Involvement of chemerin and CMKLR1 in the progesterone decrease by PCOS granulosa cells

in Reproduction
Authors:
Anthony Estienne CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France

Search for other papers by Anthony Estienne in
Current site
Google Scholar
PubMed
Close
,
Namya Mellouk CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France

Search for other papers by Namya Mellouk in
Current site
Google Scholar
PubMed
Close
,
Alice Bongrani CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France

Search for other papers by Alice Bongrani in
Current site
Google Scholar
PubMed
Close
,
Ingrid Plotton Molecular Endocrinology and Rare Diseases, University Hospital, Claude Bernard Lyon 1 University, Bron, France

Search for other papers by Ingrid Plotton in
Current site
Google Scholar
PubMed
Close
,
Ingrid Langer Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium

Search for other papers by Ingrid Langer in
Current site
Google Scholar
PubMed
Close
,
Christelle Ramé CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France

Search for other papers by Christelle Ramé in
Current site
Google Scholar
PubMed
Close
,
Claire Petit Department of Reproductive Medicine and Biology, University Hospital of Tours, Tours, France

Search for other papers by Claire Petit in
Current site
Google Scholar
PubMed
Close
,
Fabrice Guérif CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
Department of Reproductive Medicine and Biology, University Hospital of Tours, Tours, France

Search for other papers by Fabrice Guérif in
Current site
Google Scholar
PubMed
Close
,
Pascal Froment CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France

Search for other papers by Pascal Froment in
Current site
Google Scholar
PubMed
Close
, and
Joëlle Dupont CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France

Search for other papers by Joëlle Dupont in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to J Dupont; Email: joelle.dupont@inrae.fr
Restricted access
Rent on DeepDyve

Sign up for journal news

Polycystic ovarian syndrome (PCOS) is the main cause of infertility in women. It is frequently associated with reduced progesterone production by human luteinised granulosa cells (hlGCs). However, the molecular mechanisms involved in these steroidogenesis alterations in PCOS patients are unclear. In a dihydrotestosterone-induced PCOS mouse model, steroid production is maintained in the setting of chemokine-like receptor 1 (Cmklr1) knockout. Thus, chemerin and chemerin receptors in terms of expression and progesterone regulation could be different in control and PCOS hlGCs. We first confirmed that progesterone levels in both plasma (P  < 0.0001) and follicular fluid (FF) (P  < 0.0001) were significantly reduced in PCOS normal weight women compared to control women. These data were associated with a lower STAR mRNA expression in both in vivo (P  < 0.0001) and in vitro (P  < 0.0001) hlGCs from PCOS women. Secondly, chemerin FF levels (P  < 0.0001) and RARRES2 (P  < 0.05) and CMKLR1 (P  < 0.0001) mRNA levels in GCs were higher in PCOS normal weight patients. Thirdly, treatment of hlGCs with a specific nanobody (the VHH CA4910) targeting the human receptor for CMKLR1 leading to its inactivation abolished chemerin-induced progesterone inhibition, suggesting the involvement of CMKLR1 in this process. Furthermore, the inhibition of progesterone secretion induced by chemerin was two-fold higher in PCOS hlGCs (P  < 0.05). Moreover, the VHH CA4910 reinstated a normal progesterone secretion with lower concentrations in PCOS hlGCs, suggesting a different chemerin sensitivity between PCOS and control hlGCs. Thus, chemerin, through CMKLR1, could be involved in the steroidogenesis alterations in PCOS hlGCs.

 

  • Collapse
  • Expand
  • Abruzzese GA, Gamez J, Belli SH, Levalle OA, Mormandi E, Otero P, Graffigna MN, Cerrone GE & Motta AB 2020 Increased chemerin serum levels in hyperandrogenic and normoandrogenic women from Argentina with polycystic ovary syndrome. Gynecological Endocrinology 36 10571061. (https://doi.org/10.1080/09513590.2020.1769061)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Benrick A, Chanclón B, Micallef P, Wu Y, Hadi L, Shelton JM, Stener-Victorin E & Wernstedt Asterholm I 2017 Adiponectin protects against development of metabolic disturbances in a PCOS mouse model. PNAS 114 E7187E7196. (https://doi.org/10.1073/pnas.1708854114)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bongrani A, Mellouk N, Rame C, Cornuau M, Guerif F, Froment P & Dupont J 2019 Ovarian expression of adipokines in polycystic ovary syndrome: a role for chemerin, omentin, and apelin in follicular growth arrest and ovulatory dysfunction? International Journal of Molecular Sciences 20 3778. (https://doi.org/10.3390/ijms20153778)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cao X, Zhang W, Wan T, He L, Chen T, Yuan Z, Ma S, Yu Y & Chen G 2000 Molecular cloning and characterization of a novel CXC chemokine macrophage inflammatory protein-2 gamma chemoattractant for human neutrophils and dendritic cells. Journal of Immunology 165 25882595. (https://doi.org/10.4049/jimmunol.165.5.2588)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cheong CY, Chng K, Lim MK, Amrithraj AI, Joseph R, Sukarieh R, Chee Tan Y, Chan L, Tan JH & Chen L et al.2014 Alterations to DNA methylation and expression of CXCL14 are associated with suboptimal birth outcomes. Journal of Human Genetics 59 504511. (https://doi.org/10.1038/jhg.2014.63)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cloix L, Reverchon M, Cornuau M, Froment P, Rame C, Costa C, Froment G, Lecomte P, Chen W & Royere D et al.2014 Expression and regulation of INTELECTIN1 in human granulosa-lutein cells: role in IGF-1-induced steroidogenesis through NAMPT. Biology of Reproduction 91 50. (https://doi.org/10.1095/biolreprod.114.120410)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Henau O, Degroot GN, Imbault V, Robert V, De Poorter C, McHeik S, Gales C, Parmentier M & Springael JY 2016 Signaling properties of chemerin receptors CMKLR1, GPR1 and CCRL2. PLoS ONE 11 e0164179. (https://doi.org/10.1371/journal.pone.0164179)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Estienne A, Bongrani A, Reverchon M, Rame C, Ducluzeau PH, Froment P & Dupont J 2019 Involvement of novel adipokines, chemerin, visfatin, resistin and apelin in reproductive functions in normal and pathological conditions in humans and animal models. International Journal of Molecular Sciences 20 4431. (https://doi.org/10.3390/ijms20184431)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Estienne A, Reverchon M, Partyka A, Bourdon G, Grandhaye J, Barbe A, Caldas-Silveira E, Rame C, Nizanski W & Froment P et al.2020 Chemerin impairs in vitro testosterone production, sperm motility, and fertility in chicken: possible involvement of its receptor CMKLR1. Cells 9 1599. (https://doi.org/10.3390/cells9071599)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guvenc Y, Var A, Goker A & Kuscu NK 2016 Assessment of serum chemerin, vaspin and omentin-1 levels in patients with polycystic ovary syndrome. Journal of International Medical Research 44 796805. (https://doi.org/10.1177/0300060516645421)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guzel EC, Celik C, Abali R, Kucukyalcin V, Celik E, Guzel M & Yilmaz M 2014 Omentin and chemerin and their association with obesity in women with polycystic ovary syndrome. Gynecological Endocrinology 30 419422. (https://doi.org/10.3109/09513590.2014.888412)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang R, Yue J, Sun Y, Zheng J, Tao T, Li S & Liu W 2015 Increased serum chemerin concentrations in patients with polycystic ovary syndrome: relationship between insulin resistance and ovarian volume. Clinica Chimica Acta: International Journal of Clinical Chemistry 450 366369. (https://doi.org/10.1016/j.cca.2015.09.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang S, Pang Y, Yan J, Lin S, Zhao Y, Lei L, Yan L, Li R, Ma C & Qiao J 2016 Fractalkine restores the decreased expression of StAR and progesterone in granulosa cells from patients with polycystic ovary syndrome. Scientific Reports 6 26205. (https://doi.org/10.1038/srep26205)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Joseph-Horne R, Mason H, Batty S, White D, Hillier S, Urquhart M & Franks S 2002 Luteal phase progesterone excretion in ovulatory women with polycystic ovaries. Human Reproduction 17 14591463. (https://doi.org/10.1093/humrep/17.6.1459)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kennedy AJ & Davenport AP 2018 International Union of Basic and Clinical Pharmacology CIII: chemerin receptors CMKLR1 (Chemerin1) and GPR1 (Chemerin2) nomenclature, pharmacology, and function. Pharmacological Reviews 70 174196. (https://doi.org/10.1124/pr.116.013177)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kisielewska K, Rytelewska E, Gudelska M, Kiezun M, Dobrzyn K, Bogus-Nowakowska K, Kaminska B, Smolinska N & Kaminski T 2020 Expression of chemerin receptors CMKLR1, GPR1 and CCRL2 in the porcine pituitary during the oestrous cycle and early pregnancy and the effect of chemerin on MAPK/Erk1/2, Akt and AMPK signalling pathways. Theriogenology 157 181198. (https://doi.org/10.1016/j.theriogenology.2020.07.032)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kort DH, Kostolias A, Sullivan C & Lobo RA 2015 Chemerin as a marker of body fat and insulin resistance in women with polycystic ovary syndrome. Gynecological Endocrinology 31 152155. (https://doi.org/10.3109/09513590.2014.968547)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuang H, Chen Q, Zhang Y, Zhang L, Peng H, Ning L, Cao Y & Duan E 2009 The cytokine gene CXCL14 restricts human trophoblast cell invasion by suppressing gelatinase activity. Endocrinology 150 55965605. (https://doi.org/10.1210/en.2009-0570)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laird M, Thomson K, Fenwick M, Mora J, Franks S & Hardy K 2017 Androgen stimulates growth of mouse preantral follicles in vitro: interaction with follicle-stimulating hormone and with growth factors of the TGFβ superfamily. Endocrinology 158 920935. (https://doi.org/10.1210/en.2016-1538)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lerner A, Owens LA, Coates M, Simpson C, Poole G, Velupillai J, Liyanage M, Christopoulos G, Lavery S & Hardy K et al.2019 Expression of genes controlling steroid metabolism and action in granulosa-lutein cells of women with polycystic ovaries. Molecular and Cellular Endocrinology 486 4754. (https://doi.org/10.1016/j.mce.2019.02.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lin K, Sun X, Wang X, Wang H & Chen X 2020 Circulating adipokine levels in nonobese women with polycystic ovary syndrome and in nonobese control women: a systematic review and meta-analysis. Frontiers in Endocrinology 11 537809. (https://doi.org/10.3389/fendo.2020.537809)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martinez-Garcia , Montes-Nieto R, Fernandez-Duran E, Insenser M, Luque-Ramirez M & Escobar-Morreale HF 2013 Evidence for masculinization of adipokine gene expression in visceral and subcutaneous adipose tissue of obese women with polycystic ovary syndrome (PCOS). Journal of Clinical Endocrinology and Metabolism 98 E388E396. (https://doi.org/10.1210/jc.2012-3414)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mattern A, Zellmann T & Beck-Sickinger AG 2014 Processing, signaling, and physiological function of chemerin. IUBMB Life 66 1926. (https://doi.org/10.1002/iub.1242)

  • Meenakumari KJ, Agarwal S, Krishna A & Pandey LK 2004 Effects of metformin treatment on luteal phase progesterone concentration in polycystic ovary syndrome. Brazilian Journal of Medical and Biological Research 37 16371644. (https://doi.org/10.1590/s0100-879x2004001100007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mellouk N, Rame C, Barbe A, Grandhaye J, Froment P & Dupont J 2018 Chicken is a useful model to investigate the role of adipokines in metabolic and reproductive diseases. International Journal of Endocrinology 2018 4579734. (https://doi.org/10.1155/2018/4579734)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nagy B, Poto L, Farkas N, Koppan M, Varnagy A, Kovacs K, Papp S, Bohonyi N & Bodis J 2019 Follicular fluid progesterone concentration is associated with fertilization outcome after IVF: a systematic review and meta-analysis. Reproductive Biomedicine Online 38 871882. (https://doi.org/10.1016/j.rbmo.2018.12.045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nishi Y, Yanase T, Mu Y, Oba K, Ichino I, Saito M, Nomura M, Mukasa C, Okabe T & Goto K et al.2001 Establishment and characterization of a steroidogenic human granulosa-like tumor cell line, KGN, that expresses functional follicle-stimulating hormone receptor. Endocrinology 142 437445. (https://doi.org/10.1210/endo.142.1.7862)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Norman JE 2010 The adverse effects of obesity on reproduction. Reproduction 140 343345. (https://doi.org/10.1530/REP-10-0297)

  • O’Brien Y, Wingfield M & O’Shea LC 2019 Anti-Mullerian hormone and progesterone levels in human follicular fluid are predictors of embryonic development. Reproductive Biology and Endocrinology 17 47. (https://doi.org/10.1186/s12958-019-0492-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peyrassol X, Laeremans T, Gouwy M, Lahura V, Debulpaep M, Van Damme J, Steyaert J, Parmentier M & Langer I 2016 Development by genetic immunization of monovalent antibodies (nanobodies) behaving as antagonists of the human ChemR23 receptor. Journal of Immunology 196 28932901. (https://doi.org/10.4049/jimmunol.1500888)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qi J, Li J, Wang Y, Wang W, Zhu Q, He Y, Lu Y, Wu H, Li X & Zhu Z et al.2021 Novel role of CXCL14 in modulating STAR expression in luteinized granulosa cells: implication for progesterone synthesis in PCOS patients. Translational Research 230 5567. (https://doi.org/10.1016/j.trsl.2020.10.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reverchon M, Cornuau M, Rame C, Guerif F, Royere D & Dupont J 2012 Chemerin inhibits IGF-1-induced progesterone and estradiol secretion in human granulosa cells. Human Reproduction 27 17901800. (https://doi.org/10.1093/humrep/des089)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reverchon M, Bertoldo MJ, Rame C, Froment P & Dupont J 2014 Chemerin (RARRES2) decreases in vitro granulosa cell steroidogenesis and blocks oocyte meiotic progression in bovine species. Biology of Reproduction 90 102. (https://doi.org/10.1095/biolreprod.113.117044)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group 2004 Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Human Reproduction 19 4147. (https://doi.org/10.1093/humrep/deh098)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saumande J, Tamboura D & Chupin D 1985 Changes in milk and plasma concentrations of progesterone in cows after treatment to induce superovulation and their relationships with number of ovulations and of embryos collected. Theriogenology 23 719731. (https://doi.org/10.1016/0093-691x(8590147-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sleeman MA, Fraser JK, Murison JG, Kelly SL, Prestidge RL, Palmer DJ, Watson JD & Kumble KD 2000 B cell- and monocyte-activating chemokine (BMAC), a novel non-ELR alpha-chemokine. International Immunology 12 677689. (https://doi.org/10.1093/intimm/12.5.677)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tan BK, Chen J, Farhatullah S, Adya R, Kaur J, Heutling D, Lewandowski KC, O'Hare JP, Lehnert H & Randeva HS 2009 Insulin and metformin regulate circulating and adipose tissue chemerin. Diabetes 58 19711977. (https://doi.org/10.2337/db08-1528)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tang M, Huang C, Wang YF, Ren PG, Chen L, Xiao TX, Wang BB, Pan YF, Tsang BK & Zabel BA et al.2016 CMKLR1 deficiency maintains ovarian steroid production in mice treated chronically with dihydrotestosterone. Scientific Reports 6 21328. (https://doi.org/10.1038/srep21328)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tata B, Mimouni NEH, Barbotin AL, Malone SA, Loyens A, Pigny P, Dewailly D, Catteau-Jonard S, Sundstrom-Poromaa I & Piltonen TT et al.2018 Elevated prenatal anti-Mullerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nature Medicine 24 834846. (https://doi.org/10.1038/s41591-018-0035-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, Piltonen T, Norman RJ & International PCOS Network 2018 Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertility and Sterility 110 364379. (https://doi.org/10.1016/j.fertnstert.2018.05.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Toulis KA, Goulis DG, Farmakiotis D, Georgopoulos NA, Katsikis I, Tarlatzis BC, Papadimas I & Panidis D 2009 Adiponectin levels in women with polycystic ovary syndrome: a systematic review and a meta-analysis. Human Reproduction Update 15 297307. (https://doi.org/10.1093/humupd/dmp006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A & Speleman F 2002 Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3 RESEARCH0034. (https://doi.org/10.1186/gb-2002-3-7-research0034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Q, Kim JY, Xue K, Liu JY, Leader A & Tsang BK 2012 Chemerin, a novel regulator of follicular steroidogenesis and its potential involvement in polycystic ovarian syndrome. Endocrinology 153 56005611. (https://doi.org/10.1210/en.2012-1424)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Q, Leader A & Tsang BK 2013 Inhibitory roles of prohibitin and chemerin in FSH-induced rat granulosa cell steroidogenesis. Endocrinology 154 956967. (https://doi.org/10.1210/en.2012-1836)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Y, Huang R, Li X, Zhu Q, Liao Y, Tao T, Kang X, Liu W, Li S & Sun Y 2019 High concentration of chemerin caused by ovarian hyperandrogenism may lead to poor IVF outcome in polycystic ovary syndrome: a pilot study. Gynecological Endocrinology 35 10721077. (https://doi.org/10.1080/09513590.2019.1622087)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zeng X, Xie YJ, Liu YT, Long SL & Mo ZC 2020 Polycystic ovarian syndrome: correlation between hyperandrogenism, insulin resistance and obesity. Clinica Chimica Acta: International Journal of Clinical Chemistry 502 214221. (https://doi.org/10.1016/j.cca.2019.11.003)

    • PubMed
    • Search Google Scholar
    • Export Citation