Effect of oocyte vitrification on glucose transport in mouse metaphase II oocytes

in Reproduction
View More View Less
  • 1 Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
  • 2 College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China

Correspondence should be addressed to F Quan; Email: quanfusheng@nwafu.edu.cn

*(Y Wang and H Chang contributed equally to this work)

Restricted access

Oocyte vitrification has significantly improved the survival rate and become the mainstream method for cryopreserving oocytes. Previous studies have demonstrated that the ultrastructure, mitochondrial function, DNA methylation, and histone modification exhibit an irreversible effect after oocyte vitrification. However, little is known about the effects of oocyte vitrification on glucose transport and metabolism. This study aims to determine whether mouse oocyte vitrification causes abnormal glucose metabolism and identify a strategy to correct abnormal glucose metabolism. Furthermore, this study further investigates the effects of oocyte vitrification on glucose uptake, and glucose metabolism, and energy levels. The results indicated that vitrification significantly reduced the glucose transport activity, NADPH, glutathione, and ATP levels, and increased reactive oxygen species levels in oocytes (P  < 0.01). Vitrification also reduced the expression of glucose transporter isoform 1 (GLUT1) (P  < 0.01). Adding a GLUT1 inhibitor reduced the glucose uptake capacity of oocytes. Furthermore, the inclusion of vitamin C into thawing and culture solutions restored abnormal glucose transportation and metabolism and improved the survival, two-cell embryo, and blastocyst rates of the vitrified groups via parthenogenesis (P  < 0.05). Overall, this method may improve the quality and efficiency of oocyte vitrification.

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 328 328 321
Full Text Views 28 28 28
PDF Downloads 45 45 45
  • Aghayan M, Rao LV, Smith RM, Jarett L, Charron MJ, Thorens B & Heyner S 1992 Developmental expression and cellular localization of glucose transporter molecules during mouse preimplantation development. Development 115 305312.

    • Search Google Scholar
    • Export Citation
  • Aiko Y, Askew DJ, Aramaki S, Myoga M, Tomonaga C, Hachisuga T, Suga R, Kawamoto T, Tsuji M & Shibata E 2014 Differential levels of amino acid transporters system L and ASCT2, and the mTOR protein in placenta of preeclampsia and IUGR. BMC Pregnancy and Childbirth 14 181. (https://doi.org/10.1186/1471-2393-14-181)

    • Search Google Scholar
    • Export Citation
  • Amoushahi M, Salehnia M & Mowla SJ 2017 Vitrification of mouse MII oocyte decreases the mitochondrial DNA copy number, TFAM gene expression and mitochondrial enzyme activity. Journal of Reproduction and Infertility 18 343351.

    • Search Google Scholar
    • Export Citation
  • Augustin R, Pocar P, Navarrete-Santos A, Wrenzycki C, Gandolfi F, Niemann H & Fischer B 2001 Glucose transporter expression is developmentally regulated in in vitro derived bovine preimplantation embryos. Molecular Reproduction and Development 60 370376. (https://doi.org/10.1002/mrd.1099)

    • Search Google Scholar
    • Export Citation
  • Braun T, Challis JR, Newnham JP & Sloboda DM 2013 Early-life glucocorticoid exposure: the hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk. Endocrine Reviews 34 885916. (https://doi.org/10.1210/er.2013-1012)

    • Search Google Scholar
    • Export Citation
  • Brinster RL & Harstad H 1977 Energy metabolism in primordial germ cells of the mouse. Experimental Cell Research 109 111117. (https://doi.org/10.1016/0014-4827(7790050-7)

    • Search Google Scholar
    • Export Citation
  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW & Shipley GL et al. 2009 The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55 611622. (https://doi.org/10.1373/clinchem.2008.112797)

    • Search Google Scholar
    • Export Citation
  • Castillo-Martín M, Bonet S, Morató R & Yeste M 2014 Comparative effects of adding β-mercaptoethanol or L-ascorbic acid to culture or vitrification-warming media on IVF porcine embryos. Reproduction, Fertility, and Development 26 875882. (https://doi.org/10.1071/RD13116)

    • Search Google Scholar
    • Export Citation
  • Chang H, Chen H, Zhang L, Wang Y, Xie X, Zhang Y & Quan F 2019 Effect of oocyte vitrification on DNA damage in metaphase II oocytes and the resulting preimplantation embryos. Molecular Reproduction and Development 86 16031614. (https://doi.org/10.1002/mrd.23247)

    • Search Google Scholar
    • Export Citation
  • Chen H, Zhang L, Deng T, Zou P, Wang Y, Quan F & Zhang Y 2016 Effects of oocyte vitrification on epigenetic status in early bovine embryos. Theriogenology 86 868878. (https://doi.org/10.1016/j.theriogenology.2016.03.008)

    • Search Google Scholar
    • Export Citation
  • Chen H, Zhang L, Wang Z, Chang H, Xie X, Fu L, Zhang Y & Quan F 2019 Resveratrol improved the developmental potential of oocytes after vitrification by modifying the epigenetics. Molecular Reproduction and Development 86 862870. (https://doi.org/10.1002/mrd.23161)

    • Search Google Scholar
    • Export Citation
  • Cho SJ, Moon JS, Lee CM, Choi AMK & Stout-Delgado HW 2017 Glucose transporter 1-dependent glycolysis is increased during aging-related lung fibrosis, and phloretin inhibits lung fibrosis. American Journal of Respiratory Cell and Molecular Biology 56 521–531. (https://doi.org/10.1165/rcmb.2016-0225OC)

    • Search Google Scholar
    • Export Citation
  • Cobo A & Diaz C 2011 Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertility and Sterility 96 277285. (https://doi.org/10.1016/j.fertnstert.2011.06.030)

    • Search Google Scholar
    • Export Citation
  • Dai J, Wu C, Muneri CW, Niu Y, Zhang S, Rui R & Zhang D 2015 Changes in mitochondrial function in porcine vitrified MII-stage oocytes and their impacts on apoptosis and developmental ability. Cryobiology 71 291298. (https://doi.org/10.1016/j.cryobiol.2015.08.002)

    • Search Google Scholar
    • Export Citation
  • Dan-Goor M, Sasson S, Davarashvili A & Almagor M 1997 Expression of glucose transporter and glucose uptake in human oocytes and preimplantation embryos. Human Reproduction 12 25082510. (https://doi.org/10.1093/humrep/12.11.2508)

    • Search Google Scholar
    • Export Citation
  • Deng D & Yan N 2016 GLUT, SGLT, and SWEET: structural and mechanistic investigations of the glucose transporters. Protein Science 25 546558. (https://doi.org/10.1002/pro.2858)

    • Search Google Scholar
    • Export Citation
  • Drut RM & Drut R 2004 Extracutaneous infantile haemangioma is also Glut1 positive. Journal of Clinical Pathology 57 11971200. (https://doi.org/10.1136/jcp.2003.012682)

    • Search Google Scholar
    • Export Citation
  • Fritz H, Flower G, Weeks L, Cooley K, Callachan M, Mcgowan J, Skidmore B, Kirchner L & Seely D 2014 Intravenous vitamin C and cancer: a systematic review. Integrative Cancer Therapies 13 280300. (https://doi.org/10.1177/1534735414534463)

    • Search Google Scholar
    • Export Citation
  • Fu L, Chang H, Wang Z, Xie X, Chen H, Lei Z, Zhang Y & Quan F 2019 The effects of TETs on DNA methylation and hydroxymethylation of mouse oocytes after vitrification and warming. Cryobiology 90 4146. (https://doi.org/10.1016/j.cryobiol.2019.09.001)

    • Search Google Scholar
    • Export Citation
  • Gu L, Liu H, Gu X, Boots C, Moley KH & Wang Q 2015 Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cellular and Molecular Life Sciences 72 251271. (https://doi.org/10.1007/s00018-014-1739-4)

    • Search Google Scholar
    • Export Citation
  • Hatch GE 1995 Asthma, inhaled oxidants, and dietary antioxidants. American Journal of Clinical Nutrition 61 625S630S. (https://doi.org/10.1093/ajcn/61.3.625S)

    • Search Google Scholar
    • Export Citation
  • Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y & Stankunas K et al. 2006 TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126 955968. (https://doi.org/10.1016/j.cell.2006.06.055)

    • Search Google Scholar
    • Export Citation
  • Jadoon S & Adeel M 2015 Cryopreservation of oocytes. Journal of Ayub Medical College, Abbottabad 27 2228.

  • Jansen RP & Boer KD 1998 The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Molecular and Cellular Endocrinology 145 8188. (https://doi.org/10.1016/s0303-7207(9800173-7)

    • Search Google Scholar
    • Export Citation
  • Jeyaraj S, Boehmer C, Lang F & Palmada M 2007 Role of SGK1 kinase in regulating glucose transport via glucose transporter GLUT4. Biochemical and Biophysical Research Communications 356 629635. (https://doi.org/10.1016/j.bbrc.2007.03.029)

    • Search Google Scholar
    • Export Citation
  • Jia BY, Xiang DC, Quan GB, Zhang B, Shao QY, Hong QH & Wu GQ 2019 Transcriptome analysis of porcine immature oocytes and surrounding cumulus cells after vitrification and in vitro maturation. Theriogenology 134 9097. (https://doi.org/10.1016/j.theriogenology.2019.05.019)

    • Search Google Scholar
    • Export Citation
  • Jia H, Jia C, An Q, Cheng Y, Jiang X, Xu Y, Zhao R, Peng W, Zhang Y & Su J 2020 Ochratoxin A exposure causes meiotic failure and oocyte deterioration in mice. Theriogenology 148 236248. (https://doi.org/10.1016/j.theriogenology.2019.11.005)

    • Search Google Scholar
    • Export Citation
  • Jiang X, Pang Y, Zhao S, Hao H, Zhao X, Du W, Wang Y & Zhu H 2020 Thioredoxin-interacting protein regulates glucose metabolism and improves the intracellular redox state in bovine oocytes during in vitro maturation. American Journal of Physiology: Endocrinology and Metabolism 318 E405–E416. (https://doi.org/10.1152/ajpendo.00057.2019)

    • Search Google Scholar
    • Export Citation
  • Kim DI, Lim SK, Park MJ, Han HJ, Kim GY & Park SH 2007 The involvement of phosphatidylinositol 3-kinase/Akt signaling in high glucose-induced downregulation of GLUT-1 expression in ARPE cells. Life Sciences 80 626632. (https://doi.org/10.1016/j.lfs.2006.10.026)

    • Search Google Scholar
    • Export Citation
  • Kim SH, Hwang JT, Park HS, Kwon DY & Kim MS 2013 Capsaicin stimulates glucose uptake in C2C12 muscle cells via the reactive oxygen species (ROS)/AMPK/p38 MAPK pathway. Biochemical and Biophysical Research Communications 439 6670. (https://doi.org/10.1016/j.bbrc.2013.08.027)

    • Search Google Scholar
    • Export Citation
  • Krisher RL, Brad AM, Herrick JR, Sparman ML & Swain JE 2007 A comparative analysis of metabolism and viability in porcine oocytes during in vitro maturation. Animal Reproduction Science 98 7296. (https://doi.org/10.1016/j.anireprosci.2006.10.006)

    • Search Google Scholar
    • Export Citation
  • Li Q, Miao DQ, Zhou P, Wu YG, Gao D, Wei DL, Cui W & Tan JH 2011 Glucose metabolism in mouse cumulus cells prevents oocyte aging by maintaining both energy supply and the intracellular redox potential. Biology of Reproduction 84 1111–1118. (https://doi.org/10.1095/biolreprod.110.089557)

    • Search Google Scholar
    • Export Citation
  • Lizák B, Szarka A, Kim Y, Choi K-S, Németh CE, Marcolongo P, Benedetti A, Bánhegyi G & Margittai É 2019. Glucose transport and transporters in the endomembranes. International Journal of Molecular Sciences 20 5898.

    • Search Google Scholar
    • Export Citation
  • Ma Y, Chapman J, Levine M, Polireddy K, Drisko J & Chen Q 2014 High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Science Translational Medicine 6 222ra18. (https://doi.org/10.1126/scitranslmed.3007154)

    • Search Google Scholar
    • Export Citation
  • Mangoli E, Talebi AR, Anvari M, Taheri F, Vatanparast M, Rahiminia T & Hosseini A 2018 Vitamin C attenuates negative effects of vitrification on sperm parameters, chromatin quality, apoptosis and acrosome reaction in neat and prepared normozoospermic samples. Taiwanese Journal of Obstetrics and Gynecology 57 200204. (https://doi.org/10.1016/j.tjog.2018.02.006)

    • Search Google Scholar
    • Export Citation
  • Monti DA, Mitchell E, Bazzan AJ, Littman S, Zabrecky G, Yeo CJ, Pillai MV, Newberg AB, Deshmukh S & Levine M 2012 Phase I evaluation of intravenous ascorbic acid in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. PLoS ONE 7 e29794. (https://doi.org/10.1371/journal.pone.0029794)

    • Search Google Scholar
    • Export Citation
  • Nohales-Córcoles M, Sevillano-Almerich G, Di Emidio G, Tatone C, Cobo AC, Dumollard R & De Los Santos Molina MJ 2016 Impact of vitrification on the mitochondrial activity and redox homeostasis of human oocyte. Human Reproduction 31 18501858. (https://doi.org/10.1093/humrep/dew130)

    • Search Google Scholar
    • Export Citation
  • Ozmen A, Unek G, Kipmen-Korgun D, Cetinkaya B, Avcil Z & Korgun ET 2015 Glucocorticoid exposure altered angiogenic factor expression via Akt/mTOR pathway in rat placenta. Annals of Anatomy 198 3440. (https://doi.org/10.1016/j.aanat.2014.10.007)

    • Search Google Scholar
    • Export Citation
  • Palmerini MG, Antinori M, Maione M, Cerusico F, Versaci C, Nottola SA, Macchiarelli G, Khalili MA & Antinori S 2014 Ultrastructure of immature and mature human oocytes after cryotop vitrification. Journal of Reproduction and Development 60 411420. (https://doi.org/10.1262/jrd.2014-027)

    • Search Google Scholar
    • Export Citation
  • Park SK, Won C, Choi YJ, Kang H & Roh S 2009 The leading blastomere of the 2-cell stage parthenogenetic porcine embryo contributes to the abembryonic part first. Journal of Veterinary Medical Science 71 569576. (https://doi.org/10.1292/jvms.71.569)

    • Search Google Scholar
    • Export Citation
  • Pereira BA, Zangeronimo MG, Castillo-Martín M, Gadani B, Chaves BR, Rodríguez-Gil JE, Bonet S & Yeste M 2018 Supplementing maturation medium with insulin growth factor I and vitrification-warming solutions with reduced glutathione enhances survival rates and development ability of in vitro matured vitrified-warmed pig oocytes. Frontiers in Physiology 9 1894.

    • Search Google Scholar
    • Export Citation
  • Pukazhenthi BS & Wildt DE 2004 Which reproductive technologies are most relevant to studying, managing and conserving wildlife? Reproduction, Fertility, and Development 16 33–46. (https://doi.org/10.10371/RD03076)

    • Search Google Scholar
    • Export Citation
  • Purcell SH & Moley KH 2009 Glucose transporters in gametes and preimplantation embryos. Trends in Endocrinology and Metabolism 20 483489. (https://doi.org/10.1016/j.tem.2009.06.006)

    • Search Google Scholar
    • Export Citation
  • Purcell SH & Moley KH 2011 The impact of obesity on egg quality. Journal of Assisted Reproduction and Genetics 28 517524. (https://doi.org/10.1007/s10815-011-9592-y)

    • Search Google Scholar
    • Export Citation
  • Rienzi L, Cobo A, Paffoni A, Scarduelli C, Capalbo A, Vajta G, Remohí J, Ragni G & Ubaldi FM 2012 Consistent and predictable delivery rates after oocyte vitrification: an observational longitudinal cohort multicentric study. Human Reproduction 27 16061612. (https://doi.org/10.1093/humrep/des088)

    • Search Google Scholar
    • Export Citation
  • Riley JK & Moley KH 2006 Glucose utilization and the PI3-K pathway: mechanisms for cell survival in preimplantation embryos. Reproduction 131 823–835. (https://doi.org/10.1530/rep.1.00645)

    • Search Google Scholar
    • Export Citation
  • Robinson DH, Smith PR & Benos DJ 1990 Hexose transport in preimplantation rabbit blastocysts. Journal of Reproduction and Fertility 89 111. (https://doi.org/10.1530/jrf.0.0890001)

    • Search Google Scholar
    • Export Citation
  • Sahraei SS, Shahhoseini M & Movaghar B 2018 Vitrification has an effect like culture on gene expression and histone modification in mouse embryos. Cryo Letters 39 102112.

    • Search Google Scholar
    • Export Citation
  • Siebeneicher H, Cleve A, Rehwinkel H, Neuhaus R, Heisler I, Müller T, Bauser M & Buchmann B 2016 Identification and optimization of the first highly selective GLUT1 inhibitor BAY-876. ChemMedChem 11 22612271. (https://doi.org/10.1002/cmdc.201600276)

    • Search Google Scholar
    • Export Citation
  • Songsasen N, Wesselowski S, Carpenter JW & Wildt DE 2012 The ability to achieve meiotic maturation in the dog oocyte is linked to glycolysis and glutamine oxidation. Molecular Reproduction and Development 79 186196. (https://doi.org/10.1002/mrd.22011)

    • Search Google Scholar
    • Export Citation
  • Succu S, Leoni GG, Bebbere D, Berlinguer F, Mossa F, Bogliolo L, Madeddu M, Ledda S & Naitana S 2007 Vitrification devices affect structural and molecular status of in vitro matured ovine oocytes. Molecular Reproduction and Development 74 13371344. (https://doi.org/10.1002/mrd.20693)

    • Search Google Scholar
    • Export Citation
  • Travica N, Ried K, Sali A, Scholey A, Hudson I & Pipingas A 2017 Vitamin C status and cognitive function: a systematic review. Nutrients 9 960. (https://doi.org/10.3390/nu9090960)

    • Search Google Scholar
    • Export Citation
  • Wang Q, Xu Q, Wei A, Chen S, Zhang C & Zeng L 2019 High dose vitamin C inhibits proliferation of breast cancer cells through reducing glycolysis and protein synthesis. Zhejiang Da Xue Xue Bao: Yi Xue Ban 48 296302.

    • Search Google Scholar
    • Export Citation
  • Wei X, Xiangwei F, Guangbin Z, Jing X, Liang W, Ming D, Dianshuai Y, Mingxing Y, Jianhui T & Shien Z 2013 Cytokeratin distribution and expression during the maturation of mouse germinal vesicle oocytes after vitrification. Cryobiology 66 261266. (https://doi.org/10.1016/j.cryobiol.2013.02.062)

    • Search Google Scholar
    • Export Citation
  • Wiesak T, Wasielak M, Złotkowska A & Milewski R 2017 Effect of vitrification on the zona pellucida hardening and follistatin and cathepsin B genes expression and developmental competence of in vitro matured bovine oocytes. Cryobiology 76 1823. (https://doi.org/10.1016/j.cryobiol.2017.05.001)

    • Search Google Scholar
    • Export Citation
  • Xie HL, Wang YB, Jiao GZ, Kong DL, Li Q, Li H, Zheng LL & Tan JH 2016 Effects of glucose metabolism during in vitro maturation on cytoplasmic maturation of mouse oocytes. Scientific Reports 6 20764. (https://doi.org/10.1038/srep20764)

    • Search Google Scholar
    • Export Citation
  • Yuan B, Liang S, Kwon JW, Jin YX, Park SH, Wang HY, Sun TY, Zhang JB & Kim NH 2016 The role of glucose metabolism on porcine oocyte cytoplasmic maturation and its possible mechanisms. PLoS ONE 11 e0168329. (https://doi.org/10.1371/journal.pone.0168329)

    • Search Google Scholar
    • Export Citation
  • Zhou GB & Li N 2009 Cryopreservation of porcine oocytes: recent advances. Molecular Human Reproduction 15 279285. (https://doi.org/10.1093/molehr/gap016)

    • Search Google Scholar
    • Export Citation