Progesterone induces porcine sperm release from oviduct glycans in a proteasome-dependent manner

in Reproduction
View More View Less
  • 1 Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
  • 2 Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
  • 3 Shemyakin Institute of Bioorganic Chemistry, Moscow, Russia

Correspondence should be addressed to D J Miller; Email: djmille@illinois.edu

(M Sharif is now at Department of Obstetrics and Gynecology, Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA)

Restricted access

In mammals, the oviduct retains sperm, forming a reservoir from which they are released in synchrony with ovulation. However, the mechanisms underlying sperm release are unclear. Herein, we first examined in greater detail the release of sperm from the oviduct reservoir by sex steroids, and secondly, if the ubiquitin–proteasome system (UPS) mediates this release in vitro. Sperm were allowed to bind to oviductal cells or immobilized oviduct glycans, either bi-SiaLN or a suLeX, and channeled with steroids in the presence or absence of proteasome inhibitors. Previously, we have demonstrated progesterone-induced sperm release from oviduct cells and immobilized glycans in a steroid-specific manner. Herein, we found that the release of sperm from an immobilized oviduct glycan, a six-sialylated branched structure, and from immobilized fibronectin was inhibited by the CatSper blocker NNC 055-0396, akin to the previously reported ability of NNC 055-0396 to inhibit sperm release from another oviduct glycan, sulfated Lewis-X trisaccharide. Thus, CatSper may be required for release of sperm from a variety of adhesion systems. One possible mechanism for sperm release is that glycan receptors on sperm are degraded by proteasomes or shed from the sperm surface by proteasomal degradation. Accordingly, the inhibition of proteasomal degradation blocked sperm release from oviduct cell aggregates both immobilized oviduct glycans as well as fibronectin. In summary, progesterone-induced sperm release requires both active CatSper channels and proteasomal degradation, suggesting that hyperactivation and proteolysis are vital parts of the mechanism by which sperm move from the oviduct reservoir to the site of fertilization.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 135 135 100
Full Text Views 23 23 20
PDF Downloads 31 31 28
  • Alasmari W, Barratt CL, Publicover SJ, Whalley KM, Foster E, Kay V, Martins da Silva S & Oxenham SK 2013 The clinical significance of calcium-signalling pathways mediating human sperm hyperactivation. Human Reproduction 28 866876. (https://doi.org/10.1093/humrep/des467)

    • Search Google Scholar
    • Export Citation
  • Ardon F, Markello RD, Hu L, Deutsch ZI, Tung CK, Wu M & Suarez SS 2016 Dynamics of bovine sperm interaction with epithelium differ between oviductal isthmus and ampulla. Biology of Reproduction 95 90. (https://doi.org/10.1095/biolreprod.116.140632)

    • Search Google Scholar
    • Export Citation
  • Ballester L, Romero-Aguirregomezcorta J, Soriano-Ubeda C, Matas C, Romar R & Coy P 2014 Timing of oviductal fluid collection, steroid concentrations, and sperm preservation method affect porcine in vitro fertilization efficiency. Fertility and Sterility 102 1762 .e11768 .e1. (https://doi.org/10.1016/j.fertnstert.2014.08.009)

    • Search Google Scholar
    • Export Citation
  • Barratt CL 2011 The mystery is solved – catsper is the principal calcium channel activated by progesterone in human spermatozoa. Asian Journal of Andrology 13 351352. (https://doi.org/10.1038/aja.2011.9)

    • Search Google Scholar
    • Export Citation
  • Bovin NV, Korchagina E, Zemlyanukhina TV, Byramova NE, Galanina OE, Zemlyakov AE, Ivanov AE, Zubov VP & Mochalova LV 1993 Synthesis of polymeric neoglycoconjugates based on n-substituted polyacrylamides. Glycoconjugate Journal 10 142151. (https://doi.org/10.1007/BF00737711)

    • Search Google Scholar
    • Export Citation
  • Brussow KP, Ratky J & Rodriguez-Martinez H 2008 Fertilization and early embryonic development in the porcine Fallopian tube. Reproduction in Domestic Animals 43 (Supplement 2) 245251. (https://doi.org/10.1111/j.1439-0531.2008.01169.x)

    • Search Google Scholar
    • Export Citation
  • Bureau M, Bailey JL & Sirard MA 2002 Binding regulation of porcine spermatozoa to oviductal vesicles in vitro. Journal of Andrology 23 188193.

    • Search Google Scholar
    • Export Citation
  • Calogero AE, Burrello N, Barone N, Palermo I, Grasso U & Agata RD 2000 Effects of progesterone on sperm function: Mechanisms of action. Human Reproduction 15 (Supplement) 2845. (https://doi.org/10.1093/humrep/15.suppl_1.28)

    • Search Google Scholar
    • Export Citation
  • Chatterjee Bhowmick D & Jeremic A 2018 Functional proteasome complex is required for turnover of islet amyloid polypeptide in pancreatic beta-cells. Journal of Biological Chemistry 293 1421014223. (https://doi.org/10.1074/jbc.RA118.002414)

    • Search Google Scholar
    • Export Citation
  • Chavez JC, De la Vega-Beltran JL, Jose O, Torres P, Nishigaki T, Trevino CL & Darszon A 2018 Acrosomal alkalization triggers ca(2+) release and acrosome reaction in mammalian spermatozoa. Journal of Cellular Physiology 233 47354747. (https://doi.org/10.1002/jcp.26262)

    • Search Google Scholar
    • Export Citation
  • Chung JJ, Shim SH, Everley RA, Gygi SP, Zhuang X & Clapham DE 2014 Structurally distinct ca(2+) signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility. Cell 157 808822. (https://doi.org/10.1016/j.cell.2014.02.056)

    • Search Google Scholar
    • Export Citation
  • Curtis MP, Kirkman-Brown JC, Connolly TJ & Gaffney EA 2012 Modelling a tethered mammalian sperm cell undergoing hyperactivation. Journal of Theoretical Biology 309 110. (https://doi.org/10.1016/j.jtbi.2012.05.035)

    • Search Google Scholar
    • Export Citation
  • Darszon A & Hernandez-Cruz A 2014 T-type ca2+ channels in spermatogenic cells and sperm. Pflugers Archiv 466 819831. (https://doi.org/10.1007/s00424-014-1478-2)

    • Search Google Scholar
    • Export Citation
  • Ekhlasi-Hundrieser M, Gohr K, Wagner A, Tsolova M, Petrunkina A & Topfer-Petersen E 2005 Spermadhesin aqn1 is a candidate receptor molecule involved in the formation of the oviductal sperm reservoir in the pig. Biology of Reproduction 73 536545. (https://doi.org/10.1095/biolreprod.105.040824)

    • Search Google Scholar
    • Export Citation
  • Falkenstein E, Heck M, Gerdes D, Grube D, Christ M, Weigel M, Buddhikot M, Meizel S & Wehling M 1999 Specific progesterone binding to a membrane protein and related nongenomic effects on ca2+-fluxes in sperm. Endocrinology 140 59996002. (https://doi.org/10.1210/endo.140.12.7304)

    • Search Google Scholar
    • Export Citation
  • Fazeli A, Duncan AE, Watson PF & Holt WV 1999 Sperm-oviduct interaction: induction of capacitation and preferential binding of uncapacitated spermatozoa to oviductal epithelial cells in porcine species. Biology of Reproduction 60 879886. (https://doi.org/10.1095/biolreprod60.4.879)

    • Search Google Scholar
    • Export Citation
  • Hung PH & Suarez SS 2012 Alterations to the bull sperm surface proteins that bind sperm to oviductal epithelium. Biology of Reproduction 87 88. (https://doi.org/10.1095/biolreprod.112.099721)

    • Search Google Scholar
    • Export Citation
  • Hunter RH 1973 Polyspermic fertilization in pigs after tubal deposition of excessive numbers of spermatozoa. Journal of Experimental Zoology 183 5763. (https://doi.org/10.1002/jez.1401830107)

    • Search Google Scholar
    • Export Citation
  • Ito T, Yoshizaki N, Tokumoto T, Ono H, Yoshimura T, Tsukada A, Kansaku N & Sasanami T 2011 Progesterone is a sperm-releasing factor from the sperm-storage tubules in birds. Endocrinology 152 39523962. (https://doi.org/10.1210/en.2011-0237)

    • Search Google Scholar
    • Export Citation
  • Kadirvel G, Machado SA, Korneli C, Collins E, Miller P, Bess KN, Aoki K, Tiemeyer M, Bovin N & Miller DJ 2012 Porcine sperm bind to specific 6-sialylated biantennary glycans to form the oviduct reservoir. Biology of Reproduction 87 147. (https://doi.org/10.1095/biolreprod.112.103879)

    • Search Google Scholar
    • Export Citation
  • Kerns K, Morales P & Sutovsky P 2016 Regulation of sperm capacitation by the 26s proteasome: an emerging new paradigm in spermatology. Biology of Reproduction 94 117. (https://doi.org/10.1095/biolreprod.115.136622)

    • Search Google Scholar
    • Export Citation
  • Kerns K, Zigo M, Drobnis EZ, Sutovsky M & Sutovsky P 2018a Zinc ion flux during mammalian sperm capacitation. Nature Communications 9 2061. (https://doi.org/10.1038/s41467-018-04523-y)

    • Search Google Scholar
    • Export Citation
  • Kerns K, Zigo M & Sutovsky P 2018b Zinc: a necessary ion for mammalian sperm fertilization competency. International Journal of Molecular Sciences 19 40974097. (https://doi.org/10.3390/ijms19124097)

    • Search Google Scholar
    • Export Citation
  • Kerns K, Sharif M, Zigo M, Xu W, Hamilton LE, Sutovsky M, Ellersieck M, Drobnis EZ, Bovin N & Oko R et al. 2020 Sperm cohort-specific zinc signature acquisition and capacitation-induced zinc flux regulate sperm-oviduct and sperm-zona pellucida interactions. International Journal of Molecular Sciences 21 2121. (https://doi.org/10.3390/ijms21062121)

    • Search Google Scholar
    • Export Citation
  • Kisselev AF & Goldberg AL 2001 Proteasome inhibitors: from research tools to drug candidates. Chemistry and Biology 8 739758. (https://doi.org/10.1016/s1074-5521(0100056-4)

    • Search Google Scholar
    • Export Citation
  • Lamy J, Liere P, Pianos A, Aprahamian F, Mermillod P & Saint-Dizier M 2016 Steroid hormones in bovine oviductal fluid during the estrous cycle. Theriogenology 86 14091420. (https://doi.org/10.1016/j.theriogenology.2016.04.086)

    • Search Google Scholar
    • Export Citation
  • Lamy J, Corbin E, Blache MC, Garanina AS, Uzbekov R, Mermillod P & Saint-Dizier M 2017 Steroid hormones regulate sperm-oviduct interactions in the bovine. Reproduction 154 497508. (https://doi.org/10.1530/REP-17-0328)

    • Search Google Scholar
    • Export Citation
  • Lishko PV & Mannowetz N 2018 Catsper: a unique calcium channel of the sperm flagellum. Current Opinion in Physiology 2 109113. (https://doi.org/10.1016/j.cophys.2018.02.004)

    • Search Google Scholar
    • Export Citation
  • Lishko PV, Botchkina IL & Kirichok Y 2011 Progesterone activates the principal ca2+ channel of human sperm. Nature 471 387391. (https://doi.org/10.1038/nature09767)

    • Search Google Scholar
    • Export Citation
  • Lishko PV, Kirichok Y, Ren D, Navarro B, Chung JJ & Clapham DE 2012 The control of male fertility by spermatozoan ion channels. Annual Review of Physiology 74 453475. (https://doi.org/10.1146/annurev-physiol-020911-153258)

    • Search Google Scholar
    • Export Citation
  • Machado SA, Kadirvel G, Daigneault BW, Korneli C, Miller P, Bovin N & Miller DJ 2014 Lewisx-containing glycans on the porcine oviductal epithelium contribute to formation of the sperm reservoir. Biology of Reproduction 91 140. (https://doi.org/10.1095/biolreprod.114.119503)

    • Search Google Scholar
    • Export Citation
  • Machado SA, Sharif M, Wang H, Bovin N & Miller DJ 2019 Release of porcine sperm from oviduct cells is stimulated by progesterone and requires catsper. Scientific Reports 9 19546. (https://doi.org/10.1038/s41598-019-55834-z)

    • Search Google Scholar
    • Export Citation
  • Machado SA, Sharif M, Kadirvel G, Bovin N & Miller DJ 2020 Adhesion to oviduct glycans regulates porcine sperm ca2+ influx and viability. PLoS ONE 15 e0237666. (https://doi.org/10.1371/journal.pone.0237666)

    • Search Google Scholar
    • Export Citation
  • Mannowetz N, Miller MR & Lishko PV 2017 Regulation of the sperm calcium channel catsper by endogenous steroids and plant triterpenoids. PNAS 114 57435748. (https://doi.org/10.1073/pnas.1700367114)

    • Search Google Scholar
    • Export Citation
  • Miles EL, O’Gorman C, Zhao J, Samuel M, Walters E, Yi YJ, Sutovsky M, Prather RS, Wells KD & Sutovsky P 2013 Transgenic pig carrying green fluorescent proteasomes. PNAS 110 63346339. (https://doi.org/10.1073/pnas.1220910110)

    • Search Google Scholar
    • Export Citation
  • Miller MR, Mannowetz N, Iavarone AT, Safavi R, Gracheva EO, Smith JF, Hill RZ, Bautista DM, Kirichok Y & Lishko PV 2016 Unconventional endocannabinoid signaling governs sperm activation via the sex hormone progesterone. Science 352 555559. (https://doi.org/10.1126/science.aad6887)

    • Search Google Scholar
    • Export Citation
  • Morales P, Kong M, Pizarro E & Pasten C 2003 Participation of the sperm proteasome in human fertilization. Human Reproduction 18 10101017. (https://doi.org/10.1093/humrep/deg111)

    • Search Google Scholar
    • Export Citation
  • Pizarro E, Pasten C, Kong M & Morales P 2004 Proteasomal activity in mammalian spermatozoa. Molecular Reproduction and Development 69 8793. (https://doi.org/10.1002/mrd.20152)

    • Search Google Scholar
    • Export Citation
  • Pollard JW, Plante C, King WA, Hansen PJ, Betteridge KJ & Suarez SS 1991 Fertilizing capacity of bovine sperm may be maintained by binding of oviductal epithelial cells. Biology of Reproduction 44 102107. (https://doi.org/10.1095/biolreprod44.1.102)

    • Search Google Scholar
    • Export Citation
  • Ramal-Sanchez M, Bernabo N, Tsikis G, Blache MC, Labas V, Druart X, Mermillod P & Saint-Dizier M 2020 Progesterone induces sperm release from oviductal epithelial cells by modifying sperm proteomics, lipidomics and membrane fluidity. Molecular and Cellular Endocrinology 504 110723. (https://doi.org/10.1016/j.mce.2020.110723)

    • Search Google Scholar
    • Export Citation
  • Raychoudhury SS & Suarez SS 1991 Porcine sperm binding to oviductal explants in culture. Theriogenology 36 10591070. (https://doi.org/10.1016/0093-691X(9190331-7)

    • Search Google Scholar
    • Export Citation
  • Roldan ER, Murase T & Shi QX 1994 Exocytosis in spermatozoa in response to progesterone and zona pellucida. Science 266 15781581. (https://doi.org/10.1126/science.7985030)

    • Search Google Scholar
    • Export Citation
  • Romero-Aguirregomezcorta J, Cronin S, Donnellan E & Fair S 2019 Progesterone induces the release of bull spermatozoa from oviductal epithelial cells. Reproduction, Fertility, and Development 31 14631472. (https://doi.org/10.1071/RD18316)

    • Search Google Scholar
    • Export Citation
  • Sagare-Patil V, Galvankar M, Satiya M, Bhandari B, Gupta SK & Modi D 2012 Differential concentration and time dependent effects of progesterone on kinase activity, hyperactivation and acrosome reaction in human spermatozoa. International Journal of Andrology 35 633644. (https://doi.org/10.1111/j.1365-2605.2012.01291.x)

    • Search Google Scholar
    • Export Citation
  • Sanchez R, Deppe M, Schulz M, Bravo P, Villegas J, Morales P & Risopatron J 2011 Participation of the sperm proteasome during in vitro fertilisation and the acrosome reaction in cattle. Andrologia 43 114120. (https://doi.org/10.1111/j.1439-0272.2009.01031.x)

    • Search Google Scholar
    • Export Citation
  • Silva E, Kadirvel G, Jiang R, Bovin N & Miller D 2014 Multiple proteins from ejaculated and epididymal porcine spermatozoa bind glycan motifs found in the oviduct. Andrology 2 763771. (https://doi.org/10.1111/j.2047-2927.2014.00249.x)

    • Search Google Scholar
    • Export Citation
  • Silva E, Frost D, Li L, Bovin N & Miller DJ 2017 Lactadherin is a candidate oviduct lewis x trisaccharide receptor on porcine spermatozoa. Andrology 5 589597. (https://doi.org/10.1111/andr.12340)

    • Search Google Scholar
    • Export Citation
  • Smith JF, Syritsyna O, Fellous M, Serres C, Mannowetz N, Kirichok Y & Lishko PV 2013 Disruption of the principal, progesterone-activated sperm ca2+ channel in a catsper2-deficient infertile patient. PNAS 110 68236828. (https://doi.org/10.1073/pnas.1216588110)

    • Search Google Scholar
    • Export Citation
  • Strunker T, Goodwin N, Brenker C, Kashikar ND, Weyand I, Seifert R & Kaupp UB 2011 The catsper channel mediates progesterone-induced ca2+ influx in human sperm. Nature 471 382386. (https://doi.org/10.1038/nature09769)

    • Search Google Scholar
    • Export Citation
  • Suarez SS 2008 Regulation of sperm storage and movement in the mammalian oviduct. International Journal of Developmental Biology 52 455462. (https://doi.org/10.1387/ijdb.072527ss)

    • Search Google Scholar
    • Export Citation
  • Suarez SS 2016 Mammalian sperm interactions with the female reproductive tract. Cell and Tissue Research 363 185194. (https://doi.org/10.1007/s00441-015-2244-2)

    • Search Google Scholar
    • Export Citation
  • Suarez S, Redfern K, Raynor P, Martin F & Phillips DM 1991 Attachment of boar sperm to mucosal explants of oviduct in vitro: possible role in formation of a sperm reservoir. Biology of Reproduction 44 9981004. (https://doi.org/10.1095/biolreprod44.6.998)

    • Search Google Scholar
    • Export Citation
  • Sutovsky P 2003 Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: killing three birds with one stone. Microscopy Research and Technique 61 88102. (https://doi.org/10.1002/jemt.10319)

    • Search Google Scholar
    • Export Citation
  • Sutovsky P 2011 Sperm proteasome and fertilization. Reproduction 142 114. (https://doi.org/10.1530/REP-11-0041)

  • Sutovsky P, McCauley TC, Sutovsky M & Day BN 2003 Early degradation of paternal mitochondria in domestic pig (sus scrofa) is prevented by selective proteasomal inhibitors lactacystin and MG132. Biology of Reproduction 68 17931800. (https://doi.org/10.1095/biolreprod.102.012799)

    • Search Google Scholar
    • Export Citation
  • Sutovsky P, Manandhar G, McCauley TC, Caamano JN, Sutovsky M, Thompson WE & Day BN 2004 Proteasomal interference prevents zona pellucida penetration and fertilization in mammals. Biology of Reproduction 71 16251637. (https://doi.org/10.1095/biolreprod.104.032532)

    • Search Google Scholar
    • Export Citation
  • Sutovsky P, Kerns K, Zigo M & Zuidema D 2019 Boar semen improvement through sperm capacitation management, with emphasis on zinc ion homeostasis. Theriogenology 137 5055. (https://doi.org/10.1016/j.theriogenology.2019.05.037)

    • Search Google Scholar
    • Export Citation
  • Taraschi A, Cimini C, Capacchietti G, Ramal-Sanchez M, Valbonetti L, Machado-Simoes J, Moussa F, Tagaram I, Mokh S & Iskandarani MAl et al. 2020 Two-player game in a complex landscape: 26s proteasome, pka, and intracellular calcium concentration modulate mammalian sperm capacitation by creating an integrated dialogue-a computational analysis. International Journal of Molecular Sciences 21 6256. (https://doi.org/10.3390/ijms21176256)

    • Search Google Scholar
    • Export Citation
  • Tulsiani DR & Abou-Haila A 2004 Is sperm capacitation analogous to early phases of ca2+-triggered membrane fusion in somatic cells and viruses? BioEssays 26 281290. (https://doi.org/10.1002/bies.20003)

    • Search Google Scholar
    • Export Citation
  • Vicente-Carrillo A, Alvarez-Rodriguez M & Rodriguez-Martinez H 2017 The catsper channel modulates boar sperm motility during capacitation. Reproductive Biology 17 6978. (https://doi.org/10.1016/j.repbio.2017.01.001)

    • Search Google Scholar
    • Export Citation
  • Yi YJ, Zimmerman SW, Manandhar G, Odhiambo JF, Kennedy C, Jonakova V, Manaskova-Postlerova P, Sutovsky M, Park CS & Sutovsky P 2012 Ubiquitin-activating enzyme (uba1) is required for sperm capacitation, acrosomal exocytosis and sperm-egg coat penetration during porcine fertilization. International Journal of Andrology 35 196210. (https://doi.org/10.1111/j.1365-2605.2011.01217.x)

    • Search Google Scholar
    • Export Citation
  • Zapata-Carmona H, Baron L, Zuniga LM, Diaz ES, Kong M, Drobnis EZ, Sutovsky P & Morales P 2019 The activation of the chymotrypsin-like activity of the proteasome is regulated by soluble adenyl cyclase/camp/protein kinase A pathway and required for human sperm capacitation. Molecular Human Reproduction 25 587600. (https://doi.org/10.1093/molehr/gaz037)

    • Search Google Scholar
    • Export Citation
  • Zigo M, Kerns K, Sutovsky M & Sutovsky P 2018 Modifications of the 26s proteasome during boar sperm capacitation. Cell and Tissue Research 372 591601. (https://doi.org/10.1007/s00441-017-2786-6)

    • Search Google Scholar
    • Export Citation
  • Zigo M, Jonakova V, Manaskova-Postlerova P, Kerns K & Sutovsky P 2019 Ubiquitin-proteasome system participates in the de-aggregation of spermadhesins and dqh protein during boar sperm capacitation. Reproduction 157 283295. (https://doi.org/10.1530/REP-18-0413)

    • Search Google Scholar
    • Export Citation
  • Zimmerman SW, Manandhar G, Yi YJ, Gupta SK, Sutovsky M, Odhiambo JF, Powell MD, Miller DJ & Sutovsky P 2011 Sperm proteasomes degrade sperm receptor on the egg zona pellucida during mammalian fertilization. PLoS ONE 6 e17256. (https://doi.org/10.1371/journal.pone.0017256)

    • Search Google Scholar
    • Export Citation