The nuclear receptors SF1 and COUP-TFII cooperate on the Insl3 promoter in Leydig cells

in Reproduction
Authors:
Mickaël Di-LuoffoReproduction, Santé de la Mère et de l’Enfant, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Québec, Canada

Search for other papers by Mickaël Di-Luoffo in
Current site
Google Scholar
PubMed
Close
,
Kenley Joule PierreReproduction, Santé de la Mère et de l’Enfant, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Québec, Canada

Search for other papers by Kenley Joule Pierre in
Current site
Google Scholar
PubMed
Close
,
Nicholas M RobertReproduction, Santé de la Mère et de l’Enfant, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Québec, Canada

Search for other papers by Nicholas M Robert in
Current site
Google Scholar
PubMed
Close
,
Marie-Joëlle GirardReproduction, Santé de la Mère et de l’Enfant, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Québec, Canada

Search for other papers by Marie-Joëlle Girard in
Current site
Google Scholar
PubMed
Close
, and
Jacques J TremblayReproduction, Santé de la Mère et de l’Enfant, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Québec, Canada
Centre de Recherche en Reproduction, Développement et santé Intergénérationnelle, Département d’Obstétrique, Gynécologie et Reproduction, Faculté de Médecine, Université Laval, Québec, Québec, Canada

Search for other papers by Jacques J Tremblay in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4738-6284
View More View Less

Correspondence should be addressed to J J Tremblay; Email: Jacques-J.Tremblay@crchudequebec.ulaval.ca

*(M Di-Luoffo and K J Pierre contributed equally to this work)

(M Di-Luoffo is now at Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France)

Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

In brief

The insulin-like 3 (INSL3) hormone produced by Leydig cells is essential for proper male sex differentiation, but the regulation of Insl3 expression remains poorly understood. This study describes a new physical and functional cooperation between the nuclear receptors SF1 and COUP-TFII in Insl3 expression.

Abstract

INSL3, a hormone abundantly produced by Leydig cells, is essential for testis descent during fetal life and bone metabolism in adults. The mechanisms regulating Insl3 expression in Leydig cells have been studied in several species but remain poorly understood. To date, only a handful of transcription factors are known to activate the Insl3 promoter and include the nuclear receptors AR, NUR77, COUP-TFII, and SF1, as well as the Krüppel-like factor KLF6. Some of these transcription factors are known to transcriptionally cooperate on the Insl3 promoter, but the mechanisms at play remain unknown. Here, we report that COUP-TFII and SF1 functionally cooperate on the Insl3 promoter from various species but not on the Inha, Akr1c14, Cyp17a1, Hsd3b1, Star, Gsta3, and Amhr2 promoters that are known to be regulated by COUP-TFII and/or SF1. The Insl3 promoter contains species-conserved binding sites for COUP-TFII (−91 bp) and SF1 (−134 bp). Mutation of either the COUP-TFII or the SF1 sequence had no impact on the COUP-TFII/SF1 cooperation, but the mutation of both binding sites abolished the cooperation. In agreement with this, we found that COUP-TFII and SF1 physically interact in Leydig cells. Finally, we report that the transcriptional cooperation is not limited to COUP-TFII and SF1 as it also occurred between all NR2F and NR5A family members. Our data provide new mechanistic insights into the cooperation between the orphan nuclear receptors COUP-TFII and SF1 in the regulation of Insl3 gene expression in Leydig cells.

 

  • Collapse
  • Expand
  • Abdou HS, Villeneuve G & Tremblay JJ 2013 The calcium signaling pathway regulates leydig cell steroidogenesis through a transcriptional cascade involving the nuclear receptor NR4A1 and the steroidogenic acute regulatory protein. Endocrinology 154 511520. (https://doi.org/10.1210/en.2012-1767)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Abdou HS, Bergeron F & Tremblay JJ 2014 A cell-autonomous molecular cascade initiated by AMP-activated protein kinase represses steroidogenesis. Molecular and Cellular Biology 34 42574271. (https://doi.org/10.1128/MCB.00734-14)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Adham IM, Burkhardt E, Benahmed M & Engel W 1993 Cloning of a cDNA for a novel insulin-like peptide of the testicular Leydig cells. Journal of Biological Chemistry 268 2666826672. (https://doi.org/10.1016/S0021-9258(1974364-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ascoli M 1981 Characterization of several clonal lines of cultured Leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology 108 8895. (https://doi.org/10.1210/endo-108-1-88)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ascoli M 2007 Immortalized Leydig cell lines as models for studying Leydig cell physiology. In The Leydig Cell in Health and Disease, 1 st ed ., pp. 373381. Eds Payne AH, Hardy MP. New Jersey: Humana Press Totowa. (https://doi.org/10.1007/978-1-59745-453-7_26)

    • Search Google Scholar
    • Export Citation
  • Bakke M & Lund J 1995 Mutually exclusive interactions of two nuclear orphan receptors determine activity of a cyclic adenosine 3′,5′-monophosphate-responsive sequence in the bovine CYP17 gene. Molecular Endocrinology 9 327339. (https://doi.org/10.1210/mend.9.3.7776979)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Balvers M, Spiess A-N, Domagalski R, Hunt N, Kilic E, Mukhopadhyay AK, Hanks E, Charlton HM & Ivell R 1998 Relaxin-like factor expression as a marker of differentiation in the mouse testis and ovary 1. Endocrinology 139 29602970. (https://doi.org/10.1210/endo.139.6.6046)

    • Search Google Scholar
    • Export Citation
  • Buaas FW, Gardiner JR, Clayton S, Val P & Swain A 2012 In vivo evidence for the crucial role of SF1 in steroid-producing cells of the testis, ovary and adrenal gland. Development 139 45614570. (https://doi.org/10.1242/dev.087247)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bullesbach EE, Rhodes R, Rembiesa B & Schwabe C 1999 The relaxin-like factor is a hormone. Endocrine 10 167170. (https://doi.org/10.1385/ENDO:10:2:167)

  • Burkhardt E, Adham IM, Brosig B, Gastmann A, Mattei MG & Engel W 1994 Structural organization of the porcine and human genes coding for a Leydig cell-specific insulin-like peptide (LEY I-L) and chromosomal localization of the human gene (INSL3). Genomics 20 1319. (https://doi.org/10.1006/geno.1994.1121)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Busygina TV, Vasiliev GV, Klimova NV, Ignatieva EV & Osadchuk AV 2005 Binding sites for transcription factor SF-1 in promoter regions of genes encoding mouse steroidogenesis enzymes 3betaHSDI and P450c17. Biochemistry: Biokhimiia 70 11521156. (https://doi.org/10.1007/s10541-005-0239-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Caron KM, Ikeda Y, Soo SC, Stocco DM, Parker KL & Clark BJ 1997 Characterization of the promoter region of the mouse gene encoding the steroidogenic acute regulatory protein. Molecular Endocrinology 11 138147. (https://doi.org/10.1210/mend.11.2.9880)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clarke TR, Bain PA, Burmeister M & Payne AH 1996 Isolation and characterization of several members of the murine Hsd3b gene family. DNA and Cell Biology 15 387399. (https://doi.org/10.1089/dna.1996.15.387)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Daems C, Di-Luoffo M, Paradis É & Tremblay JJ 2015 MEF2 cooperates with forskolin/cAMP and GATA4 to regulate Star gene expression in mouse MA-10 Leydig cells. Endocrinology 156 26932703. (https://doi.org/10.1210/en.2014-1964)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Di-Luoffo M, Brousseau C, Bergeron F & Tremblay JJ 2015 The transcription factor MEF2 is a novel regulator of Gsta gene class in mouse MA-10 Leydig cells. Endocrinology 156 46954706. (https://doi.org/10.1210/en.2015-1500)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Di-Luoffo M, Brousseau C & Tremblay JJ 2016 MEF2 and NR2F2 cooperate to regulate Akr1c14 gene expression in mouse MA-10 Leydig cells. Andrology 4 335344. (https://doi.org/10.1111/andr.12150)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferlin A, Pepe A, Gianesello L, Garolla A, Feng S, Giannini S, Zaccolo M, Facciolli A, Morello R & Agoulnik AI et al.2008 Mutations in the insulin-like factor 3 receptor are associated with osteoporosis. Journal of Bone and Mineral Research 23 683693. (https://doi.org/10.1359/jbmr.080204)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferlin A, Selice R, Carraro U & Foresta C 2013 Testicular function and bone metabolism–beyond testosterone. Nature Reviews: Endocrinology 9 548554. (https://doi.org/10.1038/nrendo.2013.135)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferlin A, De Toni L, Agoulnik AI, Lunardon G, Armani A, Bortolanza S, Blaauw B, Sandri M & Foresta C 2018 Protective role of testicular hormone INSL3 from atrophy and weakness in skeletal muscle. Frontiers in Endocrinology 9 562. (https://doi.org/10.3389/fendo.2018.00562)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foresta C, Bettella A, Vinanzi C, Dabrilli P, Meriggiola MC, Garolla A & Ferlin A 2004 A novel circulating hormone of testis origin in humans. Journal of Clinical Endocrinology and Metabolism 89 59525958. (https://doi.org/10.1210/jc.2004-0575)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Galarneau L, Pare JF, Allard D, Hamel D, Levesque L, Tugwood JD, Green S & Belanger L 1996 The alpha1-fetoprotein locus is activated by a nuclear receptor of the Drosophila FTZ-F1 family. Molecular and Cellular Biology 16 38533865. (https://doi.org/10.1128/MCB.16.7.3853)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Garon G, Bergeron F, Brousseau C, Robert NM & Tremblay JJ 2017 FOXA3 is expressed in multiple cell lineages in the mouse testis and regulates Pdgfra expression in Leydig cells. Endocrinology 158 18861897. (https://doi.org/10.1210/en.2016-1736)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hampel U, Klonisch T, Sel S, Schulze U, Garreis F, Seitmann H, Zouboulis CC & Paulsen FP 2013 Insulin-like factor 3 promotes wound healing at the ocular surface. Endocrinology 154 20342045. (https://doi.org/10.1210/en.2012-2201)

    • Search Google Scholar
    • Export Citation
  • Ivell R, Balvers M, Domagalski R, Ungefroren H, Hunt N & Schulze W 1997 Relaxin-like factor: a highly specific and constitutive new marker for Leydig cells in the human testis. Molecular Human Reproduction 3 459466. (https://doi.org/10.1093/molehr/3.6.459)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ivell R, Wade JD & Anand-Ivell R 2013 INSL3 as a biomarker of Leydig cell functionality. Biology of Reproduction 88 147. (https://doi.org/10.1095/biolreprod.113.108969)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jeyasuria P, Ikeda Y, Jamin SP, Zhao L, de Rooij DG, Themmen AP, Behringer RR & Parker KL 2004 Cell-specific knockout of steroidogenic factor 1 reveals Its essential roles in gonadal function. Molecular Endocrinology 18 16101619. (doi: 10.1210/me.2003-0404)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kawamura K, Kumagai J, Sudo S, Chun SY, Pisarska M, Morita H, Toppari J, Fu P, Wade JD & Bathgate RA et al.2004 Paracrine regulation of mammalian oocyte maturation and male germ cell survival. PNAS 101 73237328. (https://doi.org/10.1073/pnas.0307061101)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Khorasanizadeh S & Rastinejad F 2001 Nuclear-receptor interactions on DNA-response elements. Trends in Biochemical Sciences 26 384390. (https://doi.org/10.1016/s0968-0004(0101800-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koskimies P, Spiess AN, Lahti P, Huhtaniemi I & Ivell R 1997 The mouse relaxin-like factor gene and its promoter are located within the 3′ region of the JAK3 genomic sequence. FEBS Letters 419 186190. (https://doi.org/10.1016/S0014-5793(9701454-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koskimies P, Levallet J, Sipila P, Huhtaniemi I & Poutanen M 2002 Murine relaxin-like factor promoter: functional characterization and regulation by transcription factors steroidogenic factor 1 and DAX-1. Endocrinology 143 909919. (https://doi.org/10.1210/endo.143.3.8683)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laguë E & Tremblay JJ 2008 Antagonistic effects of testosterone and the endocrine disruptor mono-(2-ethylhexyl) phthalate on INSL3 transcription in Leydig cells. Endocrinology 149 46884694. (https://doi.org/10.1210/en.2008-0310)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laguë E & Tremblay JJ 2009 Estradiol represses Insulin-like 3 expression and promoter activity in MA-10 Leydig cells. Toxicology 258 101105. (https://doi.org/10.1016/j.tox.2009.01.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li Y, Kobayashi K, Murayama K, Kawahara K, Shima Y, Suzuki A, Tani K & Takahashi A 2018 FEAT enhances INSL3 expression in testicular Leydig cells. Genes to Cells 23 952962. (https://doi.org/10.1111/gtc.12644)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin LJ, Boucher N, Brousseau C & Tremblay JJ 2008 The orphan nuclear receptor NUR77 regulates hormone-induced StAR transcription in Leydig cells through a cooperation with CaMKI. Molecular Endocrinology 22 20212037. (https://doi.org/10.1210/me.2007-0370)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin LJ, Boucher N, El-Asmar B & Tremblay JJ 2009 cAMP-induced expression of the orphan nuclear receptor Nur77 in testicular Leydig cells involves a CaMKI pathway. Journal of Andrology 30 134145. (https://doi.org/10.2164/jandrol.108.006387)

    • Search Google Scholar
    • Export Citation
  • Mehanovic S, Mendoza-Villarroel RE, Viger RS & Tremblay JJ 2019 The nuclear receptor COUP-TFII regulates Amhr2 gene transcription via a GC-rich promoter element in mouse Leydig cells. Journal of the Endocrine Society 3 22362257. (https://doi.org/10.1210/js.2019-00266)

    • Search Google Scholar
    • Export Citation
  • Mehanovic S, Mendoza-Villarroel RE, de Mattos K, Talbot P, Viger RS & Tremblay JJ 2021 Identification of novel genes and pathways regulated by the orphan nuclear receptor COUP-TFII in mouse MA-10 Leydig cells. Biology of Reproduction 105 12831306. (https://doi.org/10.1093/biolre/ioab131)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mendoza-Villarroel RE, Di-Luoffo M, Camire E, Giner XC, Brousseau C & Tremblay JJ 2014a The Insl3 gene is a direct target for the orphan nuclear receptor, COUP-TFII, in Leydig cells. Journal of Molecular Endocrinology 53 4355. (https://doi.org/10.1530/JME-13-0290)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mendoza-Villarroel RE, Robert NM, Martin LJ, Brousseau C & Tremblay JJ 2014b The nuclear receptor NR2F2 activates Star expression and steroidogenesis in mouse MA-10 and MLTC-1 Leydig cells. Biology of Reproduction 91 26. (https://doi.org/10.1095/biolreprod.113.115790)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Minagawa I, Murata Y, Terada K, Shibata M, Park EY, Sasada H & Kohsaka T 2018 Evidence for the role of INSL3 on sperm production in boars by passive immunisation. Andrologia 50 e13010. (https://doi.org/10.1111/and.13010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nef S & Parada LF 1999 Cryptorchidism in mice mutant for Insl3. Nature Genetics 22 295299. (https://doi.org/10.1038/10364)

  • Panesar NS, Chan KW & Ho CS 2003 Mouse Leydig tumor cells produce C-19 steroids, including testosterone. Steroids 68 245251. (https://doi.org/10.1016/s0039-128x(0200183-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Peng L & Payne AH 2002 AP-2 gamma and the homeodomain protein distal-less 3 are required for placental-specific expression of the murine 3 beta-hydroxysteroid dehydrogenase VI gene, Hsd3b6. Journal of Biological Chemistry 277 79457954. (https://doi.org/10.1074/jbc.M106765200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Philips A, Lesage S, Gingras R, Maira MH, Gauthier Y, Hugo P & Drouin J 1997 Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells. Molecular and Cellular Biology 17 59465951. (https://doi.org/10.1128/MCB.17.10.5946)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pusch W, Balvers M & Ivell R 1996 Molecular cloning and expression of the relaxin-like factor from the mouse testis. Endocrinology 137 30093013. (https://doi.org/10.1210/endo.137.7.8770925)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qin S, Minagawa I, Okuno M, Yamada K, Sugawara Y, Nagura Y, Hamano K, Park EY, Sasada H & Kohsaka T 2013 The active form of goat insulin-like peptide 3 (INSL3) is a single-chain structure comprising three domains B-C-A, constitutively expressed and secreted by testicular Leydig cells. Biological Chemistry 394 11811194. (https://doi.org/10.1515/hsz-2012-0357)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qiu Y, Cooney AJ, Kuratani S, DeMayo FJ, Tsai SY & Tsai MJ 1994 Spatiotemporal expression patterns of chicken ovalbumin upstream promoter-transcription factors in the developing mouse central nervous system: evidence for a role in segmental patterning of the diencephalon. PNAS 91 44514455. (https://doi.org/10.1073/pnas.91.10.4451)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rahman NA & Huhtaniemi IT 2004 Testicular cell lines. Molecular and Cellular Endocrinology 228 5365. (https://doi.org/10.1016/j.mce.2003.05.001)

  • Robert NM, Martin LJ & Tremblay JJ 2006 The orphan nuclear receptor NR4A1 regulates Insulin-like 3 gene transcription in Leydig cells. Biology of Reproduction 74 322330. (https://doi.org/10.1095/biolreprod.105.044560)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sadeghian H, Anand-Ivell R, Balvers M, Relan V & Ivell R 2005 Constitutive regulation of the Insl3 gene in rat Leydig cells. Molecular and Cellular Endocrinology 241 1020. (https://doi.org/10.1016/j.mce.2005.03.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sandhoff TW, Hales DB, Hales KH & McLean MP 1998 Transcriptional regulation of the rat steroidogenic acute regulatory protein gene by steroidogenic factor 1. Endocrinology 139 48204831. (https://doi.org/10.1210/endo.139.12.6345)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schreiber E, Matthias P, Muller MM & Schaffner W 1989 Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Research 17 6419. (https://doi.org/10.1093/nar/17.15.6419)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sedaghat K, Shen PJ, Finkelstein DI, Henderson JM & Gundlach AL 2008 Leucine-rich repeat-containing G-protein-coupled receptor 8 in the rat brain: enrichment in thalamic neurons and their efferent projections. Neuroscience 156 319333. (https://doi.org/10.1016/j.neuroscience.2008.07.029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shibata H, Kobayashi S, Kurihara I, Suda N, Yokota K, Murai A, Ikeda Y, Saito I, Rainey WE & Saruta T 2004 COUP-TF and transcriptional co-regulators in adrenal steroidogenesis. Endocrine Research 30 795801. (https://doi.org/10.1081/erc-200044042)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Strong ME, Burd MA & Peterson DG 2019 Evaluation of the MA-10 cell line as a model of Insl3 regulation and Leydig cell function. Animal Reproduction Science 208 106116. (https://doi.org/10.1016/j.anireprosci.2019.106116)

    • Search Google Scholar
    • Export Citation
  • Sugawara T, Holt JA, Kiriakidou M & Strauss JF III 1996 Steroidogenic factor 1-dependent promoter activity of the human steroidogenic acute regulatory protein (StAR) gene. Biochemistry 35 90529059. (https://doi.org/10.1021/bi960057r)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Teixeira J, Kehas DJ, Antun R & Donahoe PK 1999 Transcriptional regulation of the rat Mullerian inhibiting substance type II receptor in rodent Leydig cells. PNAS 96 1383113838. (https://doi.org/10.1073/pnas.96.24.13831)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trbovich AM, Martinelle N, O'Neill FH, Pearson EJ, Donahoe PK, Sluss PM & Teixeira J 2004 Steroidogenic activities in MA-10 Leydig cells are differentially altered by cAMP and Mullerian inhibiting substance. Journal of Steroid Biochemistry and Molecular Biology 92 199208. (https://doi.org/10.1016/j.jsbmb.2004.07.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tremblay JJ & Viger RS 2001 GATA factors differentially activate multiple gonadal promoters through conserved GATA regulatory elements. Endocrinology 142 977986. (https://doi.org/10.1210/endo.142.3.7995)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tremblay JJ & Viger RS 2003 Transcription factor GATA-4 is activated by phosphorylation of serine 261 via the cAMP/PKA pathway in gonadal cells. Journal of Biological Chemistry 278 2212822135. (https://doi.org/10.1074/jbc.M213149200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tremblay JJ & Robert NM 2005 Role of nuclear receptors in INSL3 gene transcription in Leydig cells. Annals of the New York Academy of Sciences 1061 183189. (https://doi.org/10.1196/annals.1336.020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tremblay JJ, Robert NM & Laguë É 2009 Nuclear receptors, testosterone and post-translational modifications in human INSL3 promoter activity in testicular Leydig cells. Annals of the New York Academy of Sciences 1160 205212. (https://doi.org/10.1111/j.1749-6632.2008.03807.x)

    • Search Google Scholar
    • Export Citation
  • Tremblay MA, Mendoza-Villarroel RE, Robert NM, Bergeron F & Tremblay JJ 2016 KLF6 cooperates with NUR77 and SF1 to activate the human INSL3 promoter in mouse MA-10 Leydig cells. Journal of Molecular Endocrinology 56 163173. (https://doi.org/10.1530/JME-15-0139)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Truong A, Bogatcheva NV, Schelling C, Dolf G & Agoulnik AI 2003 Isolation and expression analysis of the canine insulin-like factor 3 gene. Biology of Reproduction 69 16581664. (https://doi.org/10.1095/biolreprod.103.019166)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weikum ER, Liu X & Ortlund EA 2018 The nuclear receptor superfamily: a structural perspective. Protein Science 27 18761892. (https://doi.org/10.1002/pro.3496)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu RN, Ito M & Jameson JL 1998 The murine Dax-1 promoter is stimulated by SF-1 (steroidogenic factor-1) and inhibited by COUP-TF (chicken ovalbumin upstream promoter-transcription factor) via a composite nuclear receptor-regulatory element. Molecular Endocrinology 12 10101022. (https://doi.org/10.1210/mend.12.7.0131)

    • Search Google Scholar
    • Export Citation
  • Zhang P & Mellon SH 1996 The orphan nuclear receptor steroidogenic factor-1 regulates the cyclic adenosine 3′,5′-monophosphate-mediated transcriptional activation of rat cytochrome P450c17 (17 alpha-hydroxylase/c17-20 lyase). Molecular Endocrinology 10 147158. (https://doi.org/10.1210/mend.10.2.8825555)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang P & Mellon SH 1997 Multiple orphan nuclear receptors converge to regulate rat P450c17 gene transcription: novel mechanisms for orphan nuclear receptor action. Molecular Endocrinology 11 891904. (https://doi.org/10.1210/mend.11.7.9940)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zimmermann S, Schottler P, Engel W & Adham IM 1997 Mouse Leydig insulin-like (Ley I-L) gene: structure and expression during testis and ovary development. Molecular Reproduction and Development 47 3038. (https://doi.org/10.1002/(SICI)1098-2795(199705)47:1<30::AID-MRD5>3.0.CO;2-R)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zimmermann S, Schwarzler A, Buth S, Engel W & Adham IM 1998 Transcription of the Leydig insulin-like gene is mediated by steroidogenic factor-1. Molecular Endocrinology 12 706713. (https://doi.org/10.1210/mend.12.5.0107)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zimmermann S, Steding G, Emmen JM, Brinkmann AO, Nayernia K, Holstein AF, Engel W & Adham IM 1999 Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Molecular Endocrinology 13 681691. (https://doi.org/10.1210/mend.13.5.0272)

    • PubMed
    • Search Google Scholar
    • Export Citation