Differences in human placental mesenchymal stromal cells may impair vascular function in FGR

in Reproduction
Authors:
Anna L Boss Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand

Search for other papers by Anna L Boss in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1943-4162
,
Lawrence W Chamley Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand

Search for other papers by Lawrence W Chamley in
Current site
Google Scholar
PubMed
Close
,
Anna E S Brooks School of Biological Sciences, University of Auckland, Auckland, New Zealand
Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand

Search for other papers by Anna E S Brooks in
Current site
Google Scholar
PubMed
Close
, and
Joanna L James Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand

Search for other papers by Joanna L James in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to A L Boss; Email: a.boss@auckland.ac.nz
Restricted access
Rent on DeepDyve

Sign up for journal news

Placentae from pregnancies with foetal growth restriction (FGR) exhibit poor oxygen and nutrient exchange, in part due to impaired placental vascular development. Placental mesenchymal stromal cells (pMSCs) reside in a perivascular niche, where they may influence blood vessel formation/function. However, the role of pMSCs in vascular dysfunction in FGR is unclear. To elucidate the mechanisms by which pMSCs may impact placental vascularisation we compared the transcriptomes of human pMSCs isolated from FGR (<5th centile) (n = 7) and gestation-matched control placentae (n = 9) using Affymetrix microarrays. At the transcriptome level, there were no statistically significant differences between normal and FGR pMSCs; however, several genes linked to vascular function exhibited notable fold changes, and thus the dataset was used as a hypothesis-generating tool for possible dysfunction in FGR. Genes/proteins of interest were followed up by real-time PCR, western blot and immunohistochemistry. Gene expression of ADAMTS1 and FBLN2 (fibulin-2) were significantly upregulated, whilst HAS2 (hyaluronan synthase-2) was significantly downregulated, in pMSCs from FGR placentae (n = 8) relative to controls (n = 7, P  < 0.05 for all). At the protein level, significant differences in the level of fibulin-2 and hyaluronan synthase-2, but not ADAMTS1, were confirmed between pMSCs from FGR and control pregnancies by Western blot. All three proteins demonstrated perivascular expression in third-trimester placentae. Fibulin-2 maintains vessel elasticity, and its increased expression in FGR pMSCs could help explain the increased distensibility of FGR blood vessels. ADAMTS1 and hyaluronan synthase-2 regulate angiogenesis, and their differential expression by FGR pMSCs may contribute to the impaired angiogenesis in these placentae.

Supplementary Materials

 

  • Collapse
  • Expand
  • Ard S, Reed EB, Smolyaninova LV, Orlov SN, Mutlu GM, Guzy RD & Dulin NO 2019 Sustained Smad2 phosphorylation is required for myofibroblast transformation in response to TGF-b. American Journal of Respiratory Cell and Molecular Biology 60 367369. (https://doi.org/10.1165/rcmb.2018-0252LE)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Battistelli M, Burattini S, Pomini F, Scavo M, Caruso A & Falcieri E 2004 Ultrastructural study on human placenta from intrauterine growth retardation cases. Microscopy Research and Technique 65 150158. (https://doi.org/10.1002/jemt.20120)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Battula VL, Bareiss PM, Treml S, Conrad S, Albert I, Hojak S, Abele H, Schewe B, Just L & Skutella T et al. 2007 Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation: Research in Biological Diversity 75 279291. (https://doi.org/10.1111/j.1432-0436.2006.00139.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bergers G & Song S 2005 The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology 7 452464. (https://doi.org/10.1215/S1152851705000232)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bernert B, Porsch H & Heldin P 2011 Hyaluronan synthase 2 (HAS2) promotes breast cancer cell invasion by suppression of tissue metalloproteinase inhibitor 1 (TIMP-1). Journal of Biological Chemistry 286 4234942359. (https://doi.org/10.1074/jbc.M111.278598)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boss AL, Brooks AES, Chamley LW & James JL 2020 Influence of culture media on the derivation and phenotype of fetal-derived placental mesenchymal stem/stromal cells across gestation. Placenta 101 6674. (https://doi.org/10.1016/j.placenta.2020.09.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bristow J, Carey W, Egging D & Schalkwijk J 2005 Tenascin-X, collagen, elastin, and the Ehlers-Danlos syndrome. American Journal of Medical Genetics: Part C, Seminars in Medical Genetics 139C 2430. (https://doi.org/10.1002/ajmg.c.30071)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Castellucci M, Kosanke G, Verdenelli F, Huppertz B & Kaufmann P 2000 Villous sprouting: fundamental mechanisms of human placental development. Human Reproduction Update 6 485494. (https://doi.org/10.1093/humupd/6.5.485)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Castrechini NM, Murthi P, Gude NM, Erwich JJHM, Gronthos S, Zannettino A, Brennecke SP & Kalionis B 2010 Mesenchymal stem cells in human placental chorionic villi reside in a vascular niche. Placenta 31 203212. (https://doi.org/10.1016/j.placenta.2009.12.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chao H & Spicer AP 2005 Natural antisense mRNAs to hyaluronan synthase 2 inhibit hyaluronan biosynthesis and cell proliferation. Journal of Biological Chemistry 280 2751327522. (https://doi.org/10.1074/jbc.M411544200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chapman SL, Sicot FX, Davis EC, Huang J, Sasaki T, Chu ML & Yanagisawa H 2010 Fibulin-2 and fibulin-5 cooperatively function to form the internal elastic lamina and protect From vascular injury. Arteriosclerosis, Thrombosis, and Vascular Biology 30 6874. (https://doi.org/10.1161/ATVBAHA.109.196725)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chow G & Knudson W 2005 Characterization of promoter elements of the human HYAL-2 gene. Journal of Biological Chemistry 280 2690426912. (https://doi.org/10.1074/jbc.M413845200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Crovetto F, Triunfo S, Crispi F, Rodriguez-Sureda V, Roma E, Dominguez C, Gratacos E & Figueras F 2016 First-trimester screening with specific algorithms for early- and late-onset fetal growth restriction. Ultrasound in Obstetrics and Gynecology 48 340348. (https://doi.org/10.1002/uog.15879).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Csoka AB, Frost GI & Stern R 2001 The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biology 20 499508 (https://doi.org/10.1016/s0945-053x(0100172-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cyphert JM, Trempus CS & Garantziotis S 2015 Size matters: molecular weight specificity of hyaluronan effects in cell biology. International Journal of Cell Biology 2015 563818. (https://doi.org/10.1155/2015/563818)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diplas AI, Lambertini L, Lee MJ, Sperling R, Lee YL, Wetmur JG & Chen J 2009 Differential expression of imprinted genes in normal and IUGR human placentas. Epigenetics 4 235240. (https://doi.org/10.4161/epi.9019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Du WJ, Chi Y, Yang ZX, Li ZJ, Cui JJ, Song BQ, Li X, Yang SG, Han ZB & Han ZC 2016 Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta. Stem Cell Research and Therapy 7 163. (https://doi.org/10.1186/s13287-016-0418-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Flenady V, Koopmans L, Middleton P, Frøen JF, Smith GC, Gibbons K, Coory M, Gordon A, Ellwood D & McIntyre HD et al. 2011 Major risk factors for stillbirth in high-income countries: a systematic review and meta-analysis. Lancet 377 13311340. (https://doi.org/10.1016/S0140-6736(1062233-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Forbes SJ, Russo FP, Rey V, Burra P, Rugge M, Wright NA & Alison MR 2004 A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology 126 955963. (https://doi.org/10.1053/j.gastro.2004.02.025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Froen JF, Gardosi JO, Thurmann A, Francis A & Stray-Pedersen B 2004 Restricted fetal growth in sudden intrauterine unexplained death. Acta Obstetricia et Gynecologica Scandinavica 83 801807. (https://doi.org/10.1111/j.0001-6349.2004.00602.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garantziotis S & Savani RC 2019 Hyaluronan biology: a complex balancing act of structure, function, location and context. Matrix Biology 78–79 110. (https://doi.org/10.1016/j.matbio.2019.02.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gibbons GH, Pratt RE & Dzau VJ 1992 Vascular smooth muscle cell hypertrophy vs. Hyperplasia: autocrine transforming growth factor-β1 expression determines growth response to angiotensin II. Journal of Clinical Investigation 90 456461. (https://doi.org/10.1172/JCI115881)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gong SP, Zhao YT & Yu YH 2011 Vascular network modeling reveals significant differences in vascular morphology in growth-restricted placentas. Reviews in Obstetrics and Gynecology 4 10310 8.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haase K, Gillrie MR, Hajal C & Kamm RD 2019 Pericytes contribute to dysfunction in a human 3D model of placental microvasculature through VEGF‐Ang‐Tie2 signaling. Advanced Science 6 1900878. (https://doi.org/10.1002/advs.201900878)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hitschold T, Weiss E, Beck T, Hünterfering H & Berle P 1993 Low target birth weight or growth retardation? Umbilical doppler flow velocity waveforms and histometric analysis of fetoplacental vascular tree. American Journal of Obstetrics and Gynecology 168 1260126 4. (https://doi.org/10.1016/0002-9378(9390377-u)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iglesias-Platas I, Martin-Trujillo A, Petazzi P, Guillaumet-Adkins A, Esteller M & Monk D 2014 Altered expression of the imprinted transcription factor PLAGL1 deregulates a network of genes in the human IUGR placenta. Human Molecular Genetics 23 627562 85. (https://doi.org/10.1093/hmg/ddu347)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U & Speed TP 2003 Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4 2492 64. (https://doi.org/10.1093/biostatistics/4.2.249)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Junaid TO, Brownbill P, Chalmers N, Johnstone ED & Aplin JD 2014 Fetoplacental vascular alterations associated with fetal growth restriction. Placenta 35 808815. (https://doi.org/10.1016/j.placenta.2014.07.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Khan SA, Dong H, Joyce J, Sasaki T, Chu ML & Tsuda T 2016 Fibulin-2 is essential for angiotensin II-induced myocardial fibrosis mediated by transforming growth factor (TGF)-β. Laboratory Investigation 96 773783. (https://doi.org/10.1038/labinvest.2016.52)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kingwell BA 2002 Large artery stiffness: implications for exercise capacity and cardiovascular risk. Clinical and Experimental Pharmacology and Physiology 29 214217. (https://doi.org/10.1046/j.1440-1681.2002.03622.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kinzer M, Hingerl K, König J, Reinisch A, Strunk D, Huppertz B & Lang I 2014 Mesenchymal stromal cells from the human placenta promote neovascularization in a mouse model in vivo. Placenta 35 517519. (https://doi.org/10.1016/j.placenta.2014.04.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Klingberg F, Hinz B & White ES 2013 The myofibroblast matrix: implications for tissue repair andfibrosis. Journal of Pathology 229 298309. (https://doi.org/10.1002/path.4104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Knittel T, Kobold D, Salle B, Grundmann A, Neubauer K, Piscaglia F & Ramadori G 1999 Rat liver myofibroblasts and hepatic stellate cells: different cell populations of the fibroblast lineage with fibrogenic potential. Gastroenterology 117 12051221. (https://doi.org/10.1016/s0016-5085(9970407-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krebs C, Macara LM, Leiser R, Bowman AW, Greer IA & Kingdom JCP 1996 Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. American Journal of Obstetrics and Gynecology 175 15341542. (https://doi.org/10.1016/s0002-9378(9670103-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lambert J, Makin K, Akbareian S, Johnson R, Alghamdi AAA, Robinson SD & Edwards DR 2020 ADAMTS-1 and syndecan-4 intersect in the regulation of cell migration and angiogenesis. Journal of Cell Science 133 jcs235762. (https://doi.org/10.1242/jcs.235762)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee SY, Lee HS, Gil M, Kim CJ, Lee YH, Kim KR & Park CS 2014 Differential expression patterns of a disintegrin and metalloproteinase with thrombospondin motifs (adamts)-1, -4, -5, And -14 in human placenta and gestational trophoblastic diseases. Archives of Pathology and Laboratory Medicine 138 643650. (https://doi.org/10.5858/arpa.2012-0227-OA)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li Y, Li L, Brown TJ & Heldin P 2007 Silencing of hyaluronan synthase 2 suppresses the malignant phenotype of invasive breast cancer cells. International Journal of Cancer 120 25572567. (https://doi.org/10.1002/ijc.22550)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Livak KJ & Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25 402408. (https://doi.org/10.1006/meth.2001.1262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Locci M, Nazzaro M, Mirnada M, Iazetta R, Patri A, D’Anna M, Castalda C & Montagnani S 2015 Tenascin expression in human placentas during FGR-affected pregnancies and umbilical doppler velocimetry correlation. Austin Journal of Invitro Fertilization 2 1020.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lu L, Kingdom J, Burton GJ & Cindrova-Davies T 2017 Placental stem villus arterial remodeling associated with reduced hydrogen sulfide synthesis contributes to human fetal growth restriction. American Journal of Pathology 187 908920. (https://doi.org/10.1016/j.ajpath.2016.12.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luque A, Carpizo DR & Iruela-Arispe ML 2003 ADAMTS1/METH1 inhibits endothelial cell proliferation by direct binding and sequestration of VEGF165. Journal of Biological Chemistry 278 23656236 65. (https://doi.org/10.1074/jbc.M212964200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Majewska M, Lipka A, Paukszto L, Jastrzebski JP, Szeszko K, Gowkielewicz M, Lepiarczyk E, Jozwik M & Majewski MK 2019 Placenta transcriptome profiling in intrauterine growth restriction (IUGR). International Journal of Molecular Sciences 20 1510. (https://doi.org/10.3390/ijms20061510)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mandò C, De Palma C, Stampalija T, Anelli GM, Figus M, Novielli C, Parisi F, Clementi E, Ferrazzi E & Cetin I 2014 Placental mitochondrial content and function in intrauterine growth restriction and preeclampsia. American Journal of Physiology. Endocrinology and Metabolism 306 E404E413. (https://doi.org/10.1152/ajpendo.00426.2013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mao JR, Taylor G, Dean WB, Wagner DR, Afzal V, Lotz JC, Rubin EM & Bristow J 2002 Tenascin-X deficiency mimics Ehlers-Danlos syndrome in mice through alteration of collagen deposition. Nature Genetics 30 421425. (https://doi.org/10.1038/ng850)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mathews S, Lakshmi Rao K, Suma Prasad K, Kanakavalli MK, Govardhana Reddy A, Avinash Raj T, Thangaraj K & Pande G 2015 Propagation of pure fetal and maternal mesenchymal stromal cells from terminal chorionic villi of human term placenta. Scientific Reports 5 10054. (https://doi.org/10.1038/srep10054)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McCowan LME, George-Haddad M, Stacey T & Thompson JMD 2007 Fetal growth restriction and other risk factors for stillbirth in a New Zealand setting. Australian and New Zealand Journal of Obstetrics and Gynaecology 47 450456. (https://doi.org/10.1111/j.1479-828X.2007.00778.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McMinn J, Wei M, Schupf N, Cusmai J, Johnson EB, Smith AC, Weksberg R, Thaker HM & Tycko B 2006 Unbalanced placental expression of imprinted genes in human intrauterine growth restriction. Placenta 27 540549. (https://doi.org/10.1016/j.placenta.2005.07.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mitra SC, Seshan SV & Riachi LE 2000 Placental vessel morphometry in growth retardation and increased resistance of the umbilical artery Doppler flow. Journal of Maternal-Fetal Medicine 9 28228 6. (https://doi.org/10.1002/1520-6661(200009/10)9:5<282::AID-MFM5>3.0.CO;2-J)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pardue EL, Ibrahim S & Ramamurthi A 2008 Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering. Organogenesis 4 203214. (https://doi.org/10.4161/org.4.4.6926)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Regnault TRH, Galan HL, Parker TA & Anthony RV 2002 Placental development in normal and compromised pregnancies: a review. Placenta 23 (Supplement A) S119S129. (https://doi.org/10.1053/plac.2002.0792)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rienks M, Barallobre-Barreiro J & Mayr M 2018 The emerging role of the ADAMTS family in vascular diseases. Circulation Research 123 12791281. (https://doi.org/10.1161/CIRCRESAHA.118.313737)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W & Smyth GK 2015 limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43 e47. (https://doi.org/10.1093/nar/gkv007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Manzaneque JC, Westling J, Thai SNM, Luque A, Knauper V, Murphy G, Sandy JD & Iruela-Arispe ML 2002 ADAMTS1 cleaves aggrecan at multiple sites and is differentially inhibited by metalloproteinase inhibitorsq. Biochemical and Biophysical Research Communications 293 501508. (https://doi.org/10.1016/S0006-291X(0200254-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Roman MJ, Saba PS, Pini R, Spitzer M, Pickering TG, Rosen S, Alderman MH & Devereux RB 1992 Parallel cardiac and vascular adaptation in hypertension. Circulation 86 19091918. (https://doi.org/10.1161/01.cir.86.6.1909)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rosenkranz S 2004 TGF-β1 and angiotensin networking in cardiac remodeling. Cardiovascular Research 63 423432. (https://doi.org/10.1016/j.cardiores.2004.04.030)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saw SN, Tay JJH, Poh YW, Yang L, Tan WC, Tan LK, Clark A, Biswas A, Mattar CNZ & Yap CH 2018 Altered placental chorionic arterial biomechanical properties During intrauterine growth restriction. Scientific Reports 8 16526. (https://doi.org/10.1038/s41598-018-34834-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schrimpf C, Xin C, Campanholle G, Gill SE, Stallcup W, Lin SL, Davis GE, Gharib SA, Humphreys BD & Duffield JS 2012 Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney injury. Journal of the American Society of Nephrology 23 868883. (https://doi.org/10.1681/ASN.2011080851)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sitras V, Paulssen R, Leirvik J, Vårtun A & Acharya G 2009 Placental gene expression profile in intrauterine growth restriction due to placental insufficiency. Reproductive Sciences 16 701711. (https://doi.org/10.1177/1933719109334256)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ström A, Olin AI, Aspberg A & Hultgårdh-Nilsson A 2006 Fibulin-2 is present in murine vascular lesions and is important for smooth muscle cell migration. Cardiovascular Research 69 755763. (https://doi.org/10.1016/j.cardiores.2005.12.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J, Mao Z, Nevo E, Gorbunova V & Seluanov A 2013 High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499 346349. (https://doi.org/10.1038/nature12234)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Timpl R, Sasaki T, Kostka G & Chu ML 2003 Fibulins: a versatile family of extracellular matrix proteins. Nature Reviews: Molecular Cell Biology 4 479489. (https://doi.org/10.1038/nrm1130)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Todros T, Sciarrone A, Piccoli E, Guiot C, Kaufmann P & Kingdom JOHN 1999 Umbilical Doppler waveforms and placental villous angiogenesis in pregnancies complicated by fetal growth restriction. Obstetrics and Gynecology 93 499503. (https://doi.org/10.1016/s0029-7844(9800440-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Umapathy A, McCall A, Sun C, Boss AL, Gamage TKJB, Brooks AES & Chamley L 2020 Mesenchymal stem/stromal cells from the placentae of growth restricted pregnancies are poor stimulators of angiogenesis. Stem Cell Reviews and Reports 557568. (https://doi.org/10.1007/s12015-020-09959-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vallvé JC, Serra N, Zalba G, Fortuño A, Beloqui O, Ferre R, Ribalta J & Masana L 2012 Two variants in the fibulin2 gene are associated with lower systolic blood pressure and decreased risk of hypertension. PLoS ONE 7 e43051. (https://doi.org/10.1371/journal.pone.0043051)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, Nolta J, Phinney DG & Sensebe L 2019 Mesenchymal stem versus stromal cells: international society for cell and gene therapy (ISCT®) mesenchymal stromal cell committee position statement on nomenclature. Cytotherapy 21 10191024. (https://doi.org/10.1016/j.jcyt.2019.08.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wagenseil JE & Mecham RP 2012 Elastin in large artery stiffness and hypertension. Journal of Cardiovascular Translational Research 5 264273. (https://doi.org/10.1007/s12265-012-9349-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu M, Zhang R, Zou Q, Chen Y, Zhou M, Li X, Ran R & Chen Q 2018 Comparison of the biological characteristics of mesenchymal stem cells derived from the human placenta and umbilical cord. Scientific Reports 8 5014. (https://doi.org/10.1038/s41598-018-23396-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yasmin MRAl, McEniery CM, Cleary SE, Li Y, Siew K, Figg NL, Khir AW, Cockcroft JR & Wilkinson IB et al. 2018 The matrix proteins aggrecan and fibulin-1 play a key role in determining aortic stiffness. Scientific Reports 8. (https://doi.org/10.1038/s41598-018-25851-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang H, Wu J, Dong H, Khan SA, Chu ML & Tsuda T 2014 Fibulin-2 deficiency attenuates angiotensin II-induced cardiac hypertrophy by reducing transforming growth factor-β signalling. Clinical Science 126 275288. (https://doi.org/10.1042/CS20120636)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhu R, Huang YH, Tao Y, Wang SC, Sun Ch, Piao HL, Wang XQ, Du MR & Li DJ 2013a Hyaluronan up-regulates growth and invasion of trophoblasts in an autocrine manner via PI3K/AKT and MAPK/ERK1/2 pathways in early human pregnancy. Placenta 34 784791. (https://doi.org/10.1016/j.placenta.2013.05.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhu R, Wang SC, Sun C, Tao Y, Piao HL, Wang XQ, Du MR & Li D-J 2013b Hyaluronan-CD44 interaction promotes growth of decidual stromal cells in human first-trimester pregnancy. PLoS ONE 8 e74812. (https://doi.org/10.1371/journal.pone.0074812)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ziganshina MM, Pavlovich SV, Bovin NV & Sukhikh GT 2016 Hyaluronic acid in vascular and immune homeostasis during normal pregnancy and preeclampsia. Acta Naturae 8 59–71. (https://doi.org/10.32607/20758251-2016-8-3-59-71)

    • PubMed
    • Search Google Scholar
    • Export Citation