Causative mechanisms and functional correlates of MTT reduction in stallion spermatozoa

in Reproduction
Authors:
Ashlee Jade MedicaPriority Research Centre for Reproductive Science, College of Engineering, Science and Environmental, and Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia

Search for other papers by Ashlee Jade Medica in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7270-9316
,
Zamira GibbPriority Research Centre for Reproductive Science, College of Engineering, Science and Environmental, and Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia

Search for other papers by Zamira Gibb in
Current site
Google Scholar
PubMed
Close
,
Alecia SheridanPriority Research Centre for Reproductive Science, College of Engineering, Science and Environmental, and Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia

Search for other papers by Alecia Sheridan in
Current site
Google Scholar
PubMed
Close
,
Natasha HarrisonPriority Research Centre for Reproductive Science, College of Engineering, Science and Environmental, and Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia

Search for other papers by Natasha Harrison in
Current site
Google Scholar
PubMed
Close
, and
Robert John AitkenPriority Research Centre for Reproductive Science, College of Engineering, Science and Environmental, and Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia

Search for other papers by Robert John Aitken in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9152-156X
View More View Less

Correspondence shoud be addressed to R J Aitken; Email: john.aitken@newcastle.edu.au
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

MTT is a commonly used cell vitality probe, due to its ability to form insoluble formazan deposits at cellular locations of intense oxidoreductase activity. Although this response is considered a reflection of mitochondrial redox activity, extra-mitochondrial sites of MTT reduction have been recognized within the spermatozoa of several mammalian species. Therefore, the aim of this study was to determine the major sites and causative mechanisms of MTT reduction in stallion spermatozoa. Our results show that stallion spermatozoa displayed substantial mitochondrial formazan deposition, as well as a single extra-mitochondrial formazan deposit in various locations on the sperm head in approximately 20% of cells. The quality and capacitation status of stallion spermatozoa were positively correlated with the presence of an extra-mitochondrial formazan granule. Additionally, extra-mitochondrial formazan deposition was suppressed by the presence of an NADPH oxidase (NOX) inhibitor (VAS2870; active against NOX2, NOX4 and NOX5), MnTMPyP (SOD mimetic) and zinc (NOX5 inhibitor) suggesting that extra-mitochondrial MTT reduction may be facilitated by NOX-mediated ROS generating activity, conceivably NOX5 or NOX2. When comparing MTT to resazurin, another well-known probe used to detect metabolically active cells, MTT reduction had a higher correlation with sperm concentration and motility parameters (R2= 0.91), than resazurin reduction (R2 = 0.76). We conclude that MTT reduction in stallion spermatozoa follows a species-specific pattern due to a high dependence on oxidative phosphorylation and a degree of NOX activity. As such, MTT reduction is a useful diagnostic tool to assess extra-mitochondrial redox activity, and therefore, the functional qualities of stallion spermatozoa.

 

  • Collapse
  • Expand
  • Aitken RJ & Clarkson JS 1988 Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. Journal of Andrology 9 367376. (https://doi.org/10.1002/j.1939-4640.1988.tb01067.x)

    • Search Google Scholar
    • Export Citation
  • Aitken RJ & Curry BJ 2011 Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxidants and Redox Signaling 14 367381. (https://doi.org/10.1089/ars.2010.3186)

    • Search Google Scholar
    • Export Citation
  • Aitken RJ & Nixon B 2013 Sperm capacitation: a distant landscape glimpsed but unexplored. Molecular Human Reproduction 19 785793. (https://doi.org/10.1093/molehr/gat067)

    • Search Google Scholar
    • Export Citation
  • Aitken RJ, Irvine S & Kelly RW 1986 Significance of intracellular calcium and cyclic adenosine 3′,5′-monophosphate in the mechanisms by which prostaglandins influence human sperm function. Journal of Reproduction and Fertility 77 451462. (https://doi.org/10.1530/jrf.0.0770451)

    • Search Google Scholar
    • Export Citation
  • Aitken RJ, Buckingham DW, Brindle J, Gomez E, Baker HW & Irvine DS 1995a Analysis of sperm movement in relation to the oxidative stress created by leukocytes in washed sperm preparations and seminal plasma. Human Reproduction 10 20612071. (https://doi.org/10.1093/oxfordjournals.humrep.a136237)

    • Search Google Scholar
    • Export Citation
  • Aitken RJ, Paterson M, Fisher H, Buckingham DW & Van Duin M 1995b Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. Journal of Cell Science 108 20172025. (https://doi.org/10.1242/jcs.108.5.2017)

    • Search Google Scholar
    • Export Citation
  • Aitken RJ, Buckingham DW, Harkiss D, Paterson M, Fisher H & Irvine DS 1996 The extragenomic action of progesterone on human spermatozoa is influenced by redox regulated changes in tyrosine phosphorylation during capacitation. Molecular and Cellular Endocrinology 117 8393. (https://doi.org/10.1016/0303-7207(9503733-0)

    • Search Google Scholar
    • Export Citation
  • Aitken RJ, Fisher HM, Fulton N, Gomez E, Knox W, Lewis B & Irvine S 1997 Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenylene iodonium and quinacrine. Molecular Reproduction and Development 47 468482. (https://doi.org/10.1002/(SICI)1098-2795(199708)47:4<468::AID-MRD14>3.0.CO;2-S)

    • Search Google Scholar
    • Export Citation
  • Aitken RJ, Harkiss D, Knox W, Paterson M & Irvine DS 1998 A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. Journal of Cell Science 111 645656. (https://doi.org/10.1242/jcs.111.5.645)

    • Search Google Scholar
    • Export Citation
  • Aitken RJ, Hanson AR & Kuczera L 2011 Electrophoretic sperm isolation: optimization of electrophoresis conditions and impact on oxidative stress. Human Reproduction 26 19551964. (https://doi.org/10.1093/humrep/der162)

    • Search Google Scholar
    • Export Citation
  • Aitken JB, Naumovski N, Curry B, Grupen CG, Gibb Z & Aitken RJ 2015 Characterization of an L-amino acid oxidase in equine spermatozoa. Biology of Reproduction 92 125. (https://doi.org/10.1095/biolreprod.114.126052)

    • Search Google Scholar
    • Export Citation
  • Aitken RJ, Gregoratos D, Kutzera L, Towney E, Lin M, Wilkins A & Gibb Z 2020 Patterns of MTT reduction in mammalian spermatozoa. Reproduction 160 431445. (https://doi.org/10.1530/REP-20-0205)

    • Search Google Scholar
    • Export Citation
  • Altenhofer S, Kleikers PW, Radermacher KA, Scheurer P, Rob Hermans JJ, Schiffers P, Ho H, Wingler K & Schmidt HH 2012 The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cellular and Molecular Life Sciences 69 23272343. (https://doi.org/10.1007/s00018-012-1010-9)

    • Search Google Scholar
    • Export Citation
  • Altenhöfer S, Radermacher KA, Kleikers PWM, Wingler K & Schmidt HHHW 2015 Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxidants and Redox Signaling 23 406427. (https://doi.org/10.1089/ars.2013.5814)

    • Search Google Scholar
    • Export Citation
  • Aziz DM 2006 Assessment of bovine sperm viability by MTT reduction assay. Animal Reproduction Science 92 18. (https://doi.org/10.1016/j.anireprosci.2005.05.029)

    • Search Google Scholar
    • Export Citation
  • Aziz DM, Ahlswede L & Enbergs H 2005 Application of MTT reduction assay to evaluate equine sperm viability. Theriogenology 64 13501356. (https://doi.org/10.1016/j.theriogenology.2005.02.009)

    • Search Google Scholar
    • Export Citation
  • Baker MA, Krutskikh A, Curry BJ, Mclaughlin EA & Aitken RJ 2004 Identification of cytochrome P450-reductase as the enzyme responsible for NADPH-dependent lucigenin and tetrazolium salt reduction in rat epididymal sperm Preparations1. Biology of Reproduction 71 307318. (https://doi.org/10.1095/biolreprod.104.027748)

    • Search Google Scholar
    • Export Citation
  • Baker MA, Krutskikh A, Curry BJ, Hetherington L & Aitken RJ 2005 Identification of cytochrome-b5 reductase as the enzyme responsible for NADH-dependent lucigenin chemiluminescence in human spermatozoa. Biology of Reproduction 73 334342. (https://doi.org/10.1095/biolreprod.104.037960)

    • Search Google Scholar
    • Export Citation
  • Berridge MV & Tan AS 1993 Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Archives of Biochemistry and Biophysics 303 474482. (https://doi.org/10.1006/abbi.1993.1311)

    • Search Google Scholar
    • Export Citation
  • Biggers J, Whitten W, Whittingham D & Daniel J 1971 Methods in Mammalian Embryology, pp. 86116. San Francisco, CA: Freeman.

  • Burdon RH, Gill V & Rice-Evans C 1993 Reduction of a tetrazolium salt and superoxide generation in human tumor cells (HeLa). Free Radical Research Communications 18 369380. (https://doi.org/10.3109/10715769309147503)

    • Search Google Scholar
    • Export Citation
  • Cotman M, Jezek D, Fon Tacer K, Frangez R & Rozman D 2004 A functional cytochrome P450 lanosterol 14 alpha-demethylase CYP51 enzyme in the acrosome: transport through the Golgi and synthesis of meiosis-activating sterols. Endocrinology 145 14191426. (https://doi.org/10.1210/en.2003-1332)

    • Search Google Scholar
    • Export Citation
  • Dart MG, Mesta J, Crenshaw C & Ericsson SA 1994 Modified resazurin reduction test for determining the fertility potential of bovine spermatozoa. Archives of Andrology 33 7175. (https://doi.org/10.3109/01485019408987806)

    • Search Google Scholar
    • Export Citation
  • de Lamirande E & Gagnon C 1993 Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radical Biology and Medicine 14 157166. (https://doi.org/10.1016/0891-5849(9390006-g)

    • Search Google Scholar
    • Export Citation
  • Diaz G, Melis M, Musin A, Piludu M, Piras M & Falchi AM 2007 Localization of MTT formazan in lipid droplets. An alternative hypothesis about the nature of formazan granules and aggregates. European Journal of Histochemistry 51 213218. (https://doi.org/10.4081/1145)

    • Search Google Scholar
    • Export Citation
  • Ecroyd HW, Jones RC & Aitken RJ 2003 Endogenous redox activity in mouse spermatozoa and its role in regulating the tyrosine phosphorylation events associated with sperm capacitation. Biology of Reproduction 69 347354. (https://doi.org/10.1095/biolreprod.102.012716)

    • Search Google Scholar
    • Export Citation
  • Fedotcheva NI, Litvinova EG, Zakharchenko MV, Khunderyakova NV, Fadeev RS, Teplova VV, Fedotcheva TA, Beloborodova NV & Kondrashova MN 2017 Substrate-specific reduction of tetrazolium salts by isolated mitochondria, tissues, and leukocytes. Biochemistry 82 192204. (https://doi.org/10.1134/S0006297917020110)

    • Search Google Scholar
    • Export Citation
  • Ghanbari H, Keshtgar S, Zare HR & Gharesi-Fard B 2019 Inhibition of CatSper and Hv1 channels and NOX5 enzyme affect progesterone-induced increase of intracellular calcium concentration and ROS generation in human sperm. Iranian Journal of Medical Sciences 44 127134. (https://doi.org/10.30476/IJMS.2019.44513)

    • Search Google Scholar
    • Export Citation
  • Gibb Z, Lambourne SR & Aitken RJ 2014 The paradoxical relationship between stallion fertility and oxidative stress. Biology of Reproduction 91 77. (https://doi.org/10.1095/biolreprod.114.118539)

    • Search Google Scholar
    • Export Citation
  • Glass RH, Ericsson SA, Ericsson RJ, Drouin MT, Marcoux LJ & Sullivan H 1991 The resazurin reduction test provides an assessment of sperm activity. Fertility and Sterility 56 743746. (https://doi.org/10.1016/s0015-0282(1654609-3)

    • Search Google Scholar
    • Export Citation
  • Halo Jr M, Massanyi P, Gren A, Lasak A, Slanina T, Ondruska L, Muchacka R, Galbavy D, Ivanic P & Schneir ER et al.2019 Time and dose-dependent effects of Viscum album Quercus on rabbit spermatozoa motility and viability in vitro. Physiological Research 68 955972. (https://doi.org/10.33549/physiolres.934223)

    • Search Google Scholar
    • Export Citation
  • Houston B, Curry B & Aitken RJ 2015 Human spermatozoa possess an IL4I1 l-amino acid oxidase with a potential role in sperm function. Reproduction 149 587596. (https://doi.org/10.1530/REP-14-0621)

    • Search Google Scholar
    • Export Citation
  • Iqbal M, Aleem M, Ijaz A, Rehman H & Yousaf MS 2010 Assessment of buffalo semen with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. Journal of Animal Science 88 922925. (https://doi.org/10.2527/jas.2009-2344)

    • Search Google Scholar
    • Export Citation
  • Jasko DJ 1992 Evaluation of stallion semen. Veterinary Clinics of North America: Equine Practice 8 129148. (https://doi.org/10.1016/s0749-0739(1730471-6)

    • Search Google Scholar
    • Export Citation
  • Kumar P, Nagarajan A & Uchil PD 2018 Analysis of cell viability by the MTT assay. Cold Spring Harbor Protocols 2018. (https://doi.org/10.1101/pdb.prot095505)

    • Search Google Scholar
    • Export Citation
  • Lewis B & Aitken RJ 2001 A redox-regulated tyrosine phosphorylation cascade in rat spermatozoa. Journal of Andrology 22 611622. (https://doi.org/10.1002/j.1939-4640.2001.tb02221.x)

    • Search Google Scholar
    • Export Citation
  • Losano J, Angrimani D, Dalmazzo A, Rui BR, Brito MM, Mendes CM, Kawai G, Vannucchi CI, Assumpcao M & Barnabe VH et al.2017 Effect of mitochondrial uncoupling and glycolysis inhibition on ram sperm functionality. Reproduction in Domestic Animals 52 289297. (https://doi.org/10.1111/rda.12901)

    • Search Google Scholar
    • Export Citation
  • Marques J, Cortes A, Pejenaute Á, Ansorena E, Abizanda G, Prosper F, Martinez-Irujo JJ, Miguel C & Zalba G 2020 Induction of cyclooxygenase-2 by overexpression of the human NADPH oxidase 5 (NOX5) gene in aortic endothelial cells. Cells 9 637. (https://doi.org/10.3390/cells9030637)

    • Search Google Scholar
    • Export Citation
  • Medica AJ, Aitken RJ, Nicolson GL, Sheridan AR, Swegen A, De Iuliis GN & Gibb Z 2021 Glycerophospholipids protect stallion spermatozoa from oxidative damage in vitro. Reproduction and Fertility 2 199209. (https://doi.org/10.1530/RAF-21-0028)

    • Search Google Scholar
    • Export Citation
  • Musset B, Clark RA, Decoursey TE, Petheo GL, Geiszt M, Chen Y, Cornell JE, Eddy CA, Brzyski RG & El Jamali A 2012 NOX5 in human spermatozoa: expression, function, and regulation. Journal of Biological Chemistry 287 93769388. (https://doi.org/10.1074/jbc.M111.314955)

    • Search Google Scholar
    • Export Citation
  • Nasr-Esfahani MH, Aboutorabi R, Esfandiari E & Mardani M 2002 Sperm MTT viability assay: a new method for evaluation of human sperm viability. Journal of Assisted Reproduction and Genetics 19 477482. (https://doi.org/10.1023/a:1020310503143)

    • Search Google Scholar
    • Export Citation
  • Nesci S, Spinaci M, Galeati G, Nerozzi C, Pagliarani A, Algieri C, Tamanini C & Bucci D 2020 Sperm function and mitochondrial activity: an insight on boar sperm metabolism. Theriogenology 144 8288. (https://doi.org/10.1016/j.theriogenology.2020.01.004)

    • Search Google Scholar
    • Export Citation
  • Oez S, Platzer E & Welte K 1990 A quantitative colorimetric method to evaluate the functional state of human polymorphonuclear leukocytes. Blut 60 97102. (https://doi.org/10.1007/BF01720515)

    • Search Google Scholar
    • Export Citation
  • Ohtani K, Yamazaki S, Kubota H, Miyagawa M & Saegusa J 2004 Comparative investigation of several sperm analysis methods for evaluation of spermatotoxicity of industrial chemical: 2-bromopropane as an example. Industrial Health 42 219225. (https://doi.org/10.2486/indhealth.42.219)

    • Search Google Scholar
    • Export Citation
  • Pranay Kumar K, Swathi B & Shanmugam M 2019 Effect of supplementing vitamin E analogues on post-thaw semen parameters and fertility in chicken. British Poultry Science 60 16. (https://doi.org/10.1080/00071668.2019.1602249)

    • Search Google Scholar
    • Export Citation
  • Resgalla Jr C, Maximo MV, Brasil MDN & Pessatti ML 2018 Colorimetric method for determining viability of sea urchin sperm applied in toxicity tests. Ecotoxicology 27 499504. (https://doi.org/10.1007/s10646-018-1936-2)

    • Search Google Scholar
    • Export Citation
  • Sabeur K & Ball BA 2007 Characterization of NADPH oxidase 5 in equine testis and spermatozoa. Reproduction 134 263270. (https://doi.org/10.1530/REP-06-0120)

    • Search Google Scholar
    • Export Citation
  • Stockert JC, Blazquez-Castro A, Canete M, Horobin RW & Villanueva A 2012 MTT assay for cell viability: intracellular localization of the formazan product is in lipid droplets. Acta Histochemica 114 785796. (https://doi.org/10.1016/j.acthis.2012.01.006)

    • Search Google Scholar
    • Export Citation
  • Stockert JC, Horobin RW, Colombo LL & Blazquez-Castro A 2018 Tetrazolium salts and formazan products in cell biology: viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochemica 120 159167. (https://doi.org/10.1016/j.acthis.2018.02.005)

    • Search Google Scholar
    • Export Citation
  • Takahashi S, Abe T, Gotoh J & Fukuuchi Y 2002 Substrate-dependence of reduction of MTT: a tetrazolium dye differs in cultured astroglia and neurons. Neurochemistry International 40 441448. (https://doi.org/10.1016/s0197-0186(0100097-3)

    • Search Google Scholar
    • Export Citation
  • van den Berg BM 2015 Microscopic analysis of MTT stained boar sperm cells. Open Veterinary Journal 5 5863. (https://doi.org/10.13140/RG.2.1.4909.0726)

    • Search Google Scholar
    • Export Citation
  • Wang S, Holyoak GR, Panter KE, Liu Y, Evans RC & Bunch TD 1998 Resazurin reduction assay for ram sperm metabolic activity measured by spectrophotometry. Proceedings of the Society for Experimental Biology and Medicine 217 197202. (https://doi.org/10.3181/00379727-217-44223)

    • Search Google Scholar
    • Export Citation
  • Yao YQ, Ng V, Yeung WS & Ho PC 1996 Profiles of sperm morphology and motility after discontinuous multiple-step Percoll density gradient centrifugation. Andrologia 28 127131. (https://doi.org/10.1111/j.1439-0272.1996.tb02768.x)

    • Search Google Scholar
    • Export Citation
  • Yim SK, Yun CH, Ahn T, Jung HC & Pan JG 2005 A continuous spectrophotometric assay for NADPH-cytochrome P450 reductase activity using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Journal of Biochemistry and Molecular Biology 38 366369. (https://doi.org/10.5483/bmbrep.2005.38.3.366)

    • Search Google Scholar
    • Export Citation
  • Zhang H, Liu H, Kataoka S, Kinukawa M, Uchiyama K, Kambe J, Watanabe G, Jin W & Nagaoka K 2021. L-amino acid oxidase 1 in sperm is associated with reproductive performance in male mice and bulls. Biology of Reproduction 104 11541161. (https://doi.org/10.1093/biolre/ioab024)

    • Search Google Scholar
    • Export Citation
  • Zrimsek P, Kunc J, Kosec M & Mrkun J 2004. Spectrophotometric application of resazurin reduction assay to evaluate boar semen quality. International Journal of Andrology 27 5762. (https://doi.org/10.1046/j.0105-6263.2003.00448.x)

    • Search Google Scholar
    • Export Citation