Aggregation of Leopardus geoffroyi hybrid embryos with domestic cat tetraploid blastomeres

in Reproduction
View More View Less
  • 1 Facultad de Agronomía, Departamento de Producción Animal, Laboratorio Biotecnología Animal (LabBA), Universidad de Buenos Aires, Buenos Aires, Argentina
  • 2 Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
  • 3 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, Ciudad Autónoma de Buenos Aires, Argentina
  • 4 Ecoparque Interactivo, Secretaría de Ambiente de la Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
  • 5 Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
  • 6 Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina

Correspondence should be addressed to D F Salamone; Email: salamone@agro.uba.ar
Restricted access

Heterospecific embryo transfer of an endangered species has been carried out using recipients from related domestic females. Aggregation of an embryo from an endangered species with a tetraploid embryo from the species to be transferred could improve the development of pregnancy to term. The main objective of the present study was to analyze embryo aggregation in domestic cat model using hybrid embryos. For this purpose, we compared in vitro development of synchronic (Sync) or asynchronic (Async) and asynchronic with a tetraploid (Async4n) aggregation of domestic cat IVF embryos. Furthermore, aggregated blastocyst quality was analyzed by evaluation of the total cell number, cell allocation by mitotrackers staining of embryonic cells, expression of Oct4, Nanog, Sox2, Cdx2 genes, number of OCT4+ nuclei, and presence of DNA fragmentation. Additionally, the developmental rates of Async4n aggregation of domestic cat with Leopardus geoffroyi hybrid (hLg) embryos were evaluated. Async aggregation increased blastocyst cell number and the number of OCT4+ nuclei as compared to non-aggregated diploid (2n) and tetraploid (4n) embryos. Moreover, blastocysts produced by Async4n aggregation showed reduced rates of fragmented DNA. No differences were found in the expression of the pluripotent genes, with exception of the Cdx2 expression, which was higher in 4n and aggregated embryos as compared to the control group. Interestingly, hybrids embryos derived by Async4n aggregation with domestic cat embryos had similar rates of blastocysts development as the control. Altogether, the findings support the use of two-cell-fused embryos to generate tetraploid blastomeres and demonstrate that Async4n aggregation generates good quality embryos.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 150 150 150
Full Text Views 20 20 20
PDF Downloads 30 30 30
  • Bavister BD & Yanagimachi R 1977The effects of sperm extracts and energy sources on the motility and acrosome reaction of hamster spermatozoa in vitro.” Biology of Reproduction 16 228237. (https://doi.org/10.1095/biolreprod16.2.228)

    • Search Google Scholar
    • Export Citation
  • Buemo CP, Gambini A, Moro LN, Hiriart MI, Fernández-Martín R, Collas P & Salamone DF 2016Embryo aggregation in pig improves cloning efficiency and embryo quality.” PLOS ONE 11 e0146390. (https://doi.org/10.1371/journal.pone.0146390)

    • Search Google Scholar
    • Export Citation
  • Comizzoli P & Holt WV 2019Breakthroughs and new horizons in reproductive biology of rare and endangered animal species.” Biology of Reproduction 101 514525. (https://doi.org/10.1093/biolre/ioz031)

    • Search Google Scholar
    • Export Citation
  • Curnow EC, Gunn IM & Trounson AO 2000Electrofusion of two-cell bovine embryos for the production of tetraploid blastocysts in vitro.” Molecular Reproduction & Development 56 372377. (https://doi.org/10.1002/1098-2795(200007)56:3<372::AID-MRD7>3.0.CO;2-W)

    • Search Google Scholar
    • Export Citation
  • Gambini A, Jarazo J, Olivera R & Salamone DF 2012Equine cloning: in vitro and in vivo development of aggregated Embryos1.” Biology of Reproduction 87 15, 115, 9. (https://doi.org/10.1095/biolreprod.112.098855)

    • Search Google Scholar
    • Export Citation
  • Gómez MC, Pope CE, Giraldo A, Lyons LA, Harris RF, King AL, Cole A, Godke RA & Dresser BL 2004Birth of African wildcat cloned kittens born from domestic cats.” Cloning & Stem Cells 6 247258. (https://doi.org/10.1089/clo.2004.6.247)

    • Search Google Scholar
    • Export Citation
  • Gómez MC, Pope CE, Ricks DM, Lyons J, Dumas C & Dresser BL 2009Cloning endangered felids using heterospecific donor oocytes and interspecies embryo transfer.” Reproduction, Fertility, & Development 21 7682. (https://doi.org/10.1071/RD08222)

    • Search Google Scholar
    • Export Citation
  • Gómez MC, Serrano MA, Pope CE, Jenkins JA, Biancardi MN, López M, Dumas C, Galiguis J & Dresser BL 2010Derivation of cat embryonic stem-like cells from in vitro-produced blastocysts on homologous and heterologous feeder cells.” Theriogenology 74 498515. (https://doi.org/10.1016/j.theriogenology.2010.05.023)

    • Search Google Scholar
    • Export Citation
  • Hao Y, Lai Liangxue, Mao J, Im GS, Bonk A & Prather RS 2003Apoptosis and in vitro development of preimplantation porcine embryos derived in vitro or by nuclear Transfer1.” Biology of Reproduction 69 501507. (https://doi.org/10.1095/biolreprod.103.016170)

    • Search Google Scholar
    • Export Citation
  • Hiriart MI, Bevacqua RJ, Canel NG, Fernández-Martín R & Salamone DF 2013Production of chimeric embryos by aggregation of bovine Egfp eight-cell stage blastomeres with two-cell fused and asynchronic embryos.” Theriogenology 80 357364. (https://doi.org/10.1016/j.theriogenology.2013.04.023)

    • Search Google Scholar
    • Export Citation
  • Jeong YW, Hossein MS, Bhandari DP, Wook Kim YW, Kim JH, Park SW, Lee E, Park SM, Jeong YI & Lee JY et al. 2008Effects of insulin-transferrin-selenium in defined and porcine follicular fluid supplemented IVM media on porcine IVF and SCNT embryo production.” Animal Reproduction Science 106 1324. (https://doi.org/10.1016/j.anireprosci.2007.03.021)

    • Search Google Scholar
    • Export Citation
  • Jeong PS, Yoon SB, Lee MH, Son HC, Yong Lee H, Lee S & Koo BS et al. 2019Embryo aggregation regulates in vitro stress conditions to promote developmental competence in pigs.” PeerJ 12 119. (https://doi.org/10.7717/peerj.8143)

    • Search Google Scholar
    • Export Citation
  • Jiménez E, Pérez-Marín CC, Vizuete G, Millán Y & Agüera EI 2013Effect of different extenders on in vitro characteristics of feline epididymal sperm during cryopreservation.” Reproduction in Domestic Animals 48 665672. (https://doi.org/10.1111/rda.12142)

    • Search Google Scholar
    • Export Citation
  • Lee SG, and Lee CK 2007. “In vitro development and cell allocation of porcine blastocysts derived by aggregation of in vitro fertilized embryos. Molecular Reproduction & Development: Incorporating Gamete Research 74 14361445. (https://doi.org/10.1002/mrd)

    • Search Google Scholar
    • Export Citation
  • Lin J, Shi L, Zhang M, Yang H, Qin Y, Zhang J, Gong D, Zhang X, Li D & Li J 2011Defects in trophoblast cell lineage account for the impaired in vivo development of cloned embryos generated by somatic nuclear transfer.” Cell Stem Cell 8 371375. (https://doi.org/10.1016/j.stem.2011.02.007)

    • Search Google Scholar
    • Export Citation
  • Lin T, Diao YF, Choi HS, Oqani RK, Kang JW, Lee JE & Jin DI 2015Procedure used for denuding pig oocytes influences oocyte damage, and development of in vitro and nuclear transfer embryos.” Animal Reproduction Science 152 6576. (https://doi.org/10.1016/j.anireprosci.2014.11.009)

    • Search Google Scholar
    • Export Citation
  • MacKay GE & West JD 2005Fate of Tetraploid Cells in 4n↔2n Chimeric Mouse Blastocysts.” Mechanisms of Development 122 12661281. doi:10.1016/j.mod.2005.09.001)

    • Search Google Scholar
    • Export Citation
  • Meghji P & Burnstock G 1995Electric field induced cell to cell fusion.” Life Sciences 57 763771. (https://doi.org/10.1016/0024-3205(9502004-3)

    • Search Google Scholar
    • Export Citation
  • Meinecke-Tillmann S & Meinecke B 1984Experimental chimaeras - removal of reproductive barrier between sheep and goat.” Nature 307 637638. doi:10.1038/307637a0)

    • Search Google Scholar
    • Export Citation
  • Misica-Turner PM, Oback FC, Eichenlaub M, Wells DN & Oback B 2007Aggregating embryonic but not somatic nuclear transfer embryos increases cloning efficiency in Cattle1.” Biology of Reproduction 76 268278. (https://doi.org/10.1095/biolreprod.106.050922)

    • Search Google Scholar
    • Export Citation
  • Moro LN, Sestelo AJ & Salamone DF 2014Evaluation of cheetah and leopard spermatozoa developmental capability after interspecific ICSI with domestic cat oocytes.” Reproduction in Domestic Animals 49 693700. (https://doi.org/10.1111/rda.12355)

    • Search Google Scholar
    • Export Citation
  • Moro LN, Hiriart MI, Buemo C, Jarazo J, Sestelo A, Veraguas D, Rodriguez-Alvarez L & Salamone DF 2015Cheetah interspecific SCNT followed by embryo aggregation improves in vitro development but not pluripotent gene expression.” Reproduction 150 110. (https://doi.org/10.1530/REP-15-0048)

    • Search Google Scholar
    • Export Citation
  • O’Brien SJ, Menotti-Raymond M, Murphy WJ & Yuhki N 2002The feline genome project.” Annual Review of Genetics 36 657686. (https://doi.org/10.1146/annurev.genet.36.060602.145553)

    • Search Google Scholar
    • Export Citation
  • Picard L, Chartrain I, King WA & Betteridge KJ 1990Production of chimaeric bovine embryos and calves by aggregation of inner cell masses with morulae.” Molecular Reproduction & Development 27 295304. (https://doi.org/10.1002/mrd.1080270404)

    • Search Google Scholar
    • Export Citation
  • Pukazhenthi BS 2016Saving wild ungulate diversity through enhanced management and sperm cryopreservation.” Reproduction, Fertility, & Development 28 11331144. (https://doi.org/10.1071/RD15412)

    • Search Google Scholar
    • Export Citation
  • Razza EM, Satrapa RA, Emanuelli IP, Barros CM & Nogueira MFG 2016Screening of biotechnical parameters for production of bovine inter-subspecies embryonic chimeras by the aggregation of tetraploid Bos indicus and diploid crossbred Bos taurus Embryos.Reproductive Biology 16 3440. (https://doi.org/10.1016/j.repbio.2015.11.003)

    • Search Google Scholar
    • Export Citation
  • Schramm RD & Paprocki AM 2004In vitro development and cell allocation following aggregation of split embryos with tetraploid or developmentally asynchronous blastomeres in rhesus monkeys.” Cloning & Stem Cells 6 302314. (https://doi.org/10.1089/clo.2004.6.302)

    • Search Google Scholar
    • Export Citation
  • Siriboon C, Tu CF, Kere M, Liu MS, Chang HJ, Ho LL, Tai ME, Fang WD, Lo NW & Tseng JK et al. 2014Production of viable cloned miniature pigs by aggregation of handmade cloned embryos at the 4-cell stage.” Reproduction, Fertility, & Development 26 395406. (https://doi.org/10.1071/RD12243)

    • Search Google Scholar
    • Export Citation
  • Suo L, Wang F, Zhou GB, Shi JM, Wang YB, Zeng SM, Tian JH, Zhu SE & Liu GS 2009 Optimal concentration of calcium and electric field levels improve tetraploid embryo production by electrofusion in mice. Journal of Reproduction & Development 55 383385. (https://doi.org/10.1262/jrd.20152)

    • Search Google Scholar
    • Export Citation
  • Terashita Y, Sugimura S, Kudo Y, Amano R, Hiradate Y & Sato E 2011Improving the quality of miniature pig somatic cell nuclear transfer blastocysts: aggregation of SCNT embryos at the four-cell stage.” Reproduction in Domestic Animals 46 189196. (https://doi.org/10.1111/j.1439-0531.2010.01614.x)

    • Search Google Scholar
    • Export Citation
  • Viuff D, Palsgaard A, Rickords L, Lawson LG, Greve T, Schmidt M, Avery B, Hyttel P & Thomsen PD 2002Bovine embryos contain a higher proportion of polyploid cells in the trophectoderm than in the embryonic disc.” Molecular Reproduction & Development 62 483488. (https://doi.org/10.1002/mrd.90004)

    • Search Google Scholar
    • Export Citation
  • Wells KD & Powell AM 2000Blastomeres from somatic cell nuclear transfer embryos are not allocated randomly in chimeric blastocysts.” Cloning 2 922. (https://doi.org/10.1089/15204550050145094)

    • Search Google Scholar
    • Export Citation
  • Wood TC & Wildt DE 1997Effect of the quality of the cumulus-oocyte complex in the domestic cat on the ability of oocytes to mature, fertilize and develop into blastocysts in vitro.” Journal of Reproduction & Fertility 110 355360. (https://doi.org/10.1530/jrf.0.1100355)

    • Search Google Scholar
    • Export Citation
  • Wu BJ, Zhao LX, Zhu CC, Chen YL, Wei MY, Bao SQ, Sun SC & He Li XH 2017Altered apoptosis/autophagy and epigenetic modifications cause the impaired postimplantation octaploid embryonic development in mice.” Cell Cycle 16 8290. (https://doi.org/10.1080/15384101.2016.1252884)

    • Search Google Scholar
    • Export Citation
  • Yin XJ, Lee Y, Lee Hyosang, Kim N, Kim L, Shin H & Kong I 2006In vitro production and initiation of pregnancies in inter-genus nuclear transfer embryos derived from leopard cat (Prionailurus bengalensis) nuclei fused with domestic cat (Felis Silverstris Catus) enucleated oocytes.” Theriogenology 66 275282. (https://doi.org/10.1016/j.theriogenology.2005.11.016)

    • Search Google Scholar
    • Export Citation
  • Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Guo CL, Ma QW & Wang L et al. 2009IPS cells produce viable mice through tetraploid complementation.” Nature 461 8690. (https://doi.org/10.1038/nature08267)

    • Search Google Scholar
    • Export Citation