Subfertility in young male mice mutant for chromatin remodeller CECR2

in Reproduction
Authors:
Kacie A Norton Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Kacie A Norton in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0198-2726
,
Ross Humphreys Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Ross Humphreys in
Current site
Google Scholar
PubMed
Close
,
Chelsey Weatherill Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Chelsey Weatherill in
Current site
Google Scholar
PubMed
Close
,
Kevin Duong Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Kevin Duong in
Current site
Google Scholar
PubMed
Close
,
Vivian V Nguyen Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Vivian V Nguyen in
Current site
Google Scholar
PubMed
Close
,
Arun Kommadath Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Arun Kommadath in
Current site
Google Scholar
PubMed
Close
,
Farshad Niri Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Farshad Niri in
Current site
Google Scholar
PubMed
Close
,
Paul Stothard Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Paul Stothard in
Current site
Google Scholar
PubMed
Close
, and
Heather E McDermid Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Heather E McDermid in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to K A Norton; Email: kanorton@ualberta.ca
Restricted access
Rent on DeepDyve

Sign up for journal news

Defects in spermatogenesis are an important cause of male infertility. Multiple aspects of spermatogenesis are controlled by chromatin remodellers, including regulating transcription. We previously described mutations in chromatin remodelling gene Cecr2 that resulted in the lethal neural tube defect exencephaly in most mutant mice and subfertility in mice that were non-penetrant for exencephaly. Here, we show that the severity of male subfertility is dependent on age. Cecr2GT/Del males contain two mutant alleles, one of which is hypomorphic and therefore produces a small amount of protein. These males sire the fewest pups just after sexual maturity (88% fewer than Cecr2+/+ at P42–60) but improve with age (49% fewer than Cecr2+/+ at P81–100), although never completely recovering to Cecr2+/+(wild type) levels. When young, they also have defects in testis histology, in vivo fertilization frequency, sperm number and motility, and testis weight that show similar improvement with age. Immunostaining of staged seminiferous tubules showed CECR2 in type A, intermediate and B spermatogonia, and less in preleptotene and leptotene spermatocytes. Histological defects were first apparent in Cecr2GT/Del testes at P24, and RNA-seq analysis revealed 387 differentially expressed genes. This included 66 genes on the X chromosome (almost double the number on any other chromosome), all more highly expressed in Cecr2GT/Del testes. This inappropriate expression of X chromosome genes could be caused by a failure of effective meiotic sex chromosome inactivation. We identify several abnormally expressed genes that may contribute to defects in spermatogenesis at P24. Our results support a role for Cecr2 in juvenile spermatogenesis.

Supplementary Materials

 

  • Collapse
  • Expand
  • Adams SR, Maezawa S, Alavattam KG, Abe H, Sakashita A, Shroder M, Broering TJ, Sroga Rios J, Thomas MA & Lin X et al.2018 RNF8 and SCML2 cooperate to regulate ubiquitination and H3K27 acetylation for escape gene activation on the sex chromosomes. PLoS Genetics 14 e1007233. (https://doi.org/10.1371/journal.pgen.1007233)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Adelman CA & Petrini JHJ 2008 ZIP4H (TEX11) deficiency in the mouse impairs meiotic double strand break repair and the regulation of crossing over. PLoS Genetics 4 e1000042. (https://doi.org/10.1371/journal.pgen.1000042)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Banting GS, Barak O, Ames TM, Burnham AC, Kardel MD, Cooch NS, Davidson CE, Godbout R, McDermid HE & Shiekhattar R 2005 CECR2, a protein involved in neurulation, forms a novel chromatin remodeling complex with SNF2L. Human Molecular Genetics 14 513524. (https://doi.org/10.1093/hmg/ddi048)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Benjamini Y & Hochberg Y 1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B 57 289300. (https://doi.org/10.1111/j.2517-6161.1995.tb02031.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bolger AM, Lohse M & Usadel B 2014 Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 21142120. (https://doi.org/10.1093/bioinformatics/btu170)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Burgoyne PS, Mahadevaiah SK & Turner JMA 2009 The consequences of asynapsis for mammalian meiosis. Nature Reviews: Genetics 10 207216. (https://doi.org/10.1038/nrg2505)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Busada JT, Velte EK, Serra N, Cook K, Niedenberger BA, Willis WD, Goulding EH, Eddy EM & Geyer CB 2016 Rhox13 is required for a quantitatively normal first wave of spermatogenesis in mice. Reproduction 152 379388. (https://doi.org/10.1530/REP-16-0268)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cheng Y, Buffone MG, Kouadio M, Goodheart M, Page DC, Gerton GL, Davidson I & Wang PJ 2007 Abnormal Sperm in Mice Lacking the Taf7l Gene. Molecular and Cellular Biology 27 25822589. (https://doi.org/10.1128/MCB.01722-06)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ciller IM, Palanisamy SKA, Ciller UA & Farlane JRMC 2016 Postnatal Expression of Bone Morphogenetic Proteins and Their Receptors in the Mouse Testis. Physiological Research 65 673682. (https://doi.org/10.33549/physiolres.933193)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M & Gingeras TR 2013 STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29 1521. (https://doi.org/10.1093/bioinformatics/bts635)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dowdle JA, Mehta M, Kass EM, Vuong BQ, Inagaki A, Egli D, Jasin M & Keeney S 2013 Mouse BAZ1A (ACF1) is dispensable for double-strand break repair but is essential for averting improper gene expression during spermatogenesis. PLoS Genetics 9 e1003945. (https://doi.org/10.1371/journal.pgen.1003945)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Elliott J, Norton KA, Niri FH & McDermid HE 2020 Reported DNA repair protein CECR2, which is associated with neural tube defects in mice, is not required for double-strand break repair in primary neurospheres. DNA Repair 94 102876. (https://doi.org/10.1016/j.dnarep.2020.102876)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fairbridge NA, Dawe CE, Niri FH, Kooistra MK, King-Jones K & McDermid HE 2010 Cecr2 mutations causing exencephaly trigger misregulation of mesenchymal/ectodermal transcription factors. Birth Defects Research: Part A, Clinical and Molecular Teratology 88 619625. (https://doi.org/10.1002/bdra.20695)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fan J, Akabane H, Zheng X, Zhou X, Zhang L, Liu Q, Zhang YL, Yang J & Zhu GZ 2007 Male germ cell-specific expression of a novel patched-domain containing gene Ptchd3. Biochemical and Biophysical Research Communications 363 757761. (https://doi.org/10.1016/j.bbrc.2007.09.047)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fukuda T, Pratto F, Schimenti JC, Turner JMA, Camerini-Otero RD, Höög C, 2012. Phosphorylation of chromosome core components may serve as axis marks for the status of chromosomal events during mammalian meiosis. PLoS Genetics 8. (https://doi.org/10.1371/journal.pgen.1002485)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gershoni M, Hauser R, Barda S, Lehavi O, Arama E, Pietrokovski S & Kleiman SE 2019. A new MEIOB mutation is a recurrent cause for azoospermia and testicular meiotic arrest. Human Reproduction 34 666671. (https://doi.org/10.1093/humrep/dez016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Geyer CB 2017 Setting the stage: the first round of spermatogenesis. In The Biology of Mammalian Spermatogonia, pp. 3963. Eds Oatley JM, Griswold MD. Springer, New York, NY. (https://doi.org/10.1007/978-1-4939-7505-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Geyer CB & Eddy EM 2008 Identification and characterization of Rhox13, a novel X-linked mouse homeobox gene. Gene 423 194200. (https://doi.org/10.1016/j.gene.2008.06.031)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ghahramani Seno MM, Kwan BY, Lee-Ng KKM, Moessner R, Lionel AC, Marshall CR & Scherer SW 2011. Human PTCHD3 nulls: Rare copy number and sequence variants suggest a non-essential gene. BMC Medical Genetics 12. (https://doi.org/10.1186/1471-2350-12-45)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goupil S, La Salle S, Trasler JM, Bordeleau LJ & Leclerc P 2011 Developmental expression of SRC-related tyrosine kinases in the mouse testis. Journal of Andrology 32 95110. (https://doi.org/10.2164/jandrol.110.010462)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Green CD, Ma Q, Manske GL, Shami AN, Zheng X, Marini S, Moritz L, Sultan C, Gurczynski SJ & Moore BB et al.2018 A comprehensive roadmap of murine spermatogenesis defined by single-cell RNA-seq. Developmental Cell 46 651 .e10667.e10. (https://doi.org/10.1016/j.devcel.2018.07.025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Griswold MD 2016 Spermatogenesis: the commitment to Meiosis. Physiological Reviews 96 117. (https://doi.org/10.1152/physrev.00013.2015)

  • Grive KJ, Hu Y, Shu E, Grimson A, Elemento O, Grenier JK & Cohen PE 2019 Dynamic transcriptome profiles within spermatogonial and spermatocyte populations during postnatal testis maturation revealed by single-cell sequencing. PLoS Genetics 15 e1007810. (https://doi.org/10.1371/journal.pgen.1007810)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guiraldelli MF, Eyster C, Wilkerson JL, Dresser ME & Pezza RJ 2013 Mouse HFM1/Mer3 is required for crossover formation and complete synapsis of homologous chromosomes during meiosis. PLoS Genetics 9 e1003383. (https://doi.org/10.1371/journal.pgen.1003383)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Handel MA & Schimenti JC 2010 Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nature Reviews: Genetics 11 124136. (https://doi.org/10.1038/nrg2723)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hart SN, Therneau TM, Zhang Y, Poland GA & Kocher JP 2013 Calculating sample size estimates for RNA sequencing data. Journal of Computational Biology 20 970978. (https://doi.org/10.1089/cmb.2012.0283)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hasegawa K, Sin HS, Maezawa S, Broering TJ, Kartashov AV, Alavattam KG, Ichijima Y, Zhang F, Bacon WC & Greis KD et al.2015 SCML2 establishes the male germline epigenome through regulation of histone H2A ubiquitination. Developmental Cell 32 574588. (https://doi.org/10.1016/j.devcel.2015.01.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hays E, Majchrzak N, Daniel V, Ferguson Z, Brown S, Hathorne K & La Salle S 2017 Spermatogenesis associated 22 is required for DNA repair and synapsis of homologous chromosomes in mouse germ cells. Andrology 5 299312. (https://doi.org/10.1111/andr.12315)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hermann BP, Cheng K, Singh A, Roa-De La Cruz L, Mutoji KN, Chen IC, Gildersleeve H, Lehle JD, Mayo M & Westernströer B et al.2018 The mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids. Cell Reports 25 1650 .e81667.e8. (https://doi.org/10.1016/j.celrep.2018.10.026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hu Y, Yan C, Hsu CH, Chen QR, Niu K, Komatsoulis GA & Meerzaman D 2014 Omiccircos: a simple-to-use R package for the circular visualization of multidimensional omics data. Cancer Informatics 13 1320. (https://doi.org/10.4137/CIN.S13495)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jamsai D & O’Bryan MK 2011 Mouse models in male fertility research. Asian Journal of Andrology 13 139151. (https://doi.org/10.1038/aja.2010.101)

  • Kneitz B, Cohen PE, Avdievich E, Zhu L, Kane MF, Hou H, Kolodner RD, Kucherlapati R, Pollard JW & Edelmann W 2000 MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes and Development 14 10851097. (https://doi.org/10.1101/gad.14.9.1085)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kogo H, Tsutsumi M, Inagaki H, Ohye T, Kiyonari H & Kurahashi H 2012 HORMAD2 is essential for synapsis surveillance during meiotic prophase via the recruitment of ATR activity. Genes to Cells 17 897912. (https://doi.org/10.1111/gtc.12005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • La Salle S, Palmer K, O’Brien M, Schimenti JC, Eppig J & Handel MA 2012 Spata22, a novel vertebrate-specific gene, is required for meiotic progress in mouse germ cells. Biology of Reproduction 86 45. (https://doi.org/10.1095/biolreprod.111.095752)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laronda MM & Jameson JL 2011 Sox3 functions in a cell-autonomous manner to regulate spermatogonial differentiation in mice. Endocrinology 152 16061615. (https://doi.org/10.1210/en.2010-1249)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leduc RYM, Singh P & McDermid HE 2017 Genetic backgrounds and modifier genes of NTD mouse models: an opportunity for greater understanding of the multifactorial etiology of neural tube defects. Birth Defects Research 109 140152. (https://doi.org/10.1002/bdra.23554)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee SK, Park EJ, Lee HS, Lee YS & Kwon J 2012 Genome-wide screen of human bromodomain-containing proteins identifies Cecr2 as a novel DNA damage response protein. Molecules and Cells 34 8591. (https://doi.org/10.1007/s10059-012-0112-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li S, Lu MM, Zhou D, Hammes SR & Morrisey EE 2007 GLP-1: a novel zinc finger protein required in somatic cells of the gonad for germ cell development. Developmental Biology 301 106116. (https://doi.org/10.1016/j.ydbio.2006.07.048)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li W, Wu J, Kim SY, Zhao M, Hearn SA, Zhang MQ, Meistrich ML & Mills AA 2014 Chd5 orchestrates chromatin remodelling during sperm development. Nature Communications 5 3812. (https://doi.org/10.1038/ncomms4812)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li G, Xie ZZ, Chua JMW, Wong PC & Bian J 2015. Hydrogen sulfide protects testicular germ cells against heat-induced injury. Nitric Oxide - Biological Chemistry 46 165171. (https://doi.org/10.1016/j.niox.2014.10.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liao Y, Smyth GK & Shi W 2014 FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30 923930. (https://doi.org/10.1093/bioinformatics/btt656)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lufkin T, Lohnes D, Mark M, Dierich A, Gorry P, Gaub MP, LeMeur M & Chambon P 1993 High postnatal lethality and testis degeneration in retinoic acid receptor α mutant mice. PNAS 90 72257229. (https://doi.org/10.1073/pnas.90.15.7225)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luo M, Yang F, Leu NA, Landaiche J, Handel MA, Benavente R, La Salle S & Wang PJ 2013 MEIOB exhibits single-stranded DNA-binding and exonuclease activities and is essential for meiotic recombination. Nature Communications 4 2788. (https://doi.org/10.1038/ncomms3788)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luo M, Zhou J, Leu NA, Abreu CM, Wang J, Anguera MC, de Rooij DG, Jasin M & Wang PJ 2015 Polycomb Protein SCML2 Associates with USP7 and Counteracts Histone H2A Ubiquitination in the XY Chromatin during Male Meiosis. PLoS Genetics 11 1004954. (https://doi.org/10.1371/journal.pgen.1004954)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matzuk MM & Lamb DJ 2002 Genetic dissection of mamalian fertility pathways. Nature Cell Biology 4 (Supplement) s41s49. (https://doi.org/10.1038/ncb-nm-fertilityS41)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nakata H, Wakayama T, Takai Y & Iseki S 2015 Quantitative analysis of the cellular composition in seminiferous tubules in normal and genetically modified infertile mice. Journal of Histochemistry and Cytochemistry 63 99113. (https://doi.org/10.1369/0022155414562045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nguyen TB, Manova K, Capodieci P, Lindon C, Bottega S, Wang XY, Refik-Rogers J, Pines J, Wolgemuth DJ & Koff A 2002 Characterization and expression of mammalian cyclin B3, a prepachytene meiotic cyclin. Journal of Biological Chemistry 277 4196041969. (https://doi.org/10.1074/jbc.M203951200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Norton KA, Niri F, Weatherill CB, Williams CE, Duong K & McDermid HE 2021 Implantation failure and embryo loss contribute to subfertility in female mice mutant for chromatin remodeler Cecr2. Biology of Reproduction 104 835849. (https://doi.org/10.1093/biolre/ioaa231)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nuño-Ayala M, Guillén N, Arnal C, Lou-Bonafonte JM, de Martino A, García-de-Jalón J-A, Gascón S, Osaba L, Osada J & Navarro M-A 2012 Cystathionine β-synthase deficiency causes infertility by impairing decidualization and gene expression networks in uterus implantation sites. Physiological Genomics 44 702716. (https://doi.org/10.1152/physiolgenomics.00189.2010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • O’Donnell L, Meachem S, Stanton P & McLachlan R 2006 Endocrine regulation of spermatogenesis in mammals. In Knobil and Neill’s Physiology of Reproduction, pp. 10171069. Ed Neill J Elsevier/Academic Press. (https://doi.org/10.1201/b18900-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oakberg EF 1956 Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. American Journal of Anatomy 99 507516. (https://doi.org/10.1002/aja.1000990307)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Refik-Rogers J, Manova K & Koff A 2006 Misexpression of cyclin B3 leads to aberrant spermatogenesis. Cell Cycle 5 19661973. (https://doi.org/10.4161/cc.5.17.3137)

  • Robinson MD & Oshlack A 2010 A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11 R25. (https://doi.org/10.1186/gb-2010-11-3-r25)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ross A, Munger S & Capel B 2007. Bmp7 regulates germ cell proliferation in mouse fetal gonads. Sexual Development 1 127137. (https://doi.org/10.1159/000100034)

  • Russell LD, Ettlin RA, Sinka Hikim AP & Clegg ED 1990 Histological and Histopathological Evaluation of the Testis. Cache River Press.

  • Sha Y, Zheng L, Ji Z, Mei L, Ding L, Lin S, Wang X, Yang X & Li P 2018 A novel TEX11 mutation induces azoospermia: A case report of infertile brothers and literature review. BMC Medical Genetics 19 63. (https://doi.org/10.1186/s12881-018-0570-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shi Y-Q, Zhuang X-J, Xu B, Hua J, Liao S-Y, Shi Q, Cooke HJ & Chunsheng H 2013 SYCP3-like X-linked 2 is expressed in meiotic germ cells and interacts with synaptonemal complex central element protein 2 and histone acetyltransferase TIP60. Gene 527 352359. (https://doi.org/https://doi.org/10.1016/j.gene.2013.06.033)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Snowden T, Acharya S, Butz C, Berardini M & Fishel R 2004 hMSH4-hMSH5 recognizes Holliday junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Molecular Cell 15 437451. (https://doi.org/10.1016/j.molcel.2004.06.040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Souquet B, Abby E, Hervé R, Finsterbusch F, Tourpin S, Le Bouffant R, Duquenne C, Messiaen S, Martini E, Bernardino-Sgherri J, Toth A, Habert R, Livera G, 2013. MEIOB Targets Single-Strand DNA and Is Necessary for Meiotic Recombination. PLoS Genetics 9. (https://doi.org/10.1371/journal.pgen.1003784)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Terribas E, Bonache S, Garcia-arevalo M, Sanchez J, Franco E, Bassas L, Larriba S, 2010. Changes in the Expression Profile of the Meiosis-Involved Mismatch Repair Genes in Impaired Human Spermatogenesis. Journal of Andrology 31 346357. (https://doi.org/10.2164/jandrol.109.008805)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thompson PJ, Norton KA, Niri FH, Dawe CE & McDermid HE 2012 CECR2 is involved in spermatogenesis and forms a complex with SNF2H in the testis. Journal of Molecular Biology 415 793806. (https://doi.org/10.1016/j.jmb.2011.11.041)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tong MH, Yang QE, Davis JC & Griswold MD 2013 Retinol dehydrogenase 10 is indispensible for spermatogenesis in juvenile males. PNAS 110 543548. (https://doi.org/10.1073/pnas.1214883110)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turner JMA 2007 Meiotic sex chromosome inactivation. Development 134 18231831. (https://doi.org/10.1242/dev.000018)

  • Tüttelmann F, Ruckert C & Röpke A 2018 Disorders of spermatogenesis: perspectives for novel genetic diagnostics after 20 years of unchanged routine. Medizinische Genetik 30 1220. (https://doi.org/10.1007/s11825-018-0181-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang RS, Yeh S, Tzeng CR & Chang C 2009 Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocrine Reviews 30 119132. (https://doi.org/10.1210/er.2008-0025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang J, Gu H, Lin H & Chi T 2012 Essential roles of the chromatin remodeling factor Brg1 in spermatogenesis in mice. Biology of Reproduction 86 186. (https://doi.org/10.1095/biolreprod.111.097097)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang J, Wang W, Li S, Han Y, Zhang P, Meng G, Xiao Y, Xie L, Wang X & Sha J et al.2018 Hydrogen sulfide as a potential target in preventing spermatogenic failure and testicular dysfunction. Antioxidants and Redox Signaling 28 14471462. (https://doi.org/10.1089/ars.2016.6968)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wojtasz L, Cloutier JM, Baumann M, Daniel K, Varga J, Fu J, Anastassiadis K, Francis Stewart A, Reményi A, Turner JMA & Tóth A 2012 Meiotic DNA double-strand breaks and chromosome asynapsis in mice are monitored by distinct HORMAD2-independent and -dependent mechanisms. Genes & Development 26 958973. (https://doi.org/10.1101/gad.187559.112)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu Y, Greenberg RA, Schonbrunn E & Wang JP 2017. Meiosis-specific proteins MEIOB and SPATA22 cooperatively associate with the single-stranded DNA-binding replication protein A complex and DNA double-strand breaks. Biology of Reproduction 96 10961104. (https://doi.org/10.1093/biolre/iox040)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang F, Silber S, Leu NA, Oates RD, Marszalek JD, Skaletsky H, Brown LG, Rozen S, Page DC & Wang PJ 2015 TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse. EMBO Molecular Medicine 7 11981210. (https://doi.org/10.15252/emmm.201404967)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yatsenko A, Georgiadis A, Ropke A, Berman A, Jaffe T, Olszewska M, Westernstroer B, Sanfilippo J, Kurpisz M & Rajkovic A et al.2015 X-linked TEX11 mutations, meiotic arrest and azoospermia in infertile men. Journal of Urological Surgery 2 162162. (https://doi.org/10.4274/jus.2015.03.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu Y-H, Siao F-P, Hsu LC-L & Yen PH 2012 TEX11 Modulates Germ Cell Proliferation by Competing with Estrogen Receptor β for the Binding to HPIP. Molecular Endocrinology 26 630642. (https://doi.org/10.1210/me.2011-1263)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K, Cummins C, Gall A & Girón CG et al.2018 Ensembl 2018. Nucleic Acids Research 46 D754D761. (https://doi.org/10.1093/nar/gkx1098)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang J, Eto K, Honmyou A, Nakao K, Kiyonari H & Abé SI 2011 Neuregulins are essential for spermatogonial proliferation and meiotic initiation in neonatal mouse testis. Development 138 31593168. (https://doi.org/10.1242/dev.062380)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhao GQ, Chen YX, Liu XM, Xu Z & Qi X 2001 Mutation in Bmp7 exacerbates the phenotype of Bmp8a mutants in spermatogenesis and epididymis. Developmental Biology 240 212222. (https://doi.org/10.1006/dbio.2001.0448)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou H, Grubisic I, Zheng K, He Y, Wang PJ, Kaplan T & Tjian R 2013 Taf7l cooperates with Trf2 to regulate spermiogenesis. PNAS 110 1688616891. (https://doi.org/10.1073/pnas.1317034110)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhuang XJ, Tang WH, Feng X, Liu CY, Zhu JL, Yan J, Liu DF, Liu P & Qiao J 2016 Trim27 interacts with Slx2, is associated with meiotic processes during spermatogenesis. Cell Cycle 15 25762584. (https://doi.org/10.1080/15384101.2016.1174796)

    • PubMed
    • Search Google Scholar
    • Export Citation