Avian sperm increase in vitro the release of exosomes from SST-enriched organoids

in Reproduction
View More View Less
  • 1 CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
  • 2 Federal University of Semi Arid Region, Mossoro, Rio Grande do Norte, Brazil
  • 3 ALLICE, Station de Phénotypage, Lieu-Dit Le Perroi, Nouzilly, France
  • 4 Laboratoire Biologie Cellulaire, Microscopie Electronique, Faculté de Médecine, Université de Tours, Tours, France
  • 5 Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia

Correspondence should be addressed to N Gérard; Email: nadine.gerard@inrae.fr
Restricted access

In birds, oviductal cells play a crucial role in the storage of sperm via cell-to-cell communication including extracellular vesicles (EV). We developed a culture of oviductal organoids enriched in sperm storage tubules (SSTorg) to demonstrate the release of EV. SSTorg were cultured for 24 h and added to live (LV), frozen (FZ) and lysed (LY) avian sperm, seminal plasma (SP), avian sperm conditioned medium (CM), or bovine sperm (BV). Western blot demonstrated that SSTorg contained EV protein markers, valosin-containing protein (VCP), heat shock proteins (HSP90AA1, HSPA8), and annexins (ANXA2, A4, A5). Co-culture with LV significantly decreased the intracellular level of all these proteins except HSPA8. Immunohistochemistry confirmed this result for VCP and ANXA4. LY, CM, SP and BV had no effect on the intracellular level of these proteins, whereas FZ induced a decrease in ANXA2, A4 and A5. In culture media, VCP and HSP90AA1 signals were detected in the presence of LV, FZ, BV, LY, CM and SP, but no ANXA4 signal was observed in the presence of FZ and SP. ANXA2 and A5 were only detected in the presence of LV. The most abundant EV were less than 150 nm in diameter. ANXA4 and A5 were more abundant in EV isolated from the SSTorg culture medium. This study provides a useful culture system for studying interactions between SST cells and sperm. We demonstrated the release of EV by SSTorg in vitro, and its regulation by sperm. This may be of crucial importance for sperm during storage in hens.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 618 618 341
Full Text Views 43 43 14
PDF Downloads 52 52 19
  • Alcântara-Neto AS, Schmaltz L, Caldas E, Blache MC, Mermillod P & Almiñana C 2020 Porcine oviductal extracellular vesicles interact with gametes and regulate sperm motility and survival. Theriogenology 155 240255. (https://doi.org/10.1016/j.theriogenology.2020.05.043)

    • Search Google Scholar
    • Export Citation
  • Al-Dossary AA, Strehler EE & Martin-DeLeon PA 2013 Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PLoS ONE 8 e80181. (https://doi.org/10.1371/journal.pone.0080181)

    • Search Google Scholar
    • Export Citation
  • Almiñana C & Bauersachs S 2019 Extracellular vesicles in the oviduct: progress, challenges and implications for the reproductive success. Bioengineering 6 225. (https://doi.org/10.3390/bioengineering6020032)

    • Search Google Scholar
    • Export Citation
  • Almiñana C, Tsikis G, Labas V, Uzbekov R, da Silveira JC, Bauersachs S & Mermillod P 2018 Deciphering the oviductal extracellular vesicles content across the estrous cycle: implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genomics 19 622. (https://doi.org/10.1186/s12864-018-4982-5)

    • Search Google Scholar
    • Export Citation
  • Arienti G, Carlini E, Saccardi C & Palmerini CA 2004 Role of human prostasomes in the activation of spermatozoa. Journal of Cellular and Molecular Medicine 8 7784. (https://doi.org/10.1111/j.1582-4934.2004.tb00261.x)

    • Search Google Scholar
    • Export Citation
  • Ashizawa K, Nishiyama H & Nagae T 1976 Effects of oviducal cells on the survival and fertilizing ability of fowl spermatozoa. Journal of Reproduction and Fertility 47 305311. (https://doi.org/10.1530/jrf.0.0470305)

    • Search Google Scholar
    • Export Citation
  • Atikuzzaman M, Bhai RM, Fogelholm J, Wright D & Rodriguez-Martinez H 2015 Mating induces the expression of immune- and pH-regulatory genes in the utero-vaginal junction containing mucosal sperm-storage tubuli of hens. Reproduction 150 473483. (https://doi.org/10.1530/REP-15-0253)

    • Search Google Scholar
    • Export Citation
  • Bakst MR & Bauchan G 2015 Apical blebs on sperm storage tubule epithelial cell microvilli: their release and interaction with resident sperm in the turkey hen oviduct. Theriogenology 83 14381444. (https://doi.org/10.1016/j.theriogenology.2015.01.016)

    • Search Google Scholar
    • Export Citation
  • Bathala P, Fereshteh Z, Li K, Al-Dossary AA, Galileo DS & Martin-DeLeon PA 2018 Oviductal extracellular vesicles (oviductosomes, OVS) are conserved in humans: murine OVS play a pivotal role in sperm capacitation and fertility. Molecular Human Reproduction 24 143157. (https://doi.org/10.1093/molehr/gay003)

    • Search Google Scholar
    • Export Citation
  • Bruneel A, Labas V, Mailloux A, Sharma S, Royer N, Vihn J, Pernet P, Vaubourdolle M & Baudin B 2005 Proteomics of human umbilical vein endothelial cells applied to etoposide-induced apoptosis. Proteomics 5 38763884. (https://doi.org/10.1002/pmic.200401239)

    • Search Google Scholar
    • Export Citation
  • Burgess DR, Broschat KO & Hayden JM 1987 Tropomyosin distinguishes between the two actin-binding sites of villin and affects actin-binding properties of other brush border proteins. Journal of Cell Biology 104 2940. (https://doi.org/10.1083/jcb.104.1.29)

    • Search Google Scholar
    • Export Citation
  • Cordova A, Perreau C, Uzbekova S, Ponsart C, Locatelli Y & Mermillod P 2014 Development rate and gene expression of IVP bovine embryos cocultured with bovine oviduct epithelial cells at early or late stage of preimplantation development. Theriogenology 81 11631173. (https://doi.org/10.1016/j.theriogenology.2014.01.012)

    • Search Google Scholar
    • Export Citation
  • Cowell GM & Danielsen EM 1984 Biosynthesis of intestinal microvillar proteins. Rapid expression of cytoskeletal components in microvilli of pig small intestinal mucosal explants. FEBS Letters 172 309314. (https://doi.org/10.1016/0014-5793(8481147-3)

    • Search Google Scholar
    • Export Citation
  • Das SC, Isobe N & Yoshimura Y 2008 Mechanism of prolonged sperm storage and sperm survivability in hen oviduct: a review. American Journal of Reproductive Immunology 60 477481. (https://doi.org/10.1111/j.1600-0897.2008.00651.x)

    • Search Google Scholar
    • Export Citation
  • Doyle LM & Wang MZ 2019 Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8 727. (https://doi.org/10.3390/cells8070727)

    • Search Google Scholar
    • Export Citation
  • Drenckhahn D, Hofmann HD & Mannherz HG 1983 Evidence for the association of villin with core filaments and rootlets of intestinal epithelial microvilli. Cell and Tissue Research 228 409414. (https://doi.org/10.1007/BF00204889)

    • Search Google Scholar
    • Export Citation
  • Du J, Shen J, Wang Y, Pan C, Pang W, Diao H & Dong W 2016 Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane. Oncotarget 7 5883258847. (https://doi.org/10.18632/oncotarget.11315)

    • Search Google Scholar
    • Export Citation
  • Ebers KL, Zhang CY, Zhang MZ, Bailey RH & Zhang S 2009 Transcriptional profiling avian beta-defensins in chicken oviduct epithelial cells before and after infection with Salmonella enterica serovar Enteritidis. BMC Microbiology 9 153. (https://doi.org/10.1186/1471-2180-9-153)

    • Search Google Scholar
    • Export Citation
  • Ellington JE, Ignotz GG, Ball BA, Meyers-Wallen VN & Currie WB 1993 De novo protein synthesis by bovine uterine tube (oviduct) epithelial cells changes during co-culture with bull spermatozoa. Biology of Reproduction 48 851856. (https://doi.org/10.1095/biolreprod48.4.851)

    • Search Google Scholar
    • Export Citation
  • Fereshteh Z, Bathala P, Galileo DS & Martin-DeLeon PA 2019 Detection of extracellular vesicles in the mouse vaginal fluid: their delivery of sperm proteins that stimulate capacitation and modulate fertility. Journal of Cellular Physiology 234 1274512756. (https://doi.org/10.1002/jcp.27894)

    • Search Google Scholar
    • Export Citation
  • Georgiou AS, Sostaric E, Wong CH, Snijders APLL, Wright PC, Moore HD & Fazeli A 2005 Gametes alter the oviductal secretory proteome. Molecular and Cellular Proteomics 4 17851796. (https://doi.org/10.1074/mcp.M500119-MCP200)

    • Search Google Scholar
    • Export Citation
  • Gerke V & Moss SE 2002 Annexins: from structure to function. Physiological Reviews 82 331371. (https://doi.org/10.1152/physrev.00030.2001)

  • Geussova G, Kalab P & Peknicova J 2002 Valosine containing protein is a substrate of cAMP – activated boar sperm tyrosine kinase. Molecular Reproduction and Development 63 366375. (https://doi.org/10.1002/mrd.10156)

    • Search Google Scholar
    • Export Citation
  • Gunawardana VK & Scott MGAD 1977 Ultrastructural studies on the differentiation of spermatids in the domestic fowl. Journal of Anatomy 124 741755.

    • Search Google Scholar
    • Export Citation
  • Huang A, Isobe N & Yoshimura Y 2017 Changes in localization and density of CD63-positive exosome-like substances in the hen oviduct with artificial insemination and their effect on sperm viability. Theriogenology 101 135143. (https://doi.org/10.1016/j.theriogenology.2017.06.028)

    • Search Google Scholar
    • Export Citation
  • Ignotz GG, Cho MY & Suarez SS 2007 Annexins are candidate oviductal receptors for bovine sperm surface proteins and thus may serve to hold bovine sperm in the oviductal reservoir. Biology of Reproduction 77 906913. (https://doi.org/10.1095/biolreprod.107.062505)

    • Search Google Scholar
    • Export Citation
  • Jung JG, Park TS, Kim JN, Han BK, Lee SD, Song G & Han JY 2011 Characterization and application of oviductal epithelial cells in vitro in Gallus domesticus. Biology of Reproduction 85 798807. (https://doi.org/10.1095/biolreprod.111.092023)

    • Search Google Scholar
    • Export Citation
  • Karst AM & Drapkin R 2012 Primary culture and immortalization of human fallopian tube secretory epithelial cells. Nature Protocols 7 17551764. (https://doi.org/10.1038/nprot.2012.097)

    • Search Google Scholar
    • Export Citation
  • Kasperczyk K, Bajek A, Joachimiak R, Walasik K, Marszalek A, Drewa T & Bednarczyk M 2012 In vitro optimization of the Gallus domesticus oviduct epithelial cells culture. Theriogenology 77 18341845. (https://doi.org/10.1016/j.theriogenology.2011.12.029)

    • Search Google Scholar
    • Export Citation
  • King LM, Brillard JP, Bakst MR & Donoghue AM 1999 Isolation of sperm storage tubules from the uterovaginal junction mucosa of the turkey. Poultry Science 78 10441047. (https://doi.org/10.1093/ps/78.7.1044)

    • Search Google Scholar
    • Export Citation
  • Long EL, Sonstegard TS, Long JA, Van Tassell CP & Zuelke KA 2003 Serial analysis of gene expression in turkey sperm storage tubules in the presence and absence of resident sperm. Biology of Reproduction 69 469474. (https://doi.org/10.1095/biolreprod.102.015172)

    • Search Google Scholar
    • Export Citation
  • Mathieu M, Martin-Jaular L, Lavieu G & Théry C 2019 Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature Cell Biology 21 917. (https://doi.org/10.1038/s41556-018-0250-9)

    • Search Google Scholar
    • Export Citation
  • Moein-Vaziri N, Phillips I, Smith S, Alminǎna C, Maside C, Gil MA, Roca J, Martinez EA, Holt WV & Pockley AG et al. 2014 Heat-shock protein A8 restores sperm membrane integrity by increasing plasma membrane fluidity. Reproduction 147 719732. (https://doi.org/10.1530/REP-13-0631)

    • Search Google Scholar
    • Export Citation
  • Murdica V, Giacomini E, Makieva S, Zarovni N, Candiani M, Salonia A, Vago R & Viganò P 2020 In vitro cultured human endometrial cells release extracellular vesicles that can be uptaken by spermatozoa. Scientific Reports 10 8856. (https://doi.org/10.1038/s41598-020-65517-9)

    • Search Google Scholar
    • Export Citation
  • Qi XL, Xing K, Huang Z, Chen Y, Wang L, Zhang LC, Sheng XH, Wang XG, Ni HM & Guo Y 2020 Comparative transcriptome analysis digs out genes related to antifreeze between fresh and frozen–thawed rooster sperm. Poultry Science 99 28412851. (https://doi.org/10.1016/j.psj.2020.01.022)

    • Search Google Scholar
    • Export Citation
  • Raposo G & Stoorvogel W 2013 Extracellular vesicles: exosomes, microvesicles, and friends. Journal of Cell Biology 200 373383. (https://doi.org/10.1083/jcb.201211138)

    • Search Google Scholar
    • Export Citation
  • Riou C, Brionne A, Cordeiro L, Harichaux G, Gargaros A, Labas V, Gautron J & Gérard N 2019 Proteomic analysis of uterine fluid of fertile and subfertile hens before and after insemination. Reproduction 158 335356. (https://doi.org/10.1530/REP-19-0079)

    • Search Google Scholar
    • Export Citation
  • Riou C, Brionne A, Cordeiro L, Harichaux G, Gargaros A, Labas V, Gautron J & Gérard N 2020 Avian uterine fluid proteome: exosomes and biological processes potentially involved in sperm survival. Molecular Reproduction and Development 87 454470. (https://doi.org/10.1002/mrd.23333)

    • Search Google Scholar
    • Export Citation
  • Sagare-Patil V, Bhilawadikar R, Galvankar M, Zaveri K, Hinduja I & Modi D 2017 Progesterone requires heat shock protein 90 (HSP90) in human sperm to regulate motility and acrosome reaction. Journal of Assisted Reproduction and Genetics 34 495503. (https://doi.org/10.1007/s10815-017-0879-5)

    • Search Google Scholar
    • Export Citation
  • Sawaf MH, Ouhayoun JP, Shabana AH & Forest N 1992 Cytokeratins, markers of epithelial cell differentiation: expression in normal epithelia. Pathologie-Biologie 40 655665.

    • Search Google Scholar
    • Export Citation
  • Schiller DL, Franke WW & Geigerl B 1982 A subfamily of relatively large and basic cytokeratin polypeptides as defined by peptide mapping is represented by one or several polypeptides in epithelial cells. EMBO Journal 1 761769. (https://doi.org/10.1002/j.1460-2075.1982.tb01243.x)

    • Search Google Scholar
    • Export Citation
  • Stahl PD & Raposo G 2019 Extracellular vesicles: exosomes and microvesicles, integrators of homeostasis. Physiology 34 169177. (https://doi.org/10.1152/physiol.00045.2018)

    • Search Google Scholar
    • Export Citation
  • Théry C, Amigorena S, Raposo G & Clayton A 2006 Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology 30 3.2 2 .13.22.29. (https://doi.org/10.1002/0471143030.cb0322s30)

    • Search Google Scholar
    • Export Citation
  • Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F & Atkin-Smith GK et al. 2018 Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles 7 1535750. (https://doi.org/10.1080/20013078.2018.1535750)

    • Search Google Scholar
    • Export Citation
  • Tingari MD & Lake PE 1973 Ultrastructural studies on the uterovaginal sperm-host glands of the domestic hen, Gallus domesticus. Journal of Reproduction and Fertility 34 423431. (https://doi.org/10.1530/jrf.0.0340423)

    • Search Google Scholar
    • Export Citation
  • Van Niel G, D’Angelo G & Raposo G 2018 Shedding light on the cell biology of extracellular vesicles. Nature Reviews: Molecular Cell Biology 19 213228. (https://doi.org/10.1038/nrm.2017.125)

    • Search Google Scholar
    • Export Citation
  • Waqas MY, Yang P, Ahmed N, Zhang Q, Liu T, Li Q, Hu L, Hong C & Chen Q 2016 Characterization of the ultrastructure in the uterovaginal junction of the hen. Poultry Science 95 21122119. (https://doi.org/10.3382/ps/pew141)

    • Search Google Scholar
    • Export Citation
  • Zhou W, Stanger SJ, Anderson AL, Bernstein IR, De Iuliis GN, McCluskey A, McLaughlin EA, Dun MD & Nixon B 2019 Mechanisms of tethering and cargo transfer during epididymosome-sperm interactions. BMC Biology 17 35. (https://doi.org/10.1186/s12915-019-0653-5)

    • Search Google Scholar
    • Export Citation