Differentiation of fetal sertoli cells in the adult testis

in Reproduction
Authors:
Tetsuhiro Yokonishi Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA

Search for other papers by Tetsuhiro Yokonishi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5029-1713
and
Blanche Capel Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA

Search for other papers by Blanche Capel in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to T Yokonishi or B Capel; Email: yokonishi@med.kawasaki-m.ac.jp or blanche.capel@duke.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

Sertoli cells proliferate and construct seminiferous tubules during fetal life, then undergo differentiation and maturation in the prepubertal testes. In the adult testes, mature Sertoli cells maintain spermatogonia and support spermatogenesis during the entire lifetime. Although Sertoli-like cells have been derived from iPS cells, they tend to remain immature. To investigate whether Sertoli cells can spontaneously acquire the ability to support spermatogenesis when transferred into the adult testis, we transplanted mouse fetal testicular cells into a Sertoli-depleted adult testis. We found that donor E12.5, E14.5 and E16.5 Sertoli cells colonized adult seminiferous tubules and supported host spermatogenesis 2 months after transplantation, demonstrating that immature fetal Sertoli cells can undergo sufficient maturation in the adult testis to become functional. This technique will be useful to analyze the developmental process of Sertoli cell maturation and to investigate the potential of iPS-derived Sertoli cells to colonize, undergo maturation, and support spermatogenesis within the testis environment.

 

  • Collapse
  • Expand
  • Amory JK, Muller CH, Shimshoni JA, Isoherranen N, Paik J, Moreb JS, Amory DW Sr., Evanoff R, Goldstein AS & Griswold MD 2011 Suppression of spermatogenesis by bisdichloroacetyldiamines is mediated by inhibition of testicular retinoic acid biosynthesis. Journal of Andrology 32 111119. (https://doi.org/10.2164/jandrol.110.010751)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Batchvarov IS, Taylor RW, Bustamante-Marín X, Czerwinski M, Johnson ES, Kornbluth S & Capel B 2016 A grafted ovarian fragment rescues host fertility after chemotherapy. Molecular Human Reproduction 22 842851. (https://doi.org/10.1093/molehr/gaw064)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brinster RL & Zimmermann JW 1994 Spermatogenesis following male germ-cell transplantation. PNAS 91 1129811302. (https://doi.org/10.1073/pnas.91.24.11298)

  • Buganim Y, Itskovich E, Hu YC, Cheng AW, Ganz K, Sarkar S, Fu D, Welstead GG, Page DC & Jaenisch R 2012 Direct reprogramming of fibroblasts into embryonic Sertoli-like cells by defined factors. Cell Stem Cell 11 373386. (https://doi.org/10.1016/j.stem.2012.07.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chuma S, Kanatsu-Shinohara M, Inoue K, Ogonuki N, Miki H, Toyokuni S, Hosokawa M, Nakatsuji N, Ogura A & Shinohara T 2005 Spermatogenesis from epiblast and primordial germ cells following transplantation into postnatal mouse testis. Development 132 117122. (https://doi.org/10.1242/dev.01555)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cool J, Defalco T & Capel B 2012 Testis formation in the fetal mouse: dynamic and complex de novo tubulogenesis. Wiley Interdisciplinary Reviews: Developmental Biology 1 847859. (https://doi.org/10.1002/wdev.62)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Felici M, Dolci S & Pesce M 1993 Proliferation of mouse primordial germ cells in vitro: a key role for cAMP. Developmental Biology 157 277280. (https://doi.org/10.1006/dbio.1993.1132)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M & Nagy A 1998 Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mechanisms of Development 76 7990. (https://doi.org/10.1016/s0925-4773(9800093-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Honaramooz A, Snedaker A, Boiani M, Schöler H, Dobrinski I & Schlatt S 2002 Sperm from neonatal mammalian testes grafted in mice. Nature 418 778781. (https://doi.org/10.1038/nature00918)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Irie N, Weinberger L, Tang WWC, Kobayashi T, Viukov S, Manor YS, Dietmann S, Hanna JH & Surani MA 2015 SOX17 is a critical specifier of human primordial germ cell fate. Cell 160 253268. (https://doi.org/10.1016/j.cell.2014.12.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kallajoki M, Virtanen I & Suominen J 1986 The fate of acrosomal staining during the acrosome reaction of human spermatozoa as revealed by a monoclonal antibody and PNA-lectin. International Journal of Andrology 9 181194. (https://doi.org/10.1111/j.1365-2605.1986.tb00881.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A & Shinohara T 2005 Germline niche transplantation restores fertility in infertile mice. Human Reproduction 20 23762382. (https://doi.org/10.1093/humrep/dei096)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karl J & Capel B 1998 Sertoli cells of the mouse testis originate from the coelomic epithelium. Developmental Biology 203 323333. (https://doi.org/10.1006/dbio.1998.9068)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kojima K, Sato T, Naruse Y & Ogawa T 2016 Spermatogenesis in explanted fetal mouse testis tissues. Biology of Reproduction 95 63. (https://doi.org/10.1095/biolreprod.116.140277)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koopman P, Münsterberg A, Capel B, Vivian N & Lovell-Badge R 1990 Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 348 450452. (https://doi.org/10.1038/348450a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lucas TF, Nascimento AR, Pisolato R, Pimenta MT, Lazari MF & Porto CS 2014 Receptors and signaling pathways involved in proliferation and differentiation of Sertoli cells. Spermatogenesis 4 e28138. (https://doi.org/10.4161/spmg.28138)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matoba S & Ogura A 2011 Generation of functional oocytes and spermatids from fetal primordial germ cells after ectopic transplantation in adult mice. Biology of Reproduction 84 631638. (https://doi.org/10.1095/biolreprod.110.087122)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nakata H, Wakayama T, Sonomura T, Honma S, Hatta T & ISEKI S 2015 Three-dimensional structure of seminiferous tubules in the adult mouse. Journal of Anatomy 227 686694. (https://doi.org/10.1111/joa.12375)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ogawa T, Aréchaga JM, Avarbock MR & Brinster RL 1997 Transplantation of testis germinal cells into mouse seminiferous tubules. International Journal of Developmental Biology 41 111122.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ohta H, Wakayama T & Nishimune Y 2004 Commitment of fetal male germ cells to spermatogonial stem cells during mouse embryonic development. Biology of Reproduction 70 12861291. (https://doi.org/10.1095/biolreprod.103.024612)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, Kurimoto K, Ohta H, Moritoki Y, Iwatani C & Tsuchiya H et al. 2015 Robust In Vitro Induction of Human Germ Cell Fate from Pluripotent Stem Cells. Cell Stem Cell 17 178194. (https://doi.org/10.1016/j.stem.2015.06.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sato Y, Nozawa S, Yoshiike M, Arai M, Sasaki C & Iwamoto T 2010 Xenografting of testicular tissue from an infant human donor results in accelerated testicular maturation. Human Reproduction 25 11131122. (https://doi.org/10.1093/humrep/deq001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sato T, Katagiri K, Gohbara A, Inoue K, Ogonuki N, Ogura A, Kubota Y & Ogawa T 2011 In vitro production of functional sperm in cultured neonatal mouse testes. Nature 471 504507. (https://doi.org/10.1038/nature09850)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schlatt S, Kim SS & Gosden R 2002 Spermatogenesis and steroidogenesis in mouse, hamster and monkey testicular tissue after cryopreservation and heterotopic grafting to castrated hosts. Reproduction 124 339346. (https://doi.org/10.1530/rep.0.1240339)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shinohara T, Inoue K, Ogonuki N, Kanatsu-Shinohara M, Miki H, Nakata K, Kurome M, Nagashima H, Toyokuni S & Kogishi K et al.2002 Birth of offspring following transplantation of cryopreserved immature testicular pieces and in-vitro microinsemination. Human Reproduction 17 30393045. (https://doi.org/10.1093/humrep/17.12.3039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shinohara T, Orwig KE, Avarbock MR & Brinster RL 2003 Restoration of spermatogenesis in infertile mice by Sertoli cell transplantation. Biology of Reproduction 68 10641071. (https://doi.org/10.1095/biolreprod.102.009977)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skakkebaek NE, Jensen G, Povlsen CO & Rygaard J 1974 Heterotransplantation of human foetal testicular and ovarian tissue to the mouse mutant nude: a preliminary study. Acta Obstetricia et Gynecologica Scandinavica: Supplement 29 7375. (https://doi.org/10.3109/00016347409157196)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Svingen T & Koopman P 2013 Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes and Development 27 24092426. (https://doi.org/10.1101/gad.228080.113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S & Muguruma K et al.2007 A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnology 25 681686. (https://doi.org/10.1038/nbt1310)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yokonishi T, Mckey J, Ide S & Capel B 2020 Sertoli cell ablation and replacement of the spermatogonial niche in mouse. Nature Communications 11 40. (https://doi.org/10.1038/s41467-019-13879-8)

    • PubMed
    • Search Google Scholar
    • Export Citation