Formation of fibrin at sights of conceptus adhesion in the ewe

in Reproduction
View More View Less
  • 1 Laboratory of Molecular Reproduction, Research Institute of Agriculture, Tokai University, Kumamoto, Kumamoto, Japan
  • 2 Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
  • 3 Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan

Correspondence should be addressed to K Imakawa; Email: ik459102@tsc.u-tokai.ac.jp
Restricted access

In ruminants, various molecules are involved in regulating conceptus attachment and adhesion; however, molecules that maintain the conceptus adhesion have not been well characterized. We hypothesized that conceptus must produce a molecule(s), yet uncharacterized or overlooked, which maintain conceptus adhesion to the uterine epithelium. In this study, we aimed to identify new candidate(s) in conceptus secretory proteins responsible for maintaining conceptus adhesion in sheep. We performed RNA-sequence analysis with ovine conceptuses, followed by endometria obtained from pregnant animals on day 15 (P15: pre-attachment), 17 (P17: right after attachment), and 21 (P21: post-attachment; adhesion) and iTRAQ analysis of uterine flushing on P15 and P17. To identify the proteins secreted from conceptuses, we cross-referenced the transcriptome and proteome data. These analyses identified 16 and 26 proteins as conceptus secretory proteins on P15 and P17, respectively. Gene ontology analysis revealed that the conceptus secretory proteins were enriched in those categorized to fibrinolysis and coagulation. RT-qPCR analysis verified that the expression levels of transcripts in conceptuses encoding coagulation factors, fibrinogen subunits, and fibrinolysis factors were significantly higher on P21 than on P15 or P17, which were supported by those through in situ hybridization, Western blotting and immunohistochemistry. Histology analysis confirmed that fibrin protein was present at the conceptus adhesion region on P21. These results suggest that in addition to the numerous adhesion molecules so far characterized, fibrin is a new candidate molecule for maintaining conceptus adhesion for pregnancy continuation in ruminants.

Supplementary Materials

    • Supplementary_Table1_Detail of RNA sequense usig ovine conceptuses and endometria
    • Supplementary_Table2_Detail of iTRAQ analysis using ovine uterine flushing

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 40 40 40
Full Text Views 1 1 1
PDF Downloads 1 1 1
  • Akiyama SK 1996 Integrins in cell adhesion and signaling. Human Cell 9 181186.

  • Aplin AE, Howe A, Alahari SK & Juliano RL 1998 Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacological Reviews 50 197263.

    • Search Google Scholar
    • Export Citation
  • Armant DR 2005 Blastocysts don’t go it alone. Extrinsic signals fine-tune the intrinsic developmental program of trophoblast cells. Developmental Biology 280 260280. (https://doi.org/10.1016/j.ydbio.2005.02.009)

    • Search Google Scholar
    • Export Citation
  • Bai H, Sakurai T, Konno T, Ideta A, Aoyagi Y, Godkin JD & Imakawa K 2012 Expression of GATA1 in the ovine conceptus and endometrium during the peri-attachment period. Molecular Reproduction and Development 79 6473. (https://doi.org/10.1002/mrd.21409)

    • Search Google Scholar
    • Export Citation
  • Bai R, Bai H, Kuse M, Ideta A, Aoyagi Y, Fujiwara H, Okuda K, Imakawa K & Sakurai T 2014 Involvement of VCAM1 in the bovine conceptus adhesion to the uterine endometrium. Reproduction 148 119127. (https://doi.org/10.1530/REP-13-0655)

    • Search Google Scholar
    • Export Citation
  • Brooks K, Burns WG, Moraes GNJ & Spencer ET 2016 Analysis of the uterine epithelial and conceptus transcriptome and luminal fluid proteome during the peri-implantation period of pregnancy in sheep. Biology of Reproduction 95 117. (https://doi.org/10.1095/biolreprod.116.141945)

    • Search Google Scholar
    • Export Citation
  • Erickson HP & Inglesias JL 1984 A six-armed oligomer isolated from cell surface fibronectin preparations. Nature 311 267269. (https://doi.org/10.1038/311267a0)

    • Search Google Scholar
    • Export Citation
  • Erikson DW, Burghardt RC, Bayless KJ & Johnson GA 2009 Secreted phosphoprotein 1 (SPP1, osteopontin) binds to integrin alphavbeta6 on porcine trophectoderm cells and integrin alphavbeta3 on uterine luminal epithelial cells, and promotes trophectoderm cell adhesion and migration. Biology of Reproduction 81 814825. (https://doi.org/10.1095/biolreprod.109.078600)

    • Search Google Scholar
    • Export Citation
  • Farmer JL, Burghardt RC, Jousan FD, Hansen PJ, Bazer FW & Spencer TE 2008 Galectin 15 (LGALS15) functions in trophectoderm migration and attachment. FASEB Journal 22 548560. (https://doi.org/10.1096/fj.07-9308com)

    • Search Google Scholar
    • Export Citation
  • Forde N & Lonergan P 2017 Interferon-tau and fertility in ruminants. Reproduction 154 F33F43. (https://doi.org/10.1530/REP-17-0432)

  • Forde N, Carter F, Spencer ET, Bazer WF, Sandra O, Mansouri-Attia N, Okumu AL, McGettigan AP, Mehta PJ & McBride R et al. 2011 Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant? Biology of Reproduction 85 144156. (https://doi.org/10.1095/biolreprod.110.090019)

    • Search Google Scholar
    • Export Citation
  • Forde N, Duffy BG, McGettigan AP, Browne AJ, Mehta PJ, Kelly KA, Mansouri-Attia N, Sandra O, Loftus JB & Crowe AM et al. 2012 Evidence for an early endometrial response to pregnancy in cattle: both dependent upon and independent of interferon tau. Physiological Genomics 44 799810. (https://doi.org/10.1152/physiolgenomics.00067.2012)

    • Search Google Scholar
    • Export Citation
  • Frank JW, Seo H, Burghardt RC, Bayless KJ & Johnson GA 2017 ITGAV (alpha v integrins) bind SPP1 (osteopontin) to support trophoblast cell adhesion. Reproduction 153 695706. (https://doi.org/10.1530/REP-17-0043)

    • Search Google Scholar
    • Export Citation
  • Ge SX, Son EW & Yao R 2018 iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics 19 534. (https://doi.org/10.1186/s12859-018-2486-6)

    • Search Google Scholar
    • Export Citation
  • Grant DM, Macedo A, Toms D & Klein C 2020 Fibrinogen in equine pregnancy as a mediator of cell adhesion, an epigenetic and functional investigation. Biology of Reproduction 102 170184. (https://doi.org/10.1093/biolre/ioz157)

    • Search Google Scholar
    • Export Citation
  • Guillomot M, Fléchon J-E & Wintenberger-Torres S 1981 Conceptus attachment in the Ewe: an ultrastructural study. Placenta 2 169181. (doi:10.1016/S0143-4004(81)80021-5)

    • Search Google Scholar
    • Export Citation
  • Imakawa K, Tamura K, Lee RS, Ji Y, Kogo H, Sakai S & Christenson RK 2002 Temporal expression of type I interferon receptor in the peri-implantation ovine extra-embryonic membranes: demonstration that human IFNalpha can bind to this receptor. Endocrine Journal 49 195205. (https://doi.org/10.1507/endocrj.49.195)

    • Search Google Scholar
    • Export Citation
  • Imakawa K, Imai M, Sakai A, Suzuki M, Nagaoka K, Sakai S, Lee S, Chang K, Echternkamp ES & Christenson KR 2006 Regulation of conceptus adhesion by endometrial CXC chemokines during the implantation period in sheep. Molecular Reproduction and Development 73 859858. (https://doi.org/10.1002/mrd)

    • Search Google Scholar
    • Export Citation
  • Iwaki T & Castellino FJ 2005 Maternal fibrinogen is necessary for embryonic development. Current Drug Targets 6 535539. (https://doi.org/10.2174/1389450054546006)

    • Search Google Scholar
    • Export Citation
  • Iwaki T, Sandoval-Cooper MJ, Paiva M, Kobayashi T, Ploplis VA & Castellino FJ 2002 Fibrinogen stabilizes placental-maternal attachment during embryonic development in the mouse. American Journal of Pathology 160 10211034. (doi:10.1016/S0002-9440(10)64923-1)

    • Search Google Scholar
    • Export Citation
  • Johnson GA, Bazer FW, Jaeger LA, Ka H, Garlow JE, Pfarrer C, Spencer TE & Burghardt RC 2001 Muc-1, integrin, and osteopontin expression during the implantation cascade in sheep. Biology of Reproduction 65 820828. (https://doi.org/10.1095/biolreprod65.3.820)

    • Search Google Scholar
    • Export Citation
  • Johnson AG, Burghardt CR, Spencer ET, Newton RG, Ott LT & Bazer WF 2005 Ovine osteopontin: II. Osteopontin and αvβ3 integrin expression in the uterus and conceptus during the periimplantation period. Biology of Reproduction 61 892899. (https://doi.org/10.1095/biolreprod61.4.892)

    • Search Google Scholar
    • Export Citation
  • Johnson GA, Burghardt RC & Bazer FW 2014 Osteopontin: a leading candidate adhesion molecule for implantation in pigs and sheep. Journal of Animal Science and Biotechnology 5 56. (https://doi.org/10.1186/2049-1891-5-56)

    • Search Google Scholar
    • Export Citation
  • Johnson GA, Bazer FW, Burghardt RC, Wu G, Seo H, Kramer AC & McLendon BA 2018 Cellular events during ovine implantation and impact for gestation. Animal Reproduction 15 843855. (https://doi.org/10.21451/1984-3143-AR2018-0014)

    • Search Google Scholar
    • Export Citation
  • Klein C 2015 Novel equine conceptus-endometrial interactions on day 16 of pregnancy based on RNA sequencing. Reproduction, Fertility, and Development 28 17121720. (https://doi.org/10.1071/RD14489)

    • Search Google Scholar
    • Export Citation
  • Klein C & Troedsson MH 2011 Transcriptional profiling of equine conceptuses reveals new aspects of embryo-maternal communication in the horse. Biology of Reproduction 84 872885. (https://doi.org/10.1095/biolreprod.110.088732)

    • Search Google Scholar
    • Export Citation
  • Kobayashi T, Terao T & Takamatsu J 2001 Congenial afibrinogenemia : prenatal and peripartum management. Japanese Journal of Thrombosis and Hemostasis 12 5765. (https://doi.org/10.2491/jjsth.12.57)

    • Search Google Scholar
    • Export Citation
  • Kusama K, Bai R, Ideta A, Aoyagi Y, Okuda K & Imakawa K 2016 Regulation of epithelial to mesenchymal transition in bovine conceptuses through the interaction between follistatin and activin A. Molecular and Cellular Endocrinology 434 8192. (https://doi.org/10.1016/j.mce.2016.06.017)

    • Search Google Scholar
    • Export Citation
  • Litvinov RI, Farrel DH, Weisel JW & Bennett JS 2016 The platelet integrin αIIbβ3 differentially interacts with fibrin versus fibrinogen. Journal of Biological Chemistry 291 78587867. (https://doi.org/10.1074/jbc.M115.706861)

    • Search Google Scholar
    • Export Citation
  • Liu S, Zheng Q, Cui XY, Dai KX, Yang XS, Li FS & Yan Q 2015 Expression of uPAR in human trophoblast and its role in trophoblast invasion. International Journal of Clinical and Experimental Pathology 8 1432514334.

    • Search Google Scholar
    • Export Citation
  • Livak KJ & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25 402408. (https://doi.org/10.1006/meth.2001.1262)

    • Search Google Scholar
    • Export Citation
  • Malo Estepa I, Tinning H, Rosas Vasconcelos EJ, Fernandez-Fuertes B, Sánchez JM, Burns GW, Spencer TE, Lonergan P & Forde N 2020 Protein synthesis by day 16 bovine conceptuses during the time of maternal recognition of pregnancy. International Journal of Molecular Sciences 21 2870. (https://doi.org/10.3390/ijms21082870)

    • Search Google Scholar
    • Export Citation
  • Mathew DJ, Sanchez JM, Passaro C, Charpigny G, Behura SK, Spencer TE & Lonergan P 2019 Interferon tau-dependent and independent effects of the bovine conceptus on the endometrial transcriptome†. Biology of Reproduction 100 365380. (https://doi.org/10.1093/biolre/ioy199)

    • Search Google Scholar
    • Export Citation
  • Matsuno Y, Maruyama N, Fujii W, Naito K & Sugiura K 2020 Effects of oocyte-derived paracrine factors on release of extracellular vesicles by murine mural granulosa cells in vitro. Animal Science Journal 91 e13385. (https://doi.org/10.1111/asj.13385)

    • Search Google Scholar
    • Export Citation
  • Mudunuri U, Che A, Yi M & Stephens RM 2009 bioDBnet: the biological database network. Bioinformatics 25 555556. (https://doi.org/10.1093/bioinformatics/btn654)

    • Search Google Scholar
    • Export Citation
  • Nagaoka K, Nojima H, Watanabe F, Chang KT, Christenson RK, Sakai S & Imakawa K 2003 Regulation of blastocyst migration, apposition, and initial adhesion by a chemokine, interferon gamma-inducible protein 10 kDa (IP-10), during early gestation. Journal of Biological Chemistry 278 2904829056. (https://doi.org/10.1074/jbc.M300470200)

    • Search Google Scholar
    • Export Citation
  • Polson AM & Proye MP 1983 Fibrin linkage: a precursor for new attachment. Journal of Periodontology 54 141147. (https://doi.org/10.1902/jop.1983.54.3.141)

    • Search Google Scholar
    • Export Citation
  • Prieto C & Barrios D 2019 RaNA-Seq: interactive RNA-Seq analysis from FASTQ files to functional analysis. Bioinformatics 36 19551956. (https://doi.org/10.1093/bioinformatics/btz854)

    • Search Google Scholar
    • Export Citation
  • Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H & Vilo J 2019 g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Research 47 W191W198. (https://doi.org/10.1093/nar/gkz369)

    • Search Google Scholar
    • Export Citation
  • Ruoslahti E 1996 RGD and other recognition sequences for integrins. Annual Review of Cell and Developmental Biology 12 697715. (https://doi.org/10.1146/annurev.cellbio.12.1.697)

    • Search Google Scholar
    • Export Citation
  • Sakurai T, Bai H, Bai R, Arai M, Iwazawa M, Zhang J, Konno T, Godkin JD, Okuda K & Imakawa K 2012 Coculture system that mimics in vivo attachment processes in bovine trophoblast cells. Biology of Reproduction 87 60. (https://doi.org/10.1095/biolreprod.112.100180)

    • Search Google Scholar
    • Export Citation
  • Sánchez JM, Mathew DJ, Behura SK, Passaro C, Charpigny G, Butler ST, Spencer TE & Lonergan P 2019 Bovine endometrium responds differentially to age-matched short and long conceptuses†. Biology of Reproduction 101 2639. (https://doi.org/10.1093/biolre/ioz060)

    • Search Google Scholar
    • Export Citation
  • Seo H, Frank JW, Burghardt RC, Bazer FW & Johnson GA 2020 Integrins and OPN localize to adhesion complexes during placentation in sheep. Reproduction 160 521532. (doi :10.1530/REP-20-0273)

    • Search Google Scholar
    • Export Citation
  • Simmons RM, Erikson DW, Kim J, Burghardt RC, Bazer FW, Johnson GA & Spencer TE 2009 Insulin-like growth factor binding protein-1 in the ruminant uterus: potential endometrial marker and regulator of conceptus elongation. Endocrinology 150 42954305. (https://doi.org/10.1210/en.2009-0060)

    • Search Google Scholar
    • Export Citation
  • Spencer TE, Johnson GA, Bazer FW & Burghardt RC 2004 Implantation mechanisms: insights from the sheep. Reproduction 128 657668. (https://doi.org/10.1530/rep.1.00398)

    • Search Google Scholar
    • Export Citation
  • Suehiro K, Mizuguchi J, Nishiyama K, Iwanaga S, Farrell DH & Ohtaki S 2000 Fibrinogen binds to integrin α5β1 via the carboxyl-terminal RGD site of the A α-chain. Journal of Biochemistry 128 705710. (https://doi.org/10.1093/oxfordjournals.jbchem.a022804)

    • Search Google Scholar
    • Export Citation
  • Suh TT, Holmback K, Jensen JN, Daugherty CC, Small K, Silmon ID, Potter SS & Degen LJ 1995 Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice. Genes and Development 9 20202033. (https://doi.org/10.1101/gad.9.16.2020)

    • Search Google Scholar
    • Export Citation
  • Wagner GP, Kin K & Lynch VJ 2012 Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory in Biosciences 131 281285. (https://doi.org/10.1007/s12064-012-0162-3)

    • Search Google Scholar
    • Export Citation
  • Weisel WJ 2005 Fibrinogen and fibrin. Advances in Protein Chemistry 70 247299. (doi:10.1016/S0065-3233(04)70008-X)

  • Wing TT, Erikson DW, Burghardt RC, Bazer FW, Bayless KJ & Johnson GA 2020 OPN binds alpha V integrin to promote endothelial progenitor cell incorporation into vasculature. Reproduction 159 465478. (https://doi.org/10.1530/REP-19-0358)

    • Search Google Scholar
    • Export Citation
  • Wolf E, Arnold GJ, Bauersachs S, Beier HM, Blum H, Einspanier R, Fröhlich T, Herrler A, Hiendleder S & Kölle S et al. 2003 Embryo-maternal communication in bovine - Strategies for deciphering a complex cross-talk. Reproduction in Domestic Animals 38 276289. (https://doi.org/10.1046/j.1439-0531.2003.00435.x)

    • Search Google Scholar
    • Export Citation
  • Wooding FBP 1984 Role of binucleate cells in fetomaternal cell fusion at implantation in the sheep. American Journal of Anatomy 170 233250. (https://doi.org/10.1002/aja.1001700208)

    • Search Google Scholar
    • Export Citation
  • Yamakoshi S, Bai R, Chaen T, Ideta A, Aoyagi Y, Sakurai T, Konno T & Imakawa K 2012 Expression of mesenchymal-related genes by the bovine trophectoderm following conceptus attachment to the endometrial epithelium. Reproduction 143 377387. (https://doi.org/10.1530/REP-11-0364)

    • Search Google Scholar
    • Export Citation