First insights on seminal extracellular vesicles in chickens of contrasted fertility

in Reproduction
View More View Less
  • 1 INRAE, CNRS, Université de Tours, IFCE, UMR PRC, Nouzilly, Centre-Val de Loire, France
  • 2 Physiology Division, Livestock Research Institute, COA Tainan, Taiwan
  • 3 Laboratoire Biologie Cellulaire et Microscopie Electronique, Fac. Médecine, Université de Tours, Tours, Centre-Val de Loire, France

Correspondence should be addressed to E Besbois; Email: elisabeth.blesbois@inrae.fr
Restricted access

Male subfertility causes are very varied and sometimes related to post-gonadic maturation disruption, involving seminal plasma constituents. Among them, extracellular vesicles are involved in key exchanges with sperm in mammals. However, in birds, the existence of seminal extracellular vesicles is still debated. The aim of the present work was first to clarify the putative presence of extracellular vesicles in the seminal plasma of chickens, secondly to characterize their size and protein markers in animals showing different fertility, and finally to make preliminary evaluations of their interactions with sperm. We successfully isolated extracellular vesicles from seminal plasma of males showing the highest differences in semen quality and fertility by using ultracentrifugation protocol (pool of 3 ejaculates/rooster, n =3/condition). Size characterization performed by electron microscopy revealed a high proportion of small extracellular vesicles (probably exosomes) in chicken seminal plasma. Smaller extracellular vesicles appeared more abundant in fertile than in subfertile roosters, with a mean diameter of 65.12 and 77.18 nm, respectively. Different protein markers of extracellular vesicles were found by western blotting (n = 6/condition). Among them, HSP90A was significantly more abundant in fertile than in subfertile males. In co-incubation experiments (n = 3/condition), extracellular vesicles enriched seminal fractions of fertile males showed a higher capacity to be incorporated into fertile than into subfertile sperm. Sperm viability and motility were impacted by the presence of extracellular vesicles from fertile males. In conclusion, we successfully demonstrated the presence of extracellular vesicles in chicken seminal plasma, with differential size, protein markers and putative incorporation capacity according to male fertility status.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 167 167 123
Full Text Views 19 19 18
PDF Downloads 28 28 26
  • Aalberts M, van Dissel-Emiliani FM, van Adrichem NP, van Wijnen M, Wauben MH, Stout TA & Stoorvogel W 2012 Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans. Biology of Reproduction 86 82. (https://doi.org/10.1095/biolreprod.111.095760)

    • Search Google Scholar
    • Export Citation
  • Alcântara-Neto AS, Schmaltz L, Caldas E, Blache MC, Mermillod P & Almiñana C 2020 Porcine oviductal extracellular vesicles interact with gametes and regulate sperm motility and survival. Theriogenology 155 240255. (https://doi.org/10.1016/j.theriogenology.2020.05.043)

    • Search Google Scholar
    • Export Citation
  • Almiñana C & Bauersachs S 2019 Extracellular vesicles in the oviduct: progress, challenges and implications for the reproductive success. Bioengineering 6 225. (https://doi.org/10.3390/bioengineering6020032)

    • Search Google Scholar
    • Export Citation
  • Alvarez-Rodriguez M, Ljunggren SA, Karlsson H & Rodriguez-Martinez H 2019 Exosomes in specific fractions of the boar ejaculate contain CD44: a marker for epididymosomes? Theriogenology 140 143152. (https://doi.org/10.1016/j.theriogenology.2019.08.023)

    • Search Google Scholar
    • Export Citation
  • Alvarez-Rodriguez M, Ntzouni M, Wright D, Khan KI, López-Béjar M, Martinez CA & Rodriguez-Martinez H 2020 Chicken seminal fluid lacks CD9- and CD44-bearing extracellular vesicles. Reproduction in Domestic Animals 55 293300. (https://doi.org/10.1111/rda.13617)

    • Search Google Scholar
    • Export Citation
  • Arienti G, Carlini E & Palmerini CA 1997 Fusion of human sperm to prostasomes at acidic pH. Journal of Membrane Biology 155 8994. (https://doi.org/10.1007/s002329900160)

    • Search Google Scholar
    • Export Citation
  • Arienti G, Carlini E, Saccardi C & Palmerini CA 2004 Role of human prostasomes in the activation of spermatozoa. Journal of Cellular and Molecular Medicine 8 7784. (https://doi.org/10.1111/j.1582-4934.2004.tb00261.x)

    • Search Google Scholar
    • Export Citation
  • Barkalina N, Jones C, Wood MJ & Coward K 2015 Extracellular vesicle-mediated delivery of molecular compounds into gametes and embryos: learning from nature. Human Reproduction Update 21 627639. (https://doi.org/10.1093/humupd/dmv027)

    • Search Google Scholar
    • Export Citation
  • Barranco I, Padilla L, Parrilla I, Álvarez-Barrientos A, Pérez-Patiño C, Peña FJ, Martínez EA, Rodriguez-Martínez H & Roca J 2019 Extracellular vesicles isolated from porcine seminal plasma exhibit different tetraspanin expression profiles. Scientific Reports 9 11584. (https://doi.org/10.1038/s41598-019-48095-3)

    • Search Google Scholar
    • Export Citation
  • Blesbois E 2012 Biological features of the avian male gamete and their application to biotechnology of conservation. Journal of Poultry Science 49 141149. (https://doi.org/10.2141/jpsa.011120)

    • Search Google Scholar
    • Export Citation
  • Blesbois E & Brillard JP 2007 Specific features of in vivo and in vitro sperm storage in birds. Animal 1 14721481. (https://doi.org/10.1017/S175173110700081X)

    • Search Google Scholar
    • Export Citation
  • Blesbois E, Grasseau I, Seigneurin F, Mignon-Grasteau S, Saint Jalme M & Mialon-Richard MM 2008 Predictors of success of semen cryopreservation in chickens. Theriogenology 69 252261. (https://doi.org/10.1016/j.theriogenology.2007.09.019)

    • Search Google Scholar
    • Export Citation
  • Bobrie A, Colombo M, Krumeich S, Raposo G & Théry C 2012 Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. Journal of Extracellular Vesicles 1 111. (https://doi.org/10.3402/jev.v1i0.18397)

    • Search Google Scholar
    • Export Citation
  • Borziak K, Álvarez-Fernández A, Karr TL, Pizzari T & Dorus S 2016 The Seminal fluid proteome of the polyandrous Red junglefowl offers insights into the molecular basis of fertility, reproductive ageing and domestication. Scientific Reports 6 1.

    • Search Google Scholar
    • Export Citation
  • Brillard JP & McDaniel GR 1985 The reliability and efficiency of various methods for estimating spermatozoa concentration. Poultry Science 64 155158. (https://doi.org/10.3382/ps.0640155)

    • Search Google Scholar
    • Export Citation
  • Burden HP, Holmes CH, Persad R & Whittington K 2006 Prostasomes – their effects on human male reproduction and fertility. Human Reproduction Update 12 283292. (https://doi.org/10.1093/humupd/dmi052)

    • Search Google Scholar
    • Export Citation
  • Burrows WH & Quinn JP 1937 The Collection of spermatozoa from the domestic fowl and turkey. Poultry Science 16 1924. (https://doi.org/10.3382/ps.0160019)

    • Search Google Scholar
    • Export Citation
  • Buschow SI, Van Balkom BWM, Aalberts M, Heck AJR, Wauben M & Stoorvogel W 2010 MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis. Immunology and Cell Biology 88 851856. (https://doi.org/10.1038/icb.2010.64)

    • Search Google Scholar
    • Export Citation
  • Chan JC, Morgan CP, Adrian Leu N, Shetty A, Cisse YM, Nugent BM, Morrison KE, Jašarević E, Huang W & Kanyuch N et al. 2020 Reproductive tract extracellular vesicles are sufficient to transmit intergenerational stress and program neurodevelopment. Nature Communications 11 1499. (https://doi.org/10.1038/s41467-020-15305-w)

    • Search Google Scholar
    • Export Citation
  • Chen H, Yang P, Chu X, Huang Y, Liu T, Zhang Q, Li Q, Hu L, Waqas Y & Ahmed N et al. 2016 Cellular evidence for nano-scale exosome secretion and interactions with spermatozoa in the epididymis of the Chinese soft-shelled turtle, Pelodiscus sinensis. Oncotarget 7 1924219250. (https://doi.org/10.18632/oncotarget.8092)

    • Search Google Scholar
    • Export Citation
  • Conine CC, Sun F, Song L, Rivera-Pérez JA & Rando OJ 2018 Small RNAs gained during epididymal transit of sperm are essential for embryonic development in mice. Developmental Cell 46 470480.e3. (https://doi.org/10.1016/j.devcel.2018.06.024)

    • Search Google Scholar
    • Export Citation
  • Doyle LM & Wang MZ 2019 Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8 727. (https://doi.org/10.3390/cells8070727)

    • Search Google Scholar
    • Export Citation
  • Druart X & de Graaf S 2018 Seminal plasma proteomes and sperm fertility. Animal Reproduction Science 194 3340. (https://doi.org/10.1016/j.anireprosci.2018.04.061)

    • Search Google Scholar
    • Export Citation
  • Du J, Shen J, Wang Y, Pan C, Pang W, Diao H & Dong W 2016 Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane. Oncotarget 7 5883258847. (https://doi.org/10.18632/oncotarget.11315)

    • Search Google Scholar
    • Export Citation
  • Fabiani R, Johansson L, Lundkvist O & Ronquist G 1994 Enhanced recruitment of motile spermatozoa by prostasome inclusion in swim-up medium. Human Reproduction 9 14851489. (https://doi.org/10.1093/oxfordjournals.humrep.a138735)

    • Search Google Scholar
    • Export Citation
  • Frenette G, Lessard C & Sullivan R 2002 Selected proteins of ‘Prostasome-like particles’ from epididymal cauda fluid are transferred to epididymal caput spermatozoa in bull. Biology of Reproduction 67 308313. (https://doi.org/10.1095/biolreprod67.1.308)

    • Search Google Scholar
    • Export Citation
  • Frenette G, Girouard J, D’Amours O, Allard N, Tessier L & Sullivan R 2010 Characterization of two distinct populations of epididymosomes collected in the intraluminal compartment of the bovine cauda epididymis. Biology of Reproduction 83 473480. (https://doi.org/10.1095/biolreprod.109.082438)

    • Search Google Scholar
    • Export Citation
  • Gabrielsen JS & Lipshultz LI 2019 Rapid progression in our understanding of extracellular vesicles and male infertility. Fertility and Sterility 111 881882. (https://doi.org/10.1016/j.fertnstert.2019.02.021)

    • Search Google Scholar
    • Export Citation
  • Jeon H, Kang SK & Lee MS 2020 Effects of different separation methods on the physical and functional properties of extracellular vesicles. PLoS ONE 15 e0235793. (https://doi.org/10.1371/journal.pone.0235793)

    • Search Google Scholar
    • Export Citation
  • Labas V, Grasseau I, Cahier K, Gargaros A, Harichaux G, Teixeira-Gomes AP, Alves S, Bourin M, Gérard N & Blesbois E 2015 Qualitative and quantitative peptidomic and proteomic approaches to phenotyping chicken semen. Journal of Proteomics 112 313335. (https://doi.org/10.1016/j.jprot.2014.07.024)

    • Search Google Scholar
    • Export Citation
  • Lake PE & Ravie O 1981 An attempt to improve the fertility of stored fowl semen with certain additives in a basic diluent. Reproduction, Nutrition, Developpement 21 10771084. (https://doi.org/10.1051/rnd:19810806)

    • Search Google Scholar
    • Export Citation
  • Lemoine M, Grasseau I, Brillard JP & Blesbois E 2008 A reappraisal of the factors involved in in vitro initiation of the acrosome reaction in chicken spermatozoa. Reproduction 136 391399. (https://doi.org/10.1530/REP-08-0094)

    • Search Google Scholar
    • Export Citation
  • Lenth RV 2016 Least-squares means: the R package lsmeans. Journal of Statistical Software 69 133.

  • Li Y, Sun Y, Ni A, Shi L, Wang P, Isa AM, Ge P, Jiang L, Fan J & Ma H et al. 2020 Seminal plasma proteome as an indicator of sperm dysfunction and low sperm motility in chickens. Molecular and Cellular Proteomics 19 10351046. (https://doi.org/10.1074/mcp.RA120.002017)

    • Search Google Scholar
    • Export Citation
  • Lin Y, Liang A, He Y, Li Z, Li Z, Wang G & Sun F 2019 Proteomic analysis of seminal extracellular vesicle proteins involved in asthenozoospermia by iTRAQ. Molecular Reproduction and Development 86 10941105. (https://doi.org/10.1002/mrd.23224)

    • Search Google Scholar
    • Export Citation
  • Machtinger R, Laurent LC & Baccarelli AA 2016 Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Human Reproduction Update 22 182193. (https://doi.org/10.1093/humupd/dmv055)

    • Search Google Scholar
    • Export Citation
  • Maxwell WM, de Graaf SP, Ghaoui Rel-H & Evans G 2007 Seminal plasma effects on sperm handling and female fertility. Society of Reproduction and Fertility Supplement 64 1338. (https://doi.org/10.5661/rdr-vi-13)

    • Search Google Scholar
    • Export Citation
  • Munuce MJ, Marini PE & Teijeiro JM 2019 Expression profile and distribution of annexin A1, A2 and A5 in human semen. Andrologia 51 e13224. (https://doi.org/10.1111/and.13224)

    • Search Google Scholar
    • Export Citation
  • Murdica V, Giacomini E, Alteri A, Bartolacci A, Cermisoni GC, Zarovni N, Papaleo E, Montorsi F, Salonia A & Viganò P et al. 2019 Seminal plasma of men with severe asthenozoospermia contain exosomes that affect spermatozoa motility and capacitation. Fertility and Sterility 111 897908.e2. (https://doi.org/10.1016/j.fertnstert.2019.01.030)

    • Search Google Scholar
    • Export Citation
  • Murdica V, Giacomini E, Makieva S, Zarovni N, Candiani M, Salonia A, Vago R & Viganò P 2020 In vitro cultured human endometrial cells release extracellular vesicles that can be uptaken by spermatozoa. Scientific Reports 10 8856. (https://doi.org/10.1038/s41598-020-65517-9)

    • Search Google Scholar
    • Export Citation
  • Nguyen TMD, Alves S, Grasseau I, Métayer-Coustard S, Praud C, Froment P & Blesbois E 2014 Central role of 5′-AMP-activated protein kinase in chicken sperm functions. Biology of Reproduction 91 115.

    • Search Google Scholar
    • Export Citation
  • Piepho HP 2004 An algorithm for a letter-based representation of all-pairwise comparisons. Journal of Computational and Graphical Statistics 13 456466. (https://doi.org/10.1198/1061860043515)

    • Search Google Scholar
    • Export Citation
  • Pinheiro JC & Bates DM 2013 Mixed-effects models in S and S-PLUS. Journal of the American Statistical Association 96 11351136.

  • R Core Team 2017 R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. (available at: http://www.R-project.org/)

    • Search Google Scholar
    • Export Citation
  • Raposo G & Stoorvogel W 2013. Extracellular vesicles: exosomes, microvesicles, and friends. Journal of Cell Biology 200 373383. (https://doi.org/10.1083/jcb.201211138)

    • Search Google Scholar
    • Export Citation
  • Renneberg H, Konrad L, Dammshäuser I, Seitz J & Aumüller G 1997 Immunohistochemistry of prostasomes from human semen. Prostate 30 98106. (https://doi.org/10.1002/(sici)1097-0045(19970201)30:2<98::aid-pros5>3.0.co;2-g)

    • Search Google Scholar
    • Export Citation
  • Riou C, Brionne A, Cordeiro L, Harichaux G, Gargaros A, Labas V, Gautron J & Gérard N 2020 Avian uterine fluid proteome: exosomes and biological processes potentially involved in sperm survival. Molecular Reproduction and Development 87 454470. (https://doi.org/10.1002/mrd.23333)

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Martínez H, Kvist U, Ernerudh J, Sanz L & Calvete JJ 2011 Seminal plasma proteins: what role do they play? American Journal of Reproductive Immunology 66 (Supplement 1) 1122. (https://doi.org/10.1111/j.1600-0897.2011.01033.x)

    • Search Google Scholar
    • Export Citation
  • Ronquist G 2012 Prostasomes are mediators of intercellular communication: from basic research to clinical implications. Journal of Internal Medicine 271 400413. (https://doi.org/10.1111/j.1365-2796.2011.02487.x)

    • Search Google Scholar
    • Export Citation
  • Ronquist G & Brody I 1985 The prostasome: its secretion and function in man. Biochimica et Biophysica Acta 822 203218. (https://doi.org/10.1016/0304-4157(8590008-5)

    • Search Google Scholar
    • Export Citation
  • Saadeldin IM, Kim SJ, Choi YB & Lee BC 2014 Improvement of cloned embryos development by co-culturing with parthenotes: a possible role of exosomes/microvesicles for embryos paracrine communication. Cellular Reprogramming 16 223234. (https://doi.org/10.1089/cell.2014.0003)

    • Search Google Scholar
    • Export Citation
  • Saez F, Frenette G & Sullivan R 2003 Epididymosomes and prostasomes: their roles in posttesticular maturation of the sperm cells. Journal of Andrology 24 149154. (https://doi.org/10.1002/j.1939-4640.2003.tb02653.x)

    • Search Google Scholar
    • Export Citation
  • Sahlén GE, Egevad L, Ahlander A, Norlén BJ, Ronquist G & Nilsson BO 2002 Ultrastructure of the secretion of prostasomes from benign and malignant epithelial cells in the prostate. Prostate 53 192199. (https://doi.org/10.1002/pros.10126)

    • Search Google Scholar
    • Export Citation
  • Santiago-Moreno J & Blesbois E 2020 Functional Aspects of Seminal Plasma in Bird Reproduction. International Journal of Molecular Sciences 21 5664. (https://doi.org/10.3390/ijms21165664)

    • Search Google Scholar
    • Export Citation
  • Sexton TJ 1977 A new poultry semen extender. 1. Effects of extension on the fertility of chicken semen. Poultry Science 56 14431446. (https://doi.org/10.3382/ps.0561443)

    • Search Google Scholar
    • Export Citation
  • Soler L, Labas V, Thélie A, Grasseau I, Teixeira-Gomes AP & Blesbois E 2016 Intact cell MALDI-TOF MS on sperm: a molecular test for male fertility diagnosis. Molecular and Cellular Proteomics 15 19982010. (https://doi.org/10.1074/mcp.M116.058289)

    • Search Google Scholar
    • Export Citation
  • Sullivan R, Saez F, Girouard J & Frenette G 2005 Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells, Molecules and Diseases 35 110. (https://doi.org/10.1016/j.bcmd.2005.03.005)

    • Search Google Scholar
    • Export Citation
  • Thélie A, Rehault-Godbert S, Poirier JC, Govoroun M, Fouchécourt S & Blesbois E 2019 The seminal acrosin-inhibitor ClTI1/SPINK2 is a fertility-associated marker in the chicken. Molecular Reproduction and Development 86 762775. (https://doi.org/10.1002/mrd.23153)

    • Search Google Scholar
    • Export Citation
  • Théry C, Amigorena S, Raposo G & Clayton A 2006 Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology 30 3.2 2 .13.22.29.

    • Search Google Scholar
    • Export Citation
  • Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F & Atkin-Smith GK et al. 2018 Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for extracellular vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles 7 1535750. (https://doi.org/10.1080/20013078.2018.1535750)

    • Search Google Scholar
    • Export Citation
  • Van Niel G, D’Angelo G & Raposo G 2018 Shedding light on the cell biology of extracellular vesicles. Nature Reviews: Molecular Cell Biology 19 213228. (https://doi.org/10.1038/nrm.2017.125)

    • Search Google Scholar
    • Export Citation
  • Vickram AS, Samad HA, Latheef SK, Chakraborty S, Dhama K, Sridharan TB, Sundaram T & Gulothungan G 2020 Human prostasomes an extracellular vesicle – biomarkers for male infertility and prostrate cancer: the journey from identification to current knowledge. International Journal of Biological Macromolecules 146 946958. (https://doi.org/10.1016/j.ijbiomac.2019.09.218)

    • Search Google Scholar
    • Export Citation
  • Yue L, Karr TL, Nathan DF, Swift H, Srinivasans S & Lindquist S 1999 Genetic analysis of viable Hsp90 alleles reveals a critical role in Drosophila spermatogenesis. Genetics 151 10651079.

    • Search Google Scholar
    • Export Citation
  • Zhou W, Stanger SJ, Anderson AL, Bernstein IR, De Iuliis GN, McCluskey A, McLaughlin EA, Dun MD & Nixon B 2019 Mechanisms of tethering and cargo transfer during epididymosome-sperm interactions. BMC Biology 17 35. (https://doi.org/10.1186/s12915-019-0653-5)

    • Search Google Scholar
    • Export Citation