Cell signaling in sperm midpiece ensures quiescence and survival in cauda epididymis

in Reproduction
Authors:
Archana Devi Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad, India

Search for other papers by Archana Devi in
Current site
Google Scholar
PubMed
Close
,
Bhavana Kushwaha Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad, India

Search for other papers by Bhavana Kushwaha in
Current site
Google Scholar
PubMed
Close
,
Jagdamba P Maikhuri Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India

Search for other papers by Jagdamba P Maikhuri in
Current site
Google Scholar
PubMed
Close
,
Rajender Singh Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad, India

Search for other papers by Rajender Singh in
Current site
Google Scholar
PubMed
Close
, and
Gopal Gupta Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad, India

Search for other papers by Gopal Gupta in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to G Gupta; Email: g_gupta@cdri.res.in
Restricted access
Rent on DeepDyve

Sign up for journal news

Sperm in most mammalian species including rat, mice and human are kept completely quiescent (motionless) and viable for up to a few weeks in the cauda epididymis before ejaculation. Vigorous motility is initiated almost instantly upon sperm release from cauda during ejaculation. The molecular mechanisms that suppress sperm motility but increase cell survival during storage in cauda epididymis are not known. Intracellular signaling via phosphorylation cascades is quick events that may regulate motility and survival of transcriptionally inactive sperm. Pathscan intracellular signaling array provided the preliminary picture of cell signaling in quiescent and motile rat sperm, indicating upregulation of cell-survival pathways in quiescent sperm, which were downregulated during motility activation. Interactome of signaling proteins involved in motility activation was constructed by Search Tool for the Retrieval of Interacting Genes (STRING) software, which identified mitogen activated protein kinase-p38 (MAPK-p38), AKT, mTOR and their downstream target p70S6K as the key kinases regulating sperm function. Further validation was achieved by western blotting and pathway activators/inhibitors. Immunofluorescence localized the kinase proteins in the sperm mid-piece region (mitochondria), a known extra-nuclear target for these signaling pathways. Activators of these kinases inhibited sperm motility but increased viability, and vice versa was true for inhibitors, in most of the cases. Activators and inhibitors also affected sperm mitochondrial membrane potential, ATP content and reactive oxygen species (ROS) levels. Data suggest that sperm motility and survival are inversely complementary and critically regulated by intracellular cell signaling. Aberrant cell signaling in caudal sperm may affect cell survival (sperm concentration) and motility of ejaculated sperm.

 

  • Collapse
  • Expand
  • Aggeli IK, Gaitanaki C, Lazou A & Beis I 2002 Hyperosmotic and thermal stresses activate p38-MAPK in the perfused amphibian heart. Journal of Experimental Biology 205 443454. (https://doi.org/10.1242/jeb.205.4.443)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aitken RJ, Jones KT & Robertson SA 2012 Reactive oxygen species and sperm function – in sickness and in health. Journal of Andrology 33 10961106. (https://doi.org/10.2164/jandrol.112.016535)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Almog T, Lazar S, Reiss N, Etkovitz N, Milch E, Rahamim N, Dobkin-Bekman M, Rotem R, Kalina M & Ramon J et al.2008 Identification of extracellular signal-regulated kinase 1/2 and p38 MAPK as regulators of human sperm motility and acrosome reaction and as predictors of poor spermatozoan quality. Journal of Biological Chemistry 283 1447914489. (https://doi.org/10.1074/jbc.M710492200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Amaral A, Lourenço B, Marques M & Ramalho-Santos J 2013 Mitochondria functionality and sperm quality. Reproduction 146 R163R174. (https://doi.org/10.1530/REP-13-0178)

  • Cardullo RA & Baltz JM 1991 Metabolic regulation in mammalian sperm: mitochondrial volume determines sperm length and flagellar beat frequency. Cell Motility and the Cytoskeleton 19 180188. (https://doi.org/10.1002/cm.970190306)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen D, Yu Z, Zhu Z & Lopez CD 2006 The p53 pathway promotes efficient mitochondrial DNA base excision repair in colorectal cancer cells. Cancer Research 66 34853494. (https://doi.org/10.1158/0008-5472.CAN-05-4103)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Conte da Frota ML, Gomes da Silva E, Behr GA, Roberto de Oliveira M, Dal-Pizzol F, Klamt F & Moreira JC 2006 All-trans retinoic acid induces free radical generation and modulate antioxidant enzyme activities in rat Sertoli cells. Molecular and Cellular Biochemistry 285 173179. (https://doi.org/10.1007/s11010-005-9077-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Desai BN, Myers BR & Schreiber SL 2002 FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. PNAS 99 43194324. (https://doi.org/10.1073/pnas.261702698)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ding YQ, Jiang H & Wang CL 2011 ERK and p38MAPK expressions and human sperm motility. Zhonghua Nan Ke Xue 17 809812.

  • Gallardo Bolanos JM, Balao da Silva CM, Martin Munoz P, Morillo Rodriguez A, Plaza Davila M, Rodriguez-Martinez H, Aparicio IM, Tapia JA, Ortega Ferrusola C & Pena FJ 2014 Phosphorylated AKT preserves stallion sperm viability and motility by inhibiting caspases 3 and 7. Reproduction 148 221235. (https://doi.org/10.1530/REP-13-0191)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E & Kroemer G 2006 Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5 25922601. (https://doi.org/10.4161/cc.5.22.3448)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gu NH, Zhao WL, Wang GS & Sun F 2019 Comparative analysis of mammalian sperm ultrastructure reveals relationships between sperm morphology, mitochondrial functions and motility. Reproductive Biology and Endocrinology 17 66. (https://doi.org/10.1186/s12958-019-0510-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gutiérrez-Uzquiza Á, Arechederra M, Bragado P, Aguirre-Ghiso JA & Porras A 2012 p38α mediates cell survival in response to oxidative stress via induction of antioxidant genes: effect on the p70s6K pathway. Journal of Biological Chemistry 287 26322642. (https://doi.org/10.1074/jbc.M111.323709)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harada H, Andersen JS, Mann M, Terada N & Korsmeyer SJ 2001 P70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. PNAS 98 96669670. (https://doi.org/10.1073/pnas.171301998)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • James ER, Carrell DT, Aston KI, Jenkins TG, Yeste M & Salas-Huetos A 2020 The role of the epididymis and the contribution of epididymosomes to mammalian reproduction. International Journal of Molecular Sciences 21 5377. (https://doi.org/10.3390/ijms21155377)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jones R 2004 Sperm survival versus degradation in the mammalian epididymis: a hypothesis. Biology of Reproduction 71 14051411. (https://doi.org/10.1095/biolreprod.104.031252)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jones RC & Murdoch RN 1996 Regulation of the motility and metabolism of spermatozoa for storage in the epididymis of eutherian and marsupial mammals. Reproduction, fertility and development 8 553568. (https://doi.org/10.1071/rd9960553)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Joseph A, Shur BD, Ko C, Chambon P & Hess RA 2010 Epididymal hypo-osmolality induces abnormal sperm morphology and function in the estrogen receptor alpha knockout mouse. Biology of Reproduction 82 958967. (https://doi.org/10.1095/biolreprod.109.080366)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kempinas WG & Lamano-Carvalho TL 1988 A method for estimating the concentration of spermatozoa in the rat cauda epididymidis. Laboratory Animals 22 154156. (https://doi.org/10.1258/002367788780864547)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim ST, Omurtag K & Moley KH 2012 Decreased spermatogenesis, fertility, and altered Slc2A expression in Akt1-/- and Akt2-/- testes and sperm. Reproductive Sciences 19 3142. (https://doi.org/10.1177/1933719111424449)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kumar L, Yadav SK, Kushwaha B, Pandey A, Sharma V, Verma V, Maikhuri JP, Rajender S, Sharma VL & Gupta G 2016 Energy utilization for survival and fertilization – parsimonious quiescent sperm turn extravagant on motility activation in rat. Biology of Reproduction 94 96. (https://doi.org/10.1095/biolreprod.115.137752)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kushwaha B, Devi A, Maikhuri JP, Rajender S & Gupta G 2021 Inflammation driven tumor‐like signaling in prostatic epithelial cells by sexually transmitted Trichomonas vaginalis. International Journal of Urology 28 225240. (https://doi.org/10.1111/iju.14431)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Larsen JK, Yamboliev IA, Weber LA & Gerthoffer WT 1997 Phosphorylation of the 27-kDa heat shock protein via p38 MAP kinase and MAPKAP kinase in smooth muscle. American Journal of Physiology 273 L930L940. (https://doi.org/10.1152/ajplung.1997.273.5.L930)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lucero M, Suarez AE & Chambers JW 2019 Phosphoregulation on mitochondria: integration of cell and organelle responses. CNS Neuroscience and Therapeutics 25 837858. (https://doi.org/10.1111/cns.13141)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maekura K, Tsukamoto S, Hamada-Kanazawa M & Takano M 2021 Rimklb mutation causes male infertility in mice. Scientific Reports 11 4604. (https://doi.org/10.1038/s41598-021-84105-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martínez-Fresneda L, Castaño C, Bóveda P, Tesfaye D, Schellander K, Santiago-Moreno J & García-Vázquez FA 2019 Epididymal and ejaculated sperm differ on their response to the cryopreservation and capacitation processes in mouflon (Ovis musimon). Scientific Reports 9 15659. (https://doi.org/10.1038/s41598-019-52057-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McCarthy MJ, Baumber J, Kass PH & Meyers SA 2010 Osmotic stress induces oxidative cell damage to rhesus macaque spermatozoa. Biology of Reproduction 82 644651. (https://doi.org/10.1095/biolreprod.109.080507)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miki K, Willis WD, Brown PR, Goulding EH, Fulcher KD & Eddy EM 2002 Targeted disruption of the Akap4 gene causes defects in sperm flagellum and motility. Developmental Biology 248 331342. (https://doi.org/10.1006/dbio.2002.0728)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mudgett JS, Ding J, Guh‐Siesel L, Chartrain NA, Yang L, Gopal S & Shen MM 2000 Essential role for p38alpha mitogen‐activated protein kinase in placental angiogenesis. PNAS 97 1045410459. (https://doi.org/10.1073/pnas.180316397)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mugabo Y & Lim GE 2018 Scaffold proteins: from coordinating signaling pathways to metabolic regulation. Endocrinology 159 36153630. (https://doi.org/10.1210/en.2018-00705)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Murdoch RN, Armstrong VL, Clulow J & Jones RC 1999 Relationship between motility and oxygen consumption of sperm from the cauda epididymides of the rat. Reproduction, Fertility, and Development 11 8794. (https://doi.org/10.1071/rd99039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nascimento EB & Ouwens DM 2009 PRAS40: target or modulator of mTORC1 signalling and insulin action? Archives of Physiology and Biochemistry 115 163175. (https://doi.org/10.1080/13813450902988580)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park B, Je YT & Chun KH 2015 AKT is translocated to the mitochondria during etoposide-induced apoptosis of HeLa cells. Molecular Medicine Reports 12 75777581. (https://doi.org/10.3892/mmr.2015.4378)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Piomboni P, Focarelli R, Stendardi A, Ferramosca A & Zara V 2012 The role of mitochondria in energy production for human sperm motility. International Journal of Andrology 35 109124. (https://doi.org/10.1111/j.1365-2605.2011.01218.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shahrokhi SZ, Salehi P, Alyasin A, Taghiyar S & Deemeh MR 2020 Asthenozoospermia: cellular and molecular contributing factors and treatment strategies. Andrologia 52 e13463. (https://doi.org/10.1111/and.13463)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Si W, Men H, Benson JD & Critser JK 2009 Osmotic characteristics and fertility of murine spermatozoa collected in different solutions. Reproduction 137 215–223. (https://doi.org/10.1530/REP-08-0237)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Silva JV, Freitas MJ, Correia BR, Korrodi-Gregório L, Patrício A, Pelech S & Fardilha M 2015 Profiling signaling proteins in human spermatozoa: biomarker identification for sperm quality evaluation. Fertility and Sterility 104 845 .e8856.e8. (https://doi.org/10.1016/j.fertnstert.2015.06.039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Subramanian S & Kearns DB 2019 Functional regulators of bacterial flagella. Annual Review of Microbiology 73 225246. (https://doi.org/10.1146/annurev-micro-020518-115725)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tourmente M, Villar-Moya P, Rial E & Roldan ER 2015 Differences in ATP generation via glycolysis and oxidative phosphorylation and relationships with sperm motility in mouse species. Journal of Biological Chemistry 290 2061320626. (https://doi.org/10.1074/jbc.M115.664813)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turner TT 2002 Necessity’s potion: inorganic ions and small organic molecules in the epididymal lumen. In The Epididymis: From Molecules to Clinical Practice, pp. 131150. Boston, MA: Springer.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turner TT 2008 De Graaf’s thread: the human epididymis. Journal of Andrology 29 237250. (https://doi.org/10.2164/jandrol.107.004119)

  • Wang C, Wang Z, Xiong Z, Dai H, Zou Z, Jia C, Bai X & Chen Z 2016 mTORC1 activation promotes spermatogonial differentiation and causes subfertility in mice. Biology of Reproduction 95 97. (https://doi.org/10.1095/biolreprod.116.140947)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu BZ, Song YT, Yu DH, Su WH, Gasana V, Li YX & Zhang Z 2006 Expression and immunohistochemical localization of Cdc2 and p70s6K in different stages of mouse germ cells. Cell Biochemistry and Function 24 113117. (https://doi.org/10.1002/cbf.1306)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu L, Yang X, Ma B, Ying H, Shang X, He B & Zhang Q 2019 Abnormal arachidonic acid metabolic network may reduce sperm motility via P38 MAPK. Open Biology 9 180091. (https://doi.org/10.1098/rsob.180091)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Z, Lui J, Meriano J, Ru C, Xie S, Luo J & Sun Y 2016 Human sperm rheotaxis: a passive physical process. Scientific Reports 6 23553. (https://doi.org/10.1038/srep23553)