Equine maternal aging affects oocyte lipid content, metabolic function and developmental potential

in Reproduction
View More View Less
  • 1 Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
  • 2 Electronic Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan
  • 3 Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado, USA
  • 4 Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado, USA
  • 5 Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA

Correspondence should be addressed to E Carnevale; Email: Elaine.Carnevale@ColoState.edu
Restricted access

Advanced maternal age is associated with a decline in fertility and oocyte quality. We used novel metabolic microsensors to assess effects of mare age on single oocyte and embryo metabolic function, which has not yet been similarly investigated in mammalian species. We hypothesized that equine maternal aging affects the metabolic function of oocytes and in vitro-produced early embryos, oocyte mitochondrial DNA (mtDNA) copy number, and relative abundance of metabolites involved in energy metabolism in oocytes and cumulus cells. Samples were collected from preovulatory follicles from young (≤14 years) and old (≥20 years) mares. Relative abundance of metabolites in metaphase II oocytes (MII) and their respective cumulus cells, detected by liquid and gas chromatography coupled to mass spectrometry, revealed that free fatty acids were less abundant in oocytes and more abundant in cumulus cells from old vs young mares. Quantification of aerobic and anaerobic metabolism, respectively measured as oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in a microchamber containing oxygen and pH microsensors, demonstrated reduced metabolic function and capacity in oocytes and day-2 embryos originating from oocytes of old when compared to young mares. In mature oocytes, mtDNA was quantified by real-time PCR and was not different between the age groups and not indicative of mitochondrial function. Significantly more sperm-injected oocytes from young than old mares resulted in blastocysts. Our results demonstrate a decline in oocyte and embryo metabolic activity that potentially contributes to the impaired developmental competence and fertility in aged females.

Supplementary Materials

    • Supplementary Table 1. Relative abundance of triglycerides (TG) in MII oocytes and cumulus cells (CC). Single sampler were analyzed from Young (n=8 mares) and Old (n=10 mares). Results are presented as mean  SEM.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 444 444 225
Full Text Views 54 54 36
PDF Downloads 67 67 43
  • Allen WR, Brown L, Wright M & Wilsher S 2007 Reproductive efficiency of flatrace and national hunt thoroughbred mares and stallions in England. Equine Veterinary Journal 39 438445. (https://doi.org/10.2746/042516407x1737581)

    • Search Google Scholar
    • Export Citation
  • Altermatt JL, Suh TK, Stokes JE & Carnevale EM 2009 Effects of age and equine follicle-stimulating hormone (eFSH) on collection and viability of equine oocytes assessed by morphology and developmental competency after intracytoplasmic sperm injection (ICSI). Reproduction, Fertility, and Development 21 615623. (https://doi.org/10.1071/RD08210)

    • Search Google Scholar
    • Export Citation
  • Barrett SL & Albertini DF 2010 Cumulus cell contact during oocyte maturation in mice regulates meiotic spindle positioning and enhances developmental competence. Journal of Assisted Reproduction and Genetics 27 2939. (https://doi.org/10.1007/s10815-009-9376-9)

    • Search Google Scholar
    • Export Citation
  • Bavister BD & Squirrell JM 2000 Mitochondrial distribution and function in oocytes and early embryos. Human Reproduction 15 (Supplement 2) 189198. (https://doi.org/10.1093/humrep/15.suppl_2.189)

    • Search Google Scholar
    • Export Citation
  • Bentov Y, Yavorska T, Esfandiari N, Jurisicova A & Casper RF 2011 The contribution of mitochondrial function to reproductive aging. Journal of Assisted Reproduction and Genetics 28 773783. (https://doi.org/10.1007/s10815-011-9588-7)

    • Search Google Scholar
    • Export Citation
  • Brand MD & Nicholls DG 2011 Assessing mitochondrial dysfunction in cells. Biochemical Journal 435 297312. (https://doi.org/10.1042/BJ20110162)

    • Search Google Scholar
    • Export Citation
  • Broeckling CD, Afsar FA, Neumann S, Ben-Hur A & Prenni JE 2014 RAMClust: a novel feature clustering method enables spectral-matching-based annotation for metabolomics data. Analytical Chemistry 86 68126817. (https://doi.org/10.1021/ac501530d)

    • Search Google Scholar
    • Export Citation
  • Broeckling CD, Ganna A, Layer M, Brown K, Sutton B, Ingelsson E, Peers G & Prenni JE 2016 Enabling efficient and confident annotation of LC−MS metabolomics data through MS1 spectrum and time prediction. Analytical Chemistry 88 92269234. (https://doi.org/10.1021/acs.analchem.6b02479)

    • Search Google Scholar
    • Export Citation
  • Campos-Chillon F, Farmerie TA, Bouma GJ, Clay CM & Carnevale EM 2015 Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. Reproduction, Fertility, and Development 27 925933. (https://doi.org/10.1071/RD14472)

    • Search Google Scholar
    • Export Citation
  • Carnevale EM 2008 The mare model for follicular maturation and reproductive aging in the woman. Theriogenology 69 2330. (https://doi.org/10.1016/j.theriogenology.2007.09.011)

    • Search Google Scholar
    • Export Citation
  • Carnevale EM 2016 Advances in collection, transport and maturation of equine oocytes for assisted reproductive techniques. Veterinary Clinics of North America. Equine Practice 32 379399. (https://doi.org/10.1016/j.cveq.2016.07.002)

    • Search Google Scholar
    • Export Citation
  • Carnevale EM & Ginther OJ 1992 Relationships of age to uterine function and reproductive efficiency in mares. Theriogenology 37 11011115. (https://doi.org/10.1016/0093-691x(9290108-4)

    • Search Google Scholar
    • Export Citation
  • Carnevale EM & Ginther OJ 1995 Defective oocytes as a cause of subfertility in old mares. Biology of Reproduction 52 209214. (https://doi.org/10.1093/biolreprod/52.monograph_series1.209)

    • Search Google Scholar
    • Export Citation
  • Carnevale EM, Bergfelt DR & Ginther OJ 1993 Aging effects on follicular activity and concentrations of FSH, LH, and progesterone in mares. Animal Reproduction Science 31 287299. (https://doi.org/10.1016/0378-4320(9390013-H)

    • Search Google Scholar
    • Export Citation
  • Carnevale EM, Coutinho da Silva MA, Panzani D, Stokes JE & Squires EL 2005 Factors affecting the success of oocyte transfer in a clinical program for subfertile mares. Theriogenology 64 519527. (https://doi.org/10.1016/j.theriogenology.2005.05.008)

    • Search Google Scholar
    • Export Citation
  • Carnevale EM, Maclellan LJ, Ruggeri E & Albertini DF 2012 Meiotic spindle configurations in metaphase II oocytes from young and old mares. Journal of Equine Veterinary Science 32 410411. (https://doi.org/10.1016/j.jevs.2012.05.034)

    • Search Google Scholar
    • Export Citation
  • Cecchino GN & Garcia-Velasco JA 2019 Mitochondrial DNA copy number as a predictor of embryo viability. Fertility and Sterility 111 205211. (https://doi.org/10.1016/j.fertnstert.2018.11.021)

    • Search Google Scholar
    • Export Citation
  • Cecchino GN, Seli E, Alves da Motta EL & García-Velasco JA 2018 The role of mitochondrial activity in female fertility and assisted reproductive technologies: overview and current insights. Reproductive Biomedicine Online 36 686697. (https://doi.org/10.1016/j.rbmo.2018.02.007)

    • Search Google Scholar
    • Export Citation
  • Chappel S 2013 The role of mitochondria from mature oocyte to viable blastocyst. Obstetrics and Gynecology International 2013 183024. (https://doi.org/10.1155/2013/183024)

    • Search Google Scholar
    • Export Citation
  • Clarke HJ 2018 History, origin, and function of transzonal projections: the bridges of communication between the oocyte and its environment. Animal Reproduction 15 215223. (https://doi.org/10.21451/1984-3143-AR2018-0061)

    • Search Google Scholar
    • Export Citation
  • Collado-Fernandez E, Picton HM & Dumollard R 2012 Metabolism throughout follicle and oocyte development in mammals. International Journal of Developmental Biology 56 799808. (https://doi.org/10.1387/ijdb.120140ec)

    • Search Google Scholar
    • Export Citation
  • Cuervo-Arango J, Claes AN & Stout TA 2019 A retrospective comparison of the efficiency of different assisted reproductive techniques in the horse, emphasizing the impact of maternal age. Theriogenology 132 3644. (https://doi.org/10.1016/j.theriogenology.2019.04.010)

    • Search Google Scholar
    • Export Citation
  • del Collado M, da Silveira JC, Sangalli JR, Andrade GM, Sousa LRDS, Silva LA, Meirelles FV & Perecin F 2017 Fatty acid binding Protein 3 and transzonal projections are involved in lipid accumulation during in vitro maturation of bovine oocytes. Scientific Reports 7 2645. (https://doi.org/10.1038/s41598-017-02467-9)

    • Search Google Scholar
    • Export Citation
  • Diez-Juan A, Rubio C, Marin C, Martinez S, Al-Asmar N, Riboldi M, Díaz-Gimeno P, Valbuena D & Simón C 2015 Mitochondrial DNA content as a viability score in human euploid embryos: less is better. Fertility and Sterility 104 53441.e 1. (https://doi.org/10.1016/j.fertnstert.2015.05.022)

    • Search Google Scholar
    • Export Citation
  • Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL & Schoolcraft WB 2015 Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertility andSterility 103 303316. (https://doi.org/10.1016/j.fertnstert.2014.11.015)

    • Search Google Scholar
    • Export Citation
  • Dunning KR, Russell DL & Robker RL 2014 Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction 148 R15R27. (https://doi.org/10.1530/REP-13-0251)

    • Search Google Scholar
    • Export Citation
  • El-Hayek S, Yang Q, Abbassi L, FitzHarris G & Clarke HJ 2018 Mammalian oocytes locally remodel follicular architecture to provide the foundation for germline-soma communication. Current Biology 28 11241131.e3. (https://doi.org/10.1016/j.cub.2018.02.039)

    • Search Google Scholar
    • Export Citation
  • Frank BL, Doddman CD, Stokes JE & Carnevale EM 2019 Association of equine oocyte and cleavage stage embryo morphology with maternal age and pregnancy after intracytoplasmic sperm injection. Reproduction, Fertility, and Development 31 18121822. (https://doi.org/10.1071/RD19250)

    • Search Google Scholar
    • Export Citation
  • Gardner DK & Harvey AJ 2015 Blastocyst metabolism. Reproduction, Fertility and Development 27 638. (https://doi.org/10.1071/RD14421)

  • Gardner DK & Wale PL 2013 Analysis of metabolism to select viable human embryos for transfer. Fertility and Sterility 99 10621072. (https://doi.org/10.1016/j.fertnstert.2012.12.004)

    • Search Google Scholar
    • Export Citation
  • Harvey A, Gibson T, Lonergan T & Brenner C 2011 Dynamic regulation of mitochondrial function in preimplantation embryos and embryonic stem cells. Mitochondrion 11 829838. (https://doi.org/10.1016/j.mito.2010.12.013)

    • Search Google Scholar
    • Export Citation
  • Hashimoto S, Morimoto N, Yamanaka M, Matsumoto H, Yamochi T, Goto H, Inoue M, Nakaoka Y, Shibahara H & Morimoto Y 2017 Quantitative and qualitative changes of mitochondria in human preimplantation embryos. Journal of Assisted Reproduction and Genetics 34 573580. (https://doi.org/10.1007/s10815-017-0886-6)

    • Search Google Scholar
    • Export Citation
  • Hendriks WK, Colleoni S, Galli C, Paris DBBP, Colenbrander B, Roelen BAJ & Stout TAE 2015 Maternal age and in vitro culture affect mitochondrial number and function in equine oocytes and embryos. Reproduction, Fertility, and Development 27 957968. (https://doi.org/10.1071/RD14450)

    • Search Google Scholar
    • Export Citation
  • Hendriks WK, Colleoni S, Galli C, Paris DBBP, Colenbrander B & Stout TAE 2019 Mitochondrial DNA replication is initiated at blastocyst formation in equine embryos. Reproduction, Fertility, and Development 31 570578. (https://doi.org/10.1071/RD17387)

    • Search Google Scholar
    • Export Citation
  • Iwata H, Goto H, Tanaka H, Sakaguchi Y, Kimura K, Kuwayama T & Monji Y 2011 Effect of maternal age on mitochondrial DNA copy number, ATP content and IVF outcome of bovine oocytes. Reproduction, Fertility, and Development 23 424432. (https://doi.org/10.1071/RD10133)

    • Search Google Scholar
    • Export Citation
  • Kameyama Y, Filion F, Yoo JG & Smith LC 2007 Characterization of mitochondrial replication and transcription control during rat early development in vivo and in vitro. Reproduction 133 423432. (https://doi.org/10.1530/REP-06-0263)

    • Search Google Scholar
    • Export Citation
  • Krisher RL 2013 In vivo and in vitro environmental effects on mammalian oocyte quality. Annual Review of Animal Biosciences 1 393417. (https://doi.org/10.1146/annurev-animal-031412-103647)

    • Search Google Scholar
    • Export Citation
  • Kushnir VA, Ludaway T, Russ RB, Fields EJ, Koczor C & Lewis W 2012 Reproductive aging is associated with decreased mitochondrial abundance and altered structure in murine oocytes. Journal of Assisted Reproduction and Genetics 29 637642. (https://doi.org/10.1007/s10815-012-9771-5)

    • Search Google Scholar
    • Export Citation
  • Lamas-Toranzo I, Pericuesta E & Bermejo-Álvarez P 2018 Mitochondrial and metabolic adjustments during the final phase of follicular development prior to IVM of bovine oocytes. Theriogenology 119 156162. (https://doi.org/10.1016/j.theriogenology.2018.07.007)

    • Search Google Scholar
    • Export Citation
  • Lane M, O’Donovan MK, Squires EL, Seidel GE & Gardner DK 2001 Assessment of metabolism of equine morulae and blastocysts. Molecular Reproduction and Development 59 3337. (https://doi.org/10.1002/mrd.1004).

    • Search Google Scholar
    • Export Citation
  • Lewis N, Hinrichs K, Leese HJ, McG Argo C, Brison DR & Sturmey R 2020 Energy metabolism of the equine cumulus oocyte complex during in vitro maturation. Scientific Reports 10 3493. (https://doi.org/10.1038/s41598-020-60624-z)

    • Search Google Scholar
    • Export Citation
  • Lopes AS, Greve T & Callesen H 2007 Quantification of embryo quality by respirometry. Theriogenology 67 2131. (https://doi.org/10.1016/j.theriogenology.2006.09.026)

    • Search Google Scholar
    • Export Citation
  • May‐Panloup P, Chretien MF, Malthiery Y & Reynier P 2007 Mitochondrial DNA in the oocyte and the developing embryo. Current Topics in Developmental Biology 77 5183. (https://doi.org/10.1016/S0070-2153(0677003-X)

    • Search Google Scholar
    • Export Citation
  • Mookerjee SA, Goncalves RLS, Gerencser AA, Nicholls DG & Brand MD 2015 The contributions of respiration and glycolysis to extracellular acid production. Biochimica et Biophysica Acta 1847 171181. (https://doi.org/10.1016/j.bbabio.2014.10.005)

    • Search Google Scholar
    • Export Citation
  • Morel MCGD, Newcombe JR & Swindlehurst JC 2005 The effect of age on multiple ovulation rates, multiple pregnancy rates and embryonic vesicle diameter in the mare. Theriogenology 63 24822493. (https://doi.org/10.1016/j.theriogenology.2004.09.058)

    • Search Google Scholar
    • Export Citation
  • Morimoto N, Hashimoto S, Yamanaka M, Nakano T, Satoh M, Nakaoka Y, Iwata H, Fukui A, Morimoto Y & Shibahara H 2020 Mitochondrial oxygen consumption rate of human embryos decline with maternal age. Journal of Assisted Reproduction and Genetics 37 18151821. (https://doi.org/10.1007/s10815-020-01869-5)

    • Search Google Scholar
    • Export Citation
  • Muller B, Lewis N, Adeniyi T, Leese HJ, Brison DR & Sturmey RG 2019 Application of extracellular flux analysis for determining mitochondrial function in mammalian oocytes and early embryos. Scientific Reports 9 16778. (https://doi.org/10.1038/s41598-019-53066-9)

    • Search Google Scholar
    • Export Citation
  • Obeidat YM, Evans AJ, Tedjo W, Chicco AJ, Carnevale E & Chen TW 2018 Monitoring oocyte/embryo respiration using electrochemical-based oxygen sensors. Sensors and Actuators B 276 7281. (https://doi.org/10.1016/j.snb.2018.07.157)

    • Search Google Scholar
    • Export Citation
  • Obeidat Y, Catandi G, Carnevale E, Chicco AJ, DeMann A, Field S & Chen T 2019a A multi-sensor system for measuring bovine embryo metabolism. Biosensors and Bioelectronics 126 615623. (https://doi.org/10.1016/j.bios.2018.09.071)

    • Search Google Scholar
    • Export Citation
  • Obeidat YM, Cheng MH, Catandi G, Carnevale E, Chicco AJ & Chen TW 2019b Design of a multi-sensor platform for integrating extracellular acidification rate with multi-metabolite flux measurement for small biological samples. Biosensors and Bioelectronics 133 3947. (https://doi.org/10.1016/j.bios.2019.02.069)

    • Search Google Scholar
    • Export Citation
  • Paczkowski M, Silva E, Schoolcraft WB & Krisher RL 2013 Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. Biology of Reproduction 88 111. (https://doi.org/10.1095/biolreprod.113.108548)

    • Search Google Scholar
    • Export Citation
  • Pasquariello R, Ermisch AF, Silva E, McCormick S, Logsdon D, Barfield JP, Schoolcraft WB & Krisher RL 2019 Alterations in oocyte mitochondrial number and function are related to spindle defects and occur with maternal aging in mice and humans†. Biology of Reproduction 100 971981. (https://doi.org/10.1093/biolre/ioy248)

    • Search Google Scholar
    • Export Citation
  • Pirro V, Oliveri P, Ferreira CR, González-Serrano AF, Machaty Z & Cooks RG 2014 Lipid characterization of individual porcine oocytes by dual mode DESI-MS and data fusion. Analytica Chimica Acta 848 5160. (https://doi.org/10.1016/j.aca.2014.08.001)

    • Search Google Scholar
    • Export Citation
  • Rambags BPB, van Boxtel DCJ, Tharasanit T, Lenstra JA, Colenbrander B & Stout TAE 2006 Maturation in vitro leads to mitochondrial degeneration in oocytes recovered from aged but not young mares. Animal Reproduction Science 94 359361. (https://doi.org/10.1016/j.anireprosci.2006.03.057)

    • Search Google Scholar
    • Export Citation
  • Rambags BPB, van Boxtel DCJ, Tharasanit T, Lenstra JA, Colenbrander B & Stout TAE 2014 Advancing maternal age predisposes to mitochondrial damage and loss during maturation of equine oocytes in vitro. Theriogenology 81 959965. (https://doi.org/10.1016/j.theriogenology.2014.01.020)

    • Search Google Scholar
    • Export Citation
  • Rizzo M, Kops GJPL, Deelen C, Beitsma M, Cristarella S, Stout TAE & de Ruijter-Villani M 2018 Compromised spindle assembly check-point function in oocytes From aged mares impairs correct chromosome alignment. Journal of Equine Veterinary Science 66 177. (https://doi.org/10.1016/j.jevs.2018.05.069)

    • Search Google Scholar
    • Export Citation
  • Rizzo M, Ducheyne KD, Deelen C, Beitsma M, Cristarella S, Quartuccio M, Stout TAE & Ruijter‐Villani M 2019 Advanced mare age impairs the ability of in vitro‐matured oocytes to correctly align chromosomes on the metaphase plate. Equine Veterinary Journal 51 252257. (https://doi.org/10.1111/evj.12995)

    • Search Google Scholar
    • Export Citation
  • Sanchez T, Venturas M, Aghvami SA, Yang X, Fraden S, Sakkas D & Needleman DJ 2019 Combined noninvasive metabolic and spindle imaging as potential tools for embryo and oocyte assessment. Human Reproduction 34 23492361. (https://doi.org/10.1093/humrep/dez210)

    • Search Google Scholar
    • Export Citation
  • Simsek-Duran F, Li F, Ford W, Swanson RJ, Jones HW & Castora FJ 2013 Age-associated metabolic and morphologic changes in mitochondria of individual mouse and hamster oocytes. PLoS ONE 8 e64955. (https://doi.org/10.1371/journal.pone.0064955)

    • Search Google Scholar
    • Export Citation
  • Smith CA, Want EJ, O’Maille G, Abagyan R & Siuzdak G 2006 XCMS:  processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry 78 779787. (https://doi.org/10.1021/ac051437y)

    • Search Google Scholar
    • Export Citation
  • Sturmey RG, Reis A, Leese HJ & McEvoy TG 2009 Role of fatty acids in energy provision During oocyte maturation and early embryo development. Reproduction in Domestic Animals 44 (Supplement 3) 5058. (https://doi.org/10.1111/j.1439-0531.2009.01402.x)

    • Search Google Scholar
    • Export Citation
  • Su YQ, Sugiura K & Eppig JJ 2009 Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Seminars in Reproductive Medicine 27 3242. (https://doi.org/10.1055/s-0028-1108008)

    • Search Google Scholar
    • Export Citation
  • Sugimura S, Matoba S, Hashiyada Y, Aikawa Y, Ohtake M, Matsuda H, Kobayashi S, Konishi K & Imai K 2012 Oxidative phosphorylation-linked respiration in individual bovine oocytes. Journal of Reproduction and Development 58 636641. (https://doi.org/10.1262/jrd.2012-082)

    • Search Google Scholar
    • Export Citation
  • Sutton-McDowall ML & Thompson JG 2015 Metabolism in the pre-implantation oocyte and embryo. Animal Reproduction 12 408417.

  • Tejera A, Herrero J, de los Santos MJ, Garrido N, Ramsing N & Meseguer M 2011 Oxygen consumption is a quality marker for human oocyte competence conditioned by ovarian stimulation regimens. Fertility and Sterility 96 618623.e2. (https://doi.org/10.1016/j.fertnstert.2011.06.059)

    • Search Google Scholar
    • Export Citation
  • Tejera A, Herrero J, Viloria T, Romero JL, Gamiz P & Meseguer M 2012 Time-dependent O2 consumption patterns determined optimal time ranges for selecting viable human embryos. Fertility and Sterility 98 849.e1–857.e 1. (https://doi.org/10.1016/j.fertnstert.2012.06.040)

    • Search Google Scholar
    • Export Citation
  • TeSlaa T & Teitell MA 2014 Techniques to monitor glycolysis. Methods in Enzymology 542 91114. (https://doi.org/10.1016/B978-0-12-416618-9.00005-4)

    • Search Google Scholar
    • Export Citation
  • Van Blerkom J 2011 Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 11 797813. (https://doi.org/10.1016/j.mito.2010.09.012)

    • Search Google Scholar
    • Export Citation
  • Viotti M, Victor AR, Zouves CG & Barnes FL 2017 Is mitochondrial DNA quantitation in blastocyst trophectoderm cells predictive of developmental competence and outcome in clinical IVF? Journal of Assisted Reproduction and Genetics 34 15811585. (https://doi.org/10.1007/s10815-017-1072-6)

    • Search Google Scholar
    • Export Citation
  • Wang Q, Chi MM, Schedl T & Moley KH 2012 An intercellular pathway for glucose transport into mouse oocytes. American Journal of Physiology. Endocrinology and Metabolism 302 E1511E1518. (https://doi.org/10.1152/ajpendo.00016.2012)

    • Search Google Scholar
    • Export Citation
  • Yamanaka M, Hashimoto S, Amo A, Ito-Sasaki T, Abe H & Morimoto Y 2011 Developmental assessment of human vitrified-warmed blastocysts based on oxygen consumption. Human Reproduction 26 33663371. (https://doi.org/10.1093/humrep/der324)

    • Search Google Scholar
    • Export Citation