Different regulation of IRE1α and eIF2α pathways by oxygen and insulin in ACH-3P trophoblast model

in Reproduction
Authors:
Veronika Tandl Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria

Search for other papers by Veronika Tandl in
Current site
Google Scholar
PubMed
Close
,
Denise Hoch Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria

Search for other papers by Denise Hoch in
Current site
Google Scholar
PubMed
Close
,
Julia Bandres-Meriz Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria

Search for other papers by Julia Bandres-Meriz in
Current site
Google Scholar
PubMed
Close
,
Sanela Nikodijevic Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria

Search for other papers by Sanela Nikodijevic in
Current site
Google Scholar
PubMed
Close
,
Gernot Desoye Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria

Search for other papers by Gernot Desoye in
Current site
Google Scholar
PubMed
Close
, and
Alejandro Majali-Martinez Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria

Search for other papers by Alejandro Majali-Martinez in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9009-5810

Correspondence should be addressed to G Desoye; Email: gernot.desoye@medunigraz.at
Restricted access
Rent on DeepDyve

Sign up for journal news

Endoplasmic reticulum (ER)-stress activates the unfolded protein response (UPR), which plays a (patho)physiological role in the placenta. Oxygen and hyperinsulinemia are major regulators of placental development. Thus, we hypothesized that oxygen, insulin and their interplay modulate ER-stress in early pregnancy. Using the human first-trimester trophoblast cell line ACH-3P, we quantified mRNA and protein of several members of UPR by RT-qPCR and Western blotting, respectively. ER-stress induction using tunicamycin and brefeldin A resulted in increased CHOP (4.6-fold change; P ≤ 0.001), XBP1 expression (1.7- and 1.3-fold change, respectively; P ≤ 0.001 and P < 0.05) and XBP1 splicing (7.9- and 12.8-fold change, respectively; P ≤ 0.001). We subsequently analyzed the effect of oxygen (6.5%, 2.5%), insulin (0.1–10 nM) and their interaction using ANCOVA adjusted for cell passage as co-variate. Although GRP78 protein remained unaffected, low oxygen (2.5% O2) increased IRE1α phosphorylation (+52%; P < 0.05) and XBP1 splicing (1.8-fold change; P ≤ 0.001) after 24 h, while eIF2α protein and CHOP expression were downregulated (−28%; P < 0.05 and −24%; P ≤ 0.001; respectively). eIF2α phosphorylation was also reduced after 48 h by low oxygen (−61%; P < 0.05) but increased in the presence of insulin (+46%; P ≤ 0.01). These changes were not PERK-mediated, since PERK phosphorylation and total protein were not altered. Overall, our results suggest that IRE1α and eIF2α UPR-pathways are differentially regulated by oxygen and insulin in early pregnancy.

 

  • Collapse
  • Expand
  • Ali MM, Bagratuni T, Davenport EL, Nowak PR, Silva-Santisteban MC, Hardcastle A, McAndrews C, Rowlands MG, Morgan GJ & Aherne W et al. 2011 Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response. EMBO Journal 30 894905. (https://doi.org/10.1038/emboj.2011.18)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arnaudeau S, Arboit P, Bischof P, Shin-ya K, Tomida A, Tsuruo T, Irion O & Cohen M 2009 Glucose-regulated protein 78: a new partner of p53 in trophoblast. Proteomics 9 53165327. (https://doi.org/10.1002/pmic.200800865)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bandres-Meriz J, Dieberger AM, Hoch D, Pöchlauer C, Bachbauer M, Glasner A, Niedrist T, van Poppel MNM & Desoye G 2020 Maternal obesity affects the glucose-insulin axis during the first trimester of human pregnancy. Frontiers in Endocrinology 11 566673. (https://doi.org/10.3389/fendo.2020.566673)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bastida-Ruiz D, Wuillemin C, Pederencino A, Yaron M, Martinez de Tejada B, Pizzo SV & Cohen M 2020 Activated α(2)-macroglobulin binding to cell surface GRP78 induces trophoblastic cell fusion. Scientific Reports 10 9666. (https://doi.org/10.1038/s41598-020-66554-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bautista-Castaño I, Henriquez-Sanchez P, Alemán-Perez N, Garcia-Salvador JJ, Gonzalez-Quesada A, García-Hernández JA & Serra-Majem L 2013 Maternal obesity in early pregnancy and risk of adverse outcomes. PLoS ONE 8 e80410. (https://doi.org/10.1371/journal.pone.0080410)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bertolotti A, Zhang Y, Hendershot LM, Harding HP & Ron D 2000 Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biology 2 326332. (https://doi.org/10.1038/35014014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bilban M, Tauber S, Haslinger P, Pollheimer J, Saleh L, Pehamberger H, Wagner O & Knöfler M 2010 Trophoblast invasion: assessment of cellular models using gene expression signatures. Placenta 31 989996. (https://doi.org/10.1016/j.placenta.2010.08.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boden G, Cheung P, Salehi S, Homko C, Loveland-Jones C, Jayarajan S, Stein TP, Williams KJ, Liu ML & Barrero CA et al. 2014 Insulin regulates the unfolded protein response in human adipose tissue. Diabetes 63 912922. (https://doi.org/10.2337/db13-0906)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Burton GJ & Fowden AL 2015 The placenta: a multifaceted, transient organ. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences 370 20140066. (https://doi.org/10.1098/rstb.2014.0066)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Burton GJ & Yung HW 2011 Endoplasmic reticulum stress in the pathogenesis of early-onset pre-eclampsia. Pregnancy Hypertension 1 7278. (https://doi.org/10.1016/j.preghy.2010.12.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Burton GJ, Yung HW, Cindrova-Davies T & Charnock-Jones DS 2009 Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 30 (Supplement A) S43S48. (https://doi.org/10.1016/j.placenta.2008.11.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Catalano PM & Shankar K 2017 Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. BMJ 356 j1. (https://doi.org/10.1136/bmj.j1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chang CW, Wakeland AK & Parast MM 2018 Trophoblast lineage specification, differentiation, and their regulation by oxygen tension. Journal of Endocrinology 236 R43R56. (https://doi.org/10.1530/JOE-17-0402)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Corazzari M, Gagliardi M, Fimia GM & Piacentini M 2017 Endoplasmic reticulum stress, unfolded protein response, and cancer cell fate. Frontiers in Oncology 7 78. (https://doi.org/10.3389/fonc.2017.00078)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Desoye G 2018 The human placenta in diabetes and obesity: friend or foe? The 2017 Norbert Freinkel award lecture. Diabetes Care 41 13621369. (https://doi.org/10.2337/dci17-0045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Desoye G & Hauguel-de Mouzon S 2007 The human placenta in gestational diabetes mellitus. The insulin and cytokine network. Diabetes Care 30 (Supplement 2) S120–S126. (https://doi.org/10.2337/dc07-s203)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Donnelly N, Gorman AM, Gupta S & Samali A 2013 The eIF2α kinases: their structures and functions. Cellular and Molecular Life Sciences 70 34933511. (https://doi.org/10.1007/s00018-012-1252-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Frakes AE & Dillin A 2017 The UPRER: sensor and coordinator of organismal homeostasis. Molecular Cell 66 761771. (https://doi.org/10.1016/j.molcel.2017.05.031)

  • Ghosh R, Lipson KL, Sargent KE, Mercurio AM, Hunt JS, Ron D & Urano F 2010 Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLoS ONE 5 e9575. (https://doi.org/10.1371/journal.pone.0009575)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gülow K, Bienert D & Haas IG 2002 BiP is feed-back regulated by control of protein translation efficiency. Journal of Cell Science 115 24432452. (https://doi.org/10.1242/jcs.115.11.2443)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M & Ron D 2000 Regulated translation initiation controls stress-induced gene expression in mammalian cells. Molecular Cell 6 10991108. (https://doi.org/10.1016/s1097-2765(0000108-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hetz C 2012 The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature Reviews: Molecular Cell Biology 13 89102. (https://doi.org/10.1038/nrm3270)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hiden U, Wadsack C, Prutsch N, Gauster M, Weiss U, Frank HG, Schmitz U, Fast-Hirsch C, Hengstschläger M & Pötgens A et al. 2007 The first trimester human trophoblast cell line ACH-3P: a novel tool to study autocrine/paracrine regulatory loops of human trophoblast subpopulations – TNF-α stimulates MMP15 expression. BMC Developmental Biology 7 137. (https://doi.org/10.1186/1471-213X-7-137)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hillary RF & FitzGerald U 2018 A lifetime of stress: ATF6 in development and homeostasis. Journal of Biomedical Science 25 48. (https://doi.org/10.1186/s12929-018-0453-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hoch D, Gauster M, Hauguel-de Mouzon S & Desoye G 2019 Diabesity-associated oxidative and inflammatory stress signalling in the early human placenta. Molecular Aspects of Medicine 66 2130. (https://doi.org/10.1016/j.mam.2018.11.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hoch D, Bachbauer M, Pöchlauer C, Algaba-Chueca F, Tandl V, Novakovic B, Megia A, Gauster M, Saffery R & Glasner A et al. 2020 Maternal obesity alters placental cell cycle regulators in the first trimester of human pregnancy: new insights for BRCA1. International Journal of Molecular Sciences 21 468. (https://doi.org/10.3390/ijms21020468)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Inageda K 2010 Insulin modulates induction of glucose-regulated protein 78 during endoplasmic reticulum stress via augmentation of ATF4 expression in human neuroblastoma cells. FEBS Letters 584 36493654. (https://doi.org/10.1016/j.febslet.2010.07.040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iwawaki T, Akai R, Yamanaka S & Kohno K 2009 Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability. PNAS 106 1665716662. (https://doi.org/10.1073/pnas.0903775106)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jauniaux E, Watson AL, Hempstock J, Bao YP, Skepper JN & Burton GJ 2000 Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. American Journal of Pathology 157 21112122. (https://doi.org/10.1016/S0002-9440(1064849-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kadowaki H & Nishitoh H 2013 Signaling pathways from the endoplasmic reticulum and their roles in disease. Genes 4 306333. (https://doi.org/10.3390/genes4030306)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karagöz GE, Acosta-Alvear D, Nguyen HT, Lee CP, Chu F & Walter P 2017 An unfolded protein-induced conformational switch activates mammalian IRE1. eLife 6 e30700. (https://doi.org/10.7554/eLife.30700)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kaufmann P, Black S & Huppertz B 2003 Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biology of Reproduction 69 17. (https://doi.org/10.1095/biolreprod.102.014977)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TKJB & James J 2019 Human placenta and trophoblast development: key molecular mechanisms and model systems. Cellular and Molecular Life Sciences 76 34793496. (https://doi.org/10.1007/s00018-019-03104-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kwist K, Bridges WC & Burg KJ 2016 The effect of cell passage number on osteogenic and adipogenic characteristics of D1 cells. Cytotechnology 68 16611667. (https://doi.org/10.1007/s10616-015-9883-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee CQ, Gardner L, Turco M, Zhao N, Murray MJ, Coleman N, Rossant J, Hemberger M & Moffett A 2016 What is trophoblast? A combination of criteria define human first-trimester trophoblast. Stem Cell Reports 6 257272. (https://doi.org/10.1016/j.stemcr.2016.01.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee CL, Veerbeek JHW, Rana TK, van Rijn BB, Burton GJ & Yung HW 2019 Role of endoplasmic reticulum stress in proinflammatory cytokine-mediated inhibition of trophoblast invasion in placenta-related complications of pregnancy. American Journal of Pathology 189 467478. (https://doi.org/10.1016/j.ajpath.2018.10.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee S, Shin J, Hong Y, Shin SM, Shin HW, Shin J, Lee SK & Park HW 2020 Sestrin2 alleviates palmitate-induced endoplasmic reticulum stress, apoptosis, and defective invasion of human trophoblast cells. American Journal of Reproductive Immunology 83 e13222. (https://doi.org/10.1111/aji.13222)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li A, Song NJ, Riesenberg BP & Li Z 2019 The emerging roles of endoplasmic reticulum stress in balancing immunity and tolerance in health and diseases: mechanisms and opportunities. Frontiers in Immunology 10 3154. (https://doi.org/10.3389/fimmu.2019.03154)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lian IA, Løset M, Mundal SB, Fenstad MH, Johnson MP, Eide IP, Bjørge L, Freed KA, Moses EK & Austgulen R 2011 Increased endoplasmic reticulum stress in decidual tissue from pregnancies complicated by fetal growth restriction with and without pre-eclampsia. Placenta 32 823829. (https://doi.org/10.1016/j.placenta.2011.08.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liang H, Xiao J, Zhou Z, Wu J, Ge F, Li Z, Zhang H, Sun J, Li F & Liu R et al. 2018 Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis. Oncogene 37 19611975. (https://doi.org/10.1038/s41388-017-0089-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, Lavail MM & Walter P 2007 IRE1 signaling affects cell fate during the unfolded protein response. Science 318 944949. (https://doi.org/10.1126/science.1146361)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lorenzon AR, Moreli JB, de Macedo Melo R, Namba FY, Staff AC, Yung HW, Burton GJ & Bevilacqua E 2020 Stromal cell-derived factor (SDF) 2 and the endoplasmic reticulum stress response of trophoblast cells in gestational diabetes mellitus and in vitro hyperglycaemic condition. Current Vascular Pharmacology 19 201209. (https://doi.org/10.2174/1570161118666200606222123)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maltepe E & Fisher SJ 2015 Placenta: the forgotten organ. Annual Review of Cell and Developmental Biology 31 523552. (https://doi.org/10.1146/annurev-cellbio-100814-125620)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moszyńska A, Collawn JF & Bartoszewski R 2020 IRE1 endoribonuclease activity modulates hypoxic HIF-1α signaling in human endothelial cells. Biomolecules 10 895. (https://doi.org/10.3390/biom10060895)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nakashima A, Cheng SB, Kusabiraki T, Motomura K, Aoki A, Ushijima A, Ono Y, Tsuda S, Shima T & Yoshino O et al. 2019 Endoplasmic reticulum stress disrupts lysosomal homeostasis and induces blockade of autophagic flux in human trophoblasts. Scientific Reports 9 11466. (https://doi.org/10.1038/s41598-019-47607-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oikawa D, Akai R & Iwawaki T 2010 Positive contribution of the IRE1alpha-XBP1 pathway to placental expression of CEA family genes. FEBS Letters 584 10661070. (https://doi.org/10.1016/j.febslet.2010.02.012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oslowski CM & Urano F 2011 Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods in Enzymology 490 7192. (https://doi.org/10.1016/B978-0-12-385114-7.00004-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pfaffl MW 2001 A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29 e45. (https://doi.org/10.1093/nar/29.9.e45)

  • Schwarz DS & Blower MD 2016 The endoplasmic reticulum: structure, function and response to cellular signaling. Cellular and Molecular Life Sciences 73 7994. (https://doi.org/10.1007/s00018-015-2052-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shemorry A, Harnoss JM, Guttman O, Marsters SA, Kőműves LG, Lawrence DA & Ashkenazi A 2019 Caspase-mediated cleavage of IRE1 controls apoptotic cell commitment during endoplasmic reticulum stress. eLife 8 e47084. (https://doi.org/10.7554/eLife.47084)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tajiri S, Oyadomari S, Yano S, Morioka M, Gotoh T, Hamada JI, Ushio Y & Mori M 2004 Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death and Differentiation 11 403415. (https://doi.org/10.1038/sj.cdd.4401365)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Urra H, Dufey E, Avril T, Chevet E & Hetz C 2016 Endoplasmic reticulum stress and the hallmarks of cancer. Trends in Cancer 2 252262. (https://doi.org/10.1016/j.trecan.2016.03.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Y, Shen J, Arenzana N, Tirasophon W, Kaufman RJ & Prywes R 2000 Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. Journal of Biological Chemistry 275 2701327020. (https://doi.org/10.1074/jbc.M003322200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang M, Wey S, Zhang Y, Ye R & Lee AS 2009 Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxidants and Redox Signaling 11 23072316. (https://doi.org/10.1089/ars.2009.2485)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang P, Li J, Tao J & Sha B 2018 The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization. Journal of Biological Chemistry 293 41104121. (https://doi.org/10.1074/jbc.RA117.001294)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Westermeier F, Sáez PJ, Villalobos-Labra R, Sobrevia L & Farías-Jofré M 2014 Programming of fetal insulin resistance in pregnancies with maternal obesity by ER stress and inflammation. BioMed Research International 2014 917672. (https://doi.org/10.1155/2014/917672)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang H, Niemeijer M, van de Water B & Beltman JB 2020 ATF6 is a critical determinant of CHOP dynamics during the unfolded protein response. iScience 23 100860. (https://doi.org/10.1016/j.isci.2020.100860)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yoshida H, Matsui T, Yamamoto A, Okada T & Mori K 2001 XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107 881891. (https://doi.org/10.1016/s0092-8674(0100611-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yung HW, Calabrese S, Hynx D, Hemmings BA, Cetin I, Charnock-Jones DS & Burton GJ 2008 Evidence of placental translation inhibition and endoplasmic reticulum stress in the etiology of human intrauterine growth restriction. American Journal of Pathology 173 451462. (https://doi.org/10.2353/ajpath.2008.071193)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yung HW, Cox M, Tissot van Patot M & Burton GJ 2012 Evidence of endoplasmic reticulum stress and protein synthesis inhibition in the placenta of non-native women at high altitude. FASEB Journal 26 19701981. (https://doi.org/10.1096/fj.11-190082)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yung HW, Atkinson D, Campion-Smith T, Olovsson M, Charnock-Jones DS & Burton GJ 2014 Differential activation of placental unfolded protein response pathways implies heterogeneity in causation of early- and late-onset pre-eclampsia. Journal of Pathology 234 262276. (https://doi.org/10.1002/path.4394)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yung HW, Alnæs-Katjavivi P, Jones CJP, El-Bacha T, Golic M, Staff AC & Burton GJ 2016 Placental endoplasmic reticulum stress in gestational diabetes: the potential for therapeutic intervention with chemical chaperones and antioxidants. Diabetologia 59 22402250. (https://doi.org/10.1007/s00125-016-4040-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang K, Wong HN, Song B, Miller CN, Scheuner D & Kaufman RJ 2005 The unfolded protein response sensor IRE1alpha is required at 2 distinct steps in B cell lymphopoiesis. Journal of Clinical Investigation 115 268281. (https://doi.org/10.1172/JCI21848)

    • PubMed
    • Search Google Scholar
    • Export Citation