Reproductive Biology 16 147156. (https://doi.org/10.1016/j.repbio.2016.04.002)

    • Search Google Scholar
    • Export Citation
  • Morrell JM, Nongbua T, Valeanu S, Lima Verde I, Lundstedt-Enkel K, Edman A & Johannisson A 2017 Sperm quality variables as indicators of bull fertility may be breed dependent. Animal Reproduction Science 185 4252. (https://doi.org/10.1016/j.anireprosci.2017.08.001)

    • Search Google Scholar
    • Export Citation
  • Moura AA, Koc H, Chapman DA & Killian GJ 2006a Identification of proteins in the accessory sex gland fluid associated with fertility indexes of dairy bulls: a proteomic approach. Journal of Andrology 27 201211. (https://doi.org/10.2164/jandrol.05089)

    • Search Google Scholar
    • Export Citation
  • Moura AA, Chapman DA, Koc H & Killian GJ 2006b Proteins of the cauda epididymal fluid associated with fertility of mature dairy bulls. Journal of Andrology 27 534541. (https://doi.org/10.2164/jandrol.05201)

    • Search Google Scholar
    • Export Citation
  • Moura AA, Chapman DA & Killian GJ 2007 Proteins of the accessory sex glands associated with the oocyte-penetrating capacity of cauda epididymal sperm from Holstein bulls of documented fertility. Molecular Reproduction and Development 74 214222. (https://doi.org/10.1002/mrd.20590)

    • Search Google Scholar
    • Export Citation
  • Moura AA, Souza CE, Stanley BA, Chapman DA & Killian GJ 2010 Proteomics of cauda epididymal fluid from mature Holstein bulls. Journal of Proteomics 73 20062020. (https://doi.org/10.1016/j.jprot.2010.06.005)

    • Search Google Scholar
    • Export Citation
  • Mutter D, Middendorff R & Davidoff MS 1999 Neurotrophic factors in the testis. Biomedical Reviews 10 2530. (https://doi.org/10.14748/bmr.v10.4)

    • Search Google Scholar
    • Export Citation
  • Ortiz WG, Rizo JA, Carvalheira LR, Ahmed BMS, Estrada-Cortes E, Harstine BR, Bromfield JJ & Hansen PJ 2019 Effects of intrauterine infusion of seminal plasma at artificial insemination on fertility of lactating Holstein cows. Journal of Dairy Science 102 65876594. (https://doi.org/10.3168/jds.2019-16251)

    • Search Google Scholar
    • Export Citation
  • Pande M, Srivastava N, Soni YK, Omerdin, Kumar M, Tyagi S, Sharma A & Kumar S 2018 Presence of fertility-associated antigen on sperm membrane corresponds to greater freezability potential of Frieswal bull semen. Indian Journal of Animal Research 88 3945.

    • Search Google Scholar
    • Export Citation
  • Park YJ, Pang WK, Ryu DY, Song WH, Rahman MS & Pang MG 2019 Optimized combination of multiple biomarkers to improve diagnostic accuracy in male fertility. Theriogenology 139 106112. (https://doi.org/10.1016/j.theriogenology.2019.07.029)

    • Search Google Scholar
    • Export Citation
  • Patel M, Gandotra VK, Cheema RS, Bansal AK & Kumar A 2015 Seminal plasma heparin binding proteins improve semen quality by reducing oxidative stress during cryopreservation of cattle bull semen. Asian-Australasian Journal of Animal Sciences 29 12471255. (https://doi.org/10.5713/ajas.15.0586)

    • Search Google Scholar
    • Export Citation
  • Patel MK, Cheema RS, Bansal AK & Gandotra VK 2016 A 31-kDa seminal plasma heparin-binding protein reduces cold shock stress during cryopreservation of cross-bred cattle bull semen. Theriogenology 86 15991606. (https://doi.org/10.1016/j.theriogenology.2016.05.020)

    • Search Google Scholar
    • Export Citation
  • Pero ME, Lombardi P, Longobardi PV, Boccia L, Vassalotti G, Zicarelli L, Ciani F & Gasparrini B 2017 Influence of gamma-glutamyl transferase and alkaline phosphatase activation in vitro fertilization of bovine frozen/thawed semen. Italian Journal of Animal Science 16 390392. (https://doi.org/10.1080/1828051X.2017.1290509)

    • Search Google Scholar
    • Export Citation
  • Plante G, Prud’homme B, Fan J, Lafleur M & Manjunath P 2016 Evolution and function of mammalian binder of sperm proteins. Cell and Tissue Research 363 105127. (https://doi.org/10.1007/s00441-015-2289-2)

    • Search Google Scholar
    • Export Citation
  • Ratto MH, Leduc YA, Valderrama XP, van Straaten KE, Delbaere LTJ, Pierson ARRA & Adams GP 2012 The nerve of ovulation-inducing factor in semen. PNAS 109 1504215047. (https://doi.org/10.1073/pnas.1206273109)

    • Search Google Scholar
    • Export Citation
  • Rego JPA, Crisp JM, Moura AA, Nouwens AS, Li Y, Venus B, Corbet NJ, Corbet DH, Burns BM & Boe-Hansen GB et al. 2014 Seminal plasma proteome of electro ejaculated Bos indicus bulls. Animal Reproduction Science 148 117. (https://doi.org/10.1016/j.anireprosci.2014.04.016)

    • Search Google Scholar
    • Export Citation
  • Rego JPA, Moura AA, Nouwens AS, McGowan MR & Boe-Hansen GB 2015 Seminal plasma protein profiles of ejaculates obtained by internal artificial vagina and electroejaculation in Brahman bulls. Animal Reproduction Science 160 126137. (https://doi.org/10.25271016/jas.2016-0811.anireprosci.2015.07.015)

    • Search Google Scholar
    • Export Citation
  • Rego JPA, Martins JM, Wolf CA, van Tilburg M, Moreno F, Monteiro-Moreira AC, Moreira CRA, Santos DO & Moura AA 2016 Proteomic analysis of seminal plasma and sperm cells and their associations with semen freezability in Guzerat bulls. Journal of Animal Science 94 53085320. (https://doi.org/10.2527/jas.2016-0811)

    • Search Google Scholar
    • Export Citation
  • Reyes-Moreno C, Boilard M, Sullivan R & Sirard MCA 2002 Characterization and identification of epididymal factors that protect ejaculated bovine sperm during in vitro storage. Biology of Reproduction 66 159166. (https://doi.org/10.1095/biolreprod66.1.159)

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Martínez RH, Kvist U, Ernerudh UJ, Sanz L & Calvete JJ 2011 Seminal plasma proteins: what role do they play? American Journal of Reproductive Immunology 66 (Supplement 1) 1122. (https://doi.org/10.1111/j.1600-0897.2011.01033.x)

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Villamil P, Hoyos-Marulanda V, Martins JA, Oliveira AN, Aguiar LH, Moreno FB, Velho AL, Monteiro-Moreira AC, Moreira RA & Vasconcelos IM et al. 2016 Purification of binder of sperm protein 1 (BSP1) and its effects on bovine in vitro embryo development after fertilization with ejaculated and epididymal sperm. Theriogenology 85 540554. (https://doi.org/10.1016/j.theriogenology.2015.09.044)

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Villamil P, Mentz D, Ongaratto FL, Aguiar LH, Rodrigues JL, Bertolini M & Moura AA 2020 Assessment of binder of sperm protein 1 (BSP1) and heparin effects on in vitro capacitation and fertilization of bovine ejaculated and epididymal sperm. Zygote 28 489494. (https://doi.org/10.1017/S0967199420000374)

    • Search Google Scholar
    • Export Citation
  • Romão MJ, Kölln I, Dias JM, Carvalho AL, Romero A, Varela PF, Sanz L, Töpfer-Petersen E & Calvete JJ 1997 Crystal structure of acidic seminal fluid protein (aSFP) at 1.9 A resolution: a bovine polypeptide of the spermadhesin family. Journal of Molecular Biology 274 650660. (https://doi.org/10.1006/jmbi.1997.1423)

    • Search Google Scholar
    • Export Citation
  • Roncoletta M, Morani EdSC, Rodrigues LH & Francheschini PH 2013 Proteomics to investigate bull’s semen freezability. Brazilian Journal of Veterinary Research and Animal Science 50 4349. (https://doi.org/10.11606/issn.2318-3659.v50i1p43-49)

    • Search Google Scholar
    • Export Citation
  • Rueda FA, Quím L, Garcés TP, Herrera LR, Arbaláez LR, Peña MJ, Velásquez HP, Hernández AV & Cardozo JC 2013a Increase in post-thaw viability by adding seminal plasma proteins to Sanmartinero and Zebu sperm. Revista Colombiana de Ciencias Pecuarias 18 33273335.

    • Search Google Scholar
    • Export Citation
  • Rueda FA, Quím L, Garcés TP, Herrera LR, Arbaláez LR, Peña MJ, Velásquez HP, Hernández AV & Cardozo JC 2013b Seminal plasma proteins increase the post-thaw sperm viability of Sanmartinero bull’s semen. Revista MVZ Córdoba 26 98107. (https://doi.org/10.21897/rmvz.195)

    • Search Google Scholar
    • Export Citation
  • Sauerwein H, Breierb BH, Gallaherb BW, Gotza C, Ku¨fnera G, Montaga T, Vickersa M & Schallenbergerc E 2000 Growth hormone treatment of breeding bulls used for artificial insemination improves fertilization rates. Domestic Animal Endocrinology 18 145158. (https://doi.org/10.1016/S0739-7240(9900070-3)

    • Search Google Scholar
    • Export Citation
  • Schöneck C, Braun J & Einspanier R 1996 Sperm viability is influenced in vitro by the bovine seminal protein aSFP: effects on motility, mitochondrial activity and lipid peroxidation. Theriogenology 45 633642. (https://doi.org/10.1016/0093-691X(9500409-2)

    • Search Google Scholar
    • Export Citation
  • Seidel GE & Foote RH 1969 Influence of semen collection techniques on composition of bull seminal plasma. Journal of Dairy Science 52 10801084. (https://doi.org/10.3168/jds.S0022-0302(6986695-6)

    • Search Google Scholar
    • Export Citation
  • Singh BP, Sankhala RS, Asthana A, Ramakrishna T, Rao CM & Swamy MJ 2019 Glycosylation differentially modulates membranolytic and chaperone-like activities of PDC-109, the major protein of bovine seminal plasma. Biochemical and Biophysical Research Communications 511 2834. (https://doi.org/10.1016/j.bbrc.2019.02.002)

    • Search Google Scholar
    • Export Citation
  • Sood P, Sharma A, Chahota R & Bansal S 2018 Evaluation of certain minerals and seminal plasma proteins in Jersey bulls having major sperm morphological defects. Indian Journal of Animal Research 54 610. (https://doi.org/10.18805/ijar.B-3732)

    • Search Google Scholar
    • Export Citation
  • Sprott LR, Harris MD, Forrest DW, Young J, Zhang HM, Oyarzo JN, Mellib MW, Bellin ME & Ax LRRL 2000 Artificial insemination outcomes in beef females using bovine sperm with a detectable fertility-associated antigen. Journal of Animal Science 78 795798. (https://doi.org/10.2527/2000.784795x)

    • Search Google Scholar
    • Export Citation
  • Srivastava N, Srivastava SK, Ghosh SK, Singh LP, Prasda JK, Kumar A, Peruma P, Jerome A & Thamizharasan A 2012 Sequestration of PDC-109 protein improves freezability of crossbred bull spermatozoa. Animal Reproduction Science 131 5462. (https://doi.org/10.1016/j.anireprosci.2012.02.003)

    • Search Google Scholar
    • Export Citation
  • Srivastava N, Srivastava SK, Ghosh SK, Jerome A, Das GK & Mehrotra S 2013 Sequestration of PDC-109 protein by specific antibodies and egg yolk cryoprotects bull spermatozoa. Reproductiveon in Domestic Animals 48 724731. (https://doi.org/10.1111/rda.12151)

    • Search Google Scholar
    • Export Citation
  • Stewart JL, Cassino IF, Ellerbrock RE, Mercadante VRG & Lima FS 2018 Nerve growth factor-β production in the bull: gene expression, immunolocalization, seminal plasma constitution, and association with sire conception rates. Animal Reproduction Science 197 335342. (https://doi.org/10.1016/j.anireprosci.2018.09.006)

    • Search Google Scholar
    • Export Citation
  • Stewart JL, Canisso IF, Podico G, Kaplan C, Garrett EF, Shike DW, Henley P & Lima FS 2019 Nerve growth factor-beta effects on post-thaw bull semen quality: effects of nerve growth factor-beta added to extenders for cryopreservation of electro-ejaculated and epididymal bull semen. Animal Reproduction Science 207 107117. (https://doi.org/10.1016/j.anireprosci.2019.06.010)

    • Search Google Scholar
    • Export Citation
  • Stinshoff H, Krienke M, Ekhlasi-Hundrieser M, Wilkening S, Hanstedt A, Frese D, Rath D, Bollwein H & Wrenzycki C 2012 Seminal plasma and seminal plasma proteins added to bulk sorted sperm do not alter the mRNA expression of in vivo produced embryos. Theriogenology 78 132139. (https://doi.org/10.1016/j.theriogenology.2012.01.028)

    • Search Google Scholar
    • Export Citation
  • Thérien I, Bousquet D & Manjunath P 2001 Effect of seminal phospholipid-binding proteins and follicular fluid on bovine sperm capacitation. Biology of Reproduction 65 4151. (https://doi.org/10.1095/biolreprod65.1.41)

    • Search Google Scholar
    • Export Citation
  • Tollner TL, Yudin AI, Treece CA, Overstreet JW & Cherr GN 2008 Macaque sperm coating protein DEFB126 facilitates sperm penetration of cervical mucus. Human Reproduction 23 25232534. (https://doi.org/10.1093/humrep/den276)

    • Search Google Scholar
    • Export Citation
  • Töpfer-Petersen E, Romero A, Varela PF, Ekhlasi-Hundrieser M, Dostálová Z, Sanz L & Calvete JJ 1998 Spermadhesins: a new protein family: facts, hypotheses and perspectives. Andrologia 30 217224. (https://doi.org/10.1111/j.1439-0272.1998.tb01163.x)

    • Search Google Scholar
    • Export Citation
  • Tsuruta JK & O’Brien DA 1995 Sertoli cell-spermatogenic cell interaction: the insulin-like growth factor-II/cation-independent mannose 6-phosphate receptor mediates changes in spermatogenic cell gene expression in mice. Biology of Reproduction 53 14541464. (https://doi.org/10.1095/biolreprod53.6.1454)

    • Search Google Scholar
    • Export Citation
  • USDA – United States Department of Agriculture. (available at: http://www.usda.gov). Accessed on 1 December 2020.

  • van Tilburg M, Sousa S, Lobo MDP, Monteiro-Azevedo ACOM, Azevedo RMA, Araújo AA & Moura AA 2021 Mapping the major proteome of reproductive fluids and sperm membranes of rams: from the cauda epididymis to ejaculation. Theriogenology 159 98107. (https://doi.org/10.1016/j.theriogenology.2020.10.003)

    • Search Google Scholar
    • Export Citation
  • Velho ALC, Menezes E, Dinh T, Kaya A, Topper E, Moura AA & Memili E 2018 Metabolomic markers of fertility in bull seminal plasma. PLoS ONE 13 e0195279. (https://doi.org/10.1371/journal.pone.0195279)

    • Search Google Scholar
    • Export Citation
  • Vera O, Vásqucz LA & Muñoz MG 2003 Semen quality and presence of cytokines in seminal fluid of bull ejaculates. Theriogenology 60 553558. (https://doi.org/10.1016/S0093-691X(0300031-1)

    • Search Google Scholar
    • Export Citation
  • Viana AGA, Martins AMA, Pontes AH, Fontes W, Castro MS, Ricart CAO, Sousa MV, Kaya A, Topper E & Memili E et al. 2018 Proteomic landscape of seminal plasma associated with dairy bull fertility. Scientific Reports 8 16323. (https://doi.org/10.1038/s41598-018-34152-w)

    • Search Google Scholar
    • Export Citation
  • Vickram AS, Rajeswari VD, Pathy MR & Sridharan TB 2016 Analysis of seminal plasma proteins of south Indian jersey and hybrid bulls and their correlation with semen quality. Asian Journal of Animal Sciences 10 17. (https://doi.org/10.3923/ajas.2016.92.98)

    • Search Google Scholar
    • Export Citation
  • Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL & Humprey-Smith I 1995 Progress with gene-product mapping of the mollicutes: Mycoplasma genitalium. Electrophoresis 16 10901094. (https://doi.org/10.1002/elps.11501601185)

    • Search Google Scholar
    • Export Citation
  • Westfalewicz B, Dietrich MA, Mostek A, Partyka A, Bielas W, Niżański W & Ciereszko A 2016 Analysis of bull (Bos taurus) seminal vesicle fluid proteome in relation to seminal plasma proteome. Journal of Dairy Science 100 117. (https://doi.org/10.3168/jds.2016-11866)

    • Search Google Scholar
    • Export Citation