Cholesterol supports bovine granulosa cell inflammatory responses to lipopolysaccharide

in Reproduction
Authors:
Anthony D HorlockSwansea University Medical School, Swansea University, Swansea, UK

Search for other papers by Anthony D Horlock in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9580-552X
,
Thomas J R OrmsbySwansea University Medical School, Swansea University, Swansea, UK

Search for other papers by Thomas J R Ormsby in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4371-5316
,
Martin J D CliftSwansea University Medical School, Swansea University, Swansea, UK

Search for other papers by Martin J D Clift in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6133-3368
,
José E P SantosDepartment of Animal Sciences, University of Florida, Gainesville, Florida, USA

Search for other papers by José E P Santos in
Current site
Google Scholar
PubMed
Close
,
John J BromfieldDepartment of Animal Sciences, University of Florida, Gainesville, Florida, USA

Search for other papers by John J Bromfield in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5438-2137
, and
I Martin SheldonSwansea University Medical School, Swansea University, Swansea, UK

Search for other papers by I Martin Sheldon in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7902-5558
View More View Less

Correspondence should be addressed to I M Sheldon; Email: i.m.sheldon@swansea.ac.uk
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

In brief

Bovine granulosa cells need to be cultured with serum to generate inflammation in response to bacterial lipopolysaccharide. This study shows that it is cholesterol that facilitates this lipopolysaccharide-stimulated cytokine secretion.

Abstract

During bacterial infections of the bovine uterus or mammary gland, ovarian granulosa cells mount inflammatory responses to lipopolysaccharide (LPS). In vitro, LPS stimulates granulosa cell secretion of the cytokines IL-1α and IL-1β and the chemokine IL-8. These LPS-stimulated inflammatory responses depend on culturing granulosa cells with serum, but the mechanism is unclear. Here, we tested the hypothesis that cholesterol supports inflammatory responses to LPS in bovine granulosa cells. We used granulosa cells isolated from 4 to 8 mm and >8.5 mm diameter ovarian follicles and manipulated the availability of cholesterol. We found that serum or follicular fluid containing cholesterol increased LPS-stimulated secretion of IL-1α and IL-1β from granulosa cells. Conversely, depleting cholesterol using methyl-β-cyclodextrin diminished LPS-stimulated secretion of IL-1α, IL-1β and IL-8 from granulosa cells cultured in serum. Follicular fluid contained more high-density lipoprotein cholesterol than low-density lipoprotein cholesterol, and granulosa cells expressed the receptor for high-density lipoprotein, scavenger receptor class B member 1 (SCARB1). Furthermore, culturing granulosa cells with high-density lipoprotein cholesterol, but not low-density lipoprotein or very low-density lipoprotein cholesterol, increased LPS-stimulated inflammation in granulosa cells. Cholesterol biosynthesis also played a role in granulosa cell inflammation because RNAi of mevalonate pathway enzymes inhibited LPS-stimulated inflammation. Finally, treatment with follicle-stimulating hormone, but not luteinising hormone, increased LPS-stimulated granulosa cell inflammation, and follicle-stimulating hormone increased SCARB1 protein. However, changes in inflammation were not associated with changes in oestradiol or progesterone secretion. Taken together, these findings imply that cholesterol supports inflammatory responses to LPS in granulosa cells.

Supplementary Materials

 

  • Collapse
  • Expand
  • Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH & Krieger M 1996 Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271 518520. (https://doi.org/10.1126/science.271.5248.518).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azhar S, Tsai L, Medicherla S, Chandrasekher Y, Giudice L & Reaven E 1998 Human granulosa cells use high density lipoprotein cholesterol for steroidogenesis. Journal of Clinical Endocrinology and Metabolism 83 983991. (https://doi.org/10.1210/jcem.83.3.4662).

    • Search Google Scholar
    • Export Citation
  • Bao B, Thomas MG, Griffith MK, Burghardt RC & Williams GL 1995 Steroidogenic activity, insulin-like growth factor-I production, and proliferation of granulosa and theca cells obtained from dominant preovulatory and nonovulatory follicles during the bovine estrous cycle: effects of low-density and high-density lipoproteins. Biology of Reproduction 53 12711279. (https://doi.org/10.1095/biolreprod53.6.1271).

    • Search Google Scholar
    • Export Citation
  • Bao B, Thomas MG & Williams GL 1997 Regulatory roles of high-density and low-density lipoproteins in cellular proliferation and secretion of progesterone and insulin-like growth factor I by enriched cultures of bovine small and large luteal cells. Journal of Animal Science 75 32353245. (https://doi.org/10.2527/1997.75123235x).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baranova IN, Souza AC, Bocharov AV, Vishnyakova TG, Hu X, Vaisman BL, Amar MJ, Chen Z, Kost Y & Remaley AT et al.2016 Human SR-BI and SR-BII potentiate lipopolysaccharide-induced inflammation and acute liver and kidney injury in mice. Journal of Immunology 196 31353147. (https://doi.org/10.4049/jimmunol.1501709).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bertevello PS, Teixeira-Gomes AP, Seyer A, Vitorino Carvalho A, Labas V, Blache MC, Banliat C, Cordeiro LAV, Duranthon V & Papillier P et al.2018 Lipid identification and transcriptional analysis of controlling enzymes in bovine ovarian follicle. International Journal of Molecular Sciences 19 3261. (https://doi.org/10.3390/ijms19103261).

    • Search Google Scholar
    • Export Citation
  • Brantmeier SA, Grummer RR & Ax RL 1987 Concentrations of high density lipoproteins vary among follicular sizes in the bovine. Journal of Dairy Science 70 21452149. (https://doi.org/10.3168/jds.S0022-0302(8780266-7).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromfield JJ & Sheldon IM 2011 Lipopolysaccharide initiates inflammation in bovine granulosa cells via the TLR4 pathway and perturbs oocyte meiotic progression in vitro. Endocrinology 152 50295040. (https://doi.org/10.1210/en.2011-1124).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown MS & Goldstein JL 1976 Receptor-mediated control of cholesterol metabolism. Science 191 150154. (https://doi.org/10.1126/science.174194).

  • Cain DW & Cidlowski JA 2017 Immune regulation by glucocorticoids. Nature Reviews: Immunology 17 233247. (https://doi.org/10.1038/nri.2017.1).

    • Search Google Scholar
    • Export Citation
  • Carroll DJ, Grummer RR & Mao FC 1992 Progesterone production by cultured luteal cells in the presence of bovine low- and high-density lipoproteins purified by heparin affinity chromatography. Journal of Animal Science 70 25162526. (https://doi.org/10.2527/1992.7082516x).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian AE, Haynes MP, Phillips MC & Rothblat GH 1997 Use of cyclodextrins for manipulating cellular cholesterol content. Journal of Lipid Research 38 22642272. (https://doi.org/10.1016/S0022-2275(2034940-3).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin JG, Hodges R, Pedersen S & Sheldon IM 2015 Enzyme linked immunosorbent assay for quantification of bovine interleukin-8 to study infection and immunity in the female genital tract. American Journal of Reproductive Immunology 73 372382. (https://doi.org/10.1111/aji.12344).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin JG, Kanamarlapudi V, Thornton CA & Sheldon IM 2016 Signal transducer and activator of transcription-3 licenses toll-like receptor 4-dependent interleukin (IL)-6 and IL-8 production via IL-6 receptor-positive feedback in endometrial cells. Mucosal Immunology 9 11251136. (https://doi.org/10.1038/mi.2015.131).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummings RD, Kornfeld S, Schneider WJ, Hobgood KK, Tolleshaug H, Brown MS & Goldstein JL 1983 Biosynthesis of N- and O-linked oligosaccharides of the low density lipoprotein receptor. Journal of Biological Chemistry 258 1526115273. (https://doi.org/10.1016/S0021-9258(1743802-6).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dang EV, McDonald JG, Russell DW & Cyster JG 2017 Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation. Cell 171 1057 .e111071.e11. (https://doi.org/10.1016/j.cell.2017.09.029).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorrington JH, Moon YS & Armstrong DT 1975 Estradiol-17β biosynthesis in cultured granulosa cells from hypophysectomized immature rats; stimulation by follicle-stimulating hormone. Endocrinology 97 13281331. (https://doi.org/10.1210/endo-97-5-1328).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunning KR, Russell DL & Robker RL 2014 Lipids and oocyte developmental competence: the role of fatty acids and beta-oxidation. Reproduction 148 R15R27. (https://doi.org/10.1530/REP-13-0251).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortune JE 1994 Ovarian follicular growth and development in mammals. Biology of Reproduction 50 225232. (https://doi.org/10.1095/biolreprod50.2.225).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortune JE & Hansel W 1985 Concentrations of steroids and gonadotropins in follicular fluid from normal heifers and heifers primed for superovulation. Biology of Reproduction 32 10691079. (https://doi.org/10.1095/biolreprod32.5.1069).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glister C, Tannetta DS, Groome NP & Knight PG 2001 Interactions between follicle-stimulating hormone and growth factors in modulating secretion of steroids and inhibin-related peptides by nonluteinized bovine granulosa cells. Biology of Reproduction 65 10201028. (https://doi.org/10.1095/biolreprod65.4.1020).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldstein JL & Brown MS 1990 Regulation of the mevalonate pathway. Nature 343 425430. (https://doi.org/10.1038/343425a0).

  • Gong JG, McBride D, Bramley TA & Webb R 1993 Effects of recombinant bovine somatotrophin, insulin-like growth factor-I and insulin on the proliferation of bovine granulosa cells in vitro. Journal of Endocrinology 139 6775. (https://doi.org/10.1677/joe.0.1390067).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin S, Preta G & Sheldon IM 2017 Inhibiting mevalonate pathway enzymes increases stromal cell resilience to a cholesterol-dependent cytolysin. Scientific Reports 7 17050. (https://doi.org/10.1038/s41598-017-17138-y).

    • Search Google Scholar
    • Export Citation
  • Griffin S, Healey GD & Sheldon IM 2018 Isoprenoids increase bovine endometrial stromal cell tolerance to the cholesterol-dependent cytolysin from Trueperella pyogenes. Biology of Reproduction 99 749760. (https://doi.org/10.1093/biolre/ioy099).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutierrez CG, Campbell BK & Webb R 1997 Development of a long-term bovine granulosa cell culture system: induction and maintenance of estradiol production, response to follicle-stimulating hormone, and morphological characteristics. Biology of Reproduction 56 608616. (https://doi.org/10.1095/biolreprod56.3.608).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healey GD, Collier C, Griffin S, Schuberth HJ, Sandra O, Smith DG, Mahan S, Dieuzy-Labaye I & Sheldon IM 2016 Mevalonate biosynthesis intermediates are key regulators of innate immunity in bovine endometritis. Journal of Immunology 196 823831. (https://doi.org/10.4049/jimmunol.1501080).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy LL, Cronin JG & Sheldon IM 2014 Endometrial cells sense and react to tissue damage during infection of the bovine endometrium via interleukin 1. Scientific Reports 4 7060. (https://doi.org/10.1038/srep07060).

    • Search Google Scholar
    • Export Citation
  • Herath S, Williams EJ, Lilly ST, Gilbert RO, Dobson H, Bryant CE & Sheldon IM 2007 Ovarian follicular cells have innate immune capabilities that modulate their endocrine function. Reproduction 134 683693. (https://doi.org/10.1530/REP-07-0229).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horlock AD, Ormsby TJR, Clift MJD, Santos JEP, Bromfield JJ & Sheldon IM 2021 Manipulating bovine granulosa cell energy metabolism limits inflammation. Reproduction 161 499512. (https://doi.org/10.1530/REP-20-0554).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler EC, Gross JJ, Bruckmaier RM & Albrecht C 2014 Cholesterol metabolism, transport, and hepatic regulation in dairy cows during transition and early lactation. Journal of Dairy Science 97 54815490. (https://doi.org/10.3168/jds.2014-7926).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutyavin VI & Chawla A 2018 Aster: a new star in cholesterol trafficking. Cell 175 307309. (https://doi.org/10.1016/j.cell.2018.09.025).

  • Lai WA, Yeh YT, Lee MT, Wu LS, Ke FC & Hwang JJ 2013 Ovarian granulosa cells utilize scavenger receptor SR-BI to evade cellular cholesterol homeostatic control for steroid synthesis. Journal of Lipid Research 54 365378. (https://doi.org/10.1194/jlr.M030239).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lainé AL, Laclie C, Furlong J, Crowe MA & Monniaux D 2019 A bovine-specific FSH enzyme immunoassay and its application to study the role of FSH in ovarian follicle development during the postnatal period. Animal 13 16661675. (https://doi.org/10.1017/S1751731118003233)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy JL, Vanholder T, Delanghe JR, Opsomer G, Van Soom A, Bols PE, Dewulf J & de Kruif A 2004 Metabolic changes in follicular fluid of the dominant follicle in high-yielding dairy cows early post partum. Theriogenology 62 11311143. (https://doi.org/10.1016/j.theriogenology.2003.12.017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu YX & Hsueh AJ 1986 Synergism between granulosa and theca-interstitial cells in estrogen biosynthesis by gonadotropin-treated rat ovaries: studies on the two-cell, two-gonadotropin hypothesis using steroid antisera. Biology of Reproduction 35 2736. (https://doi.org/10.1095/biolreprod35.1.27).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moresco EM, LaVine D & Beutler B 2011 Toll-like receptors. Current Biology 21 R488R493. (https://doi.org/10.1016/j.cub.2011.05.039).

  • Nicholson AM & Ferreira A 2009 Increased membrane cholesterol might render mature hippocampal neurons more susceptible to beta-amyloid-induced calpain activation and tau toxicity. Journal of Neuroscience 29 46404651. (https://doi.org/10.1523/JNEUROSCI.0862-09.2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nimz M, Spitschak M, Schneider F, Fürbass R & Vanselow J 2009 Down-regulation of genes encoding steroidogenic enzymes and hormone receptors in late preovulatory follicles of the cow coincides with an accumulation of intrafollicular steroids. Domestic Animal Endocrinology 37 4554. (https://doi.org/10.1016/j.domaniend.2009.02.002).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill LAJ, Kishton RJ & Rathmell J 2016 A guide to immunometabolism for immunologists. Nature Reviews: Immunology 16 553565. (https://doi.org/10.1038/nri.2016.70).

    • Search Google Scholar
    • Export Citation
  • O’Shaughnessy PJ, Pearce S & Mannan MA 1990 Effect of high-density lipoprotein on bovine granulosa cells: progesterone production in newly isolated cells and during cell culture. Journal of Endocrinology 124 255260. (https://doi.org/10.1677/joe.0.1240255).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piersanti RL, Horlock AD, Block J, Santos JEP, Sheldon IM & Bromfield JJ 2019 Persistent effects on bovine granulosa cell transcriptome after resolution of uterine disease. Reproduction 158 3546. (https://doi.org/10.1530/REP-19-0037).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portela VM, Zamberlam G & Price CA 2010 Cell plating density alters the ratio of estrogenic to progestagenic enzyme gene expression in cultured granulosa cells. Fertility and Sterility 93 20502055. (https://doi.org/10.1016/j.fertnstert.2009.01.151).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price JC & Sheldon IM 2013 Granulosa cells from emerged antral follicles of the bovine ovary initiate inflammation in response to bacterial pathogen-associated molecular patterns via toll-like receptor pathways. Biology of Reproduction 89 119. (https://doi.org/10.1095/biolreprod.113.110965).

    • Search Google Scholar
    • Export Citation
  • Price JC, Bromfield JJ & Sheldon IM 2013 Pathogen-associated molecular patterns initiate inflammation and perturb the endocrine function of bovine granulosa cells from ovarian dominant follicles via TLR2 and TLR4 pathways. Endocrinology 154 33773386. (https://doi.org/10.1210/en.2013-1102).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reaven E, Tsai L & Azhar S 1995 Cholesterol uptake by the ‘selective’ pathway of ovarian granulosa cells: early intracellular events. Journal of Lipid Research 36 16021617. (https://doi.org/10.1016/S0022-2275(2039746-7).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reverchon M, Bertoldo MJ, Ramé C, Froment P & Dupont J 2014 Chemerin (RARRES2) decreases in vitro granulosa cell steroidogenesis and blocks oocyte meiotic progression in bovine species. Biology of Reproduction 90 102. (https://doi.org/10.1095/biolreprod.113.117044).

    • Search Google Scholar
    • Export Citation
  • Ribeiro ES, Gomes G, Greco LF, Cerri RLA, Vieira-Neto A, Monteiro PLJ, Lima FS, Bisinotto RS, Thatcher WW & Santos JEP 2016 Carryover effect of postpartum inflammatory diseases on developmental biology and fertility in lactating dairy cows. Journal of Dairy Science 99 22012220. (https://doi.org/10.3168/jds.2015-10337).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roth Z & Wolfenson D 2016 Comparing the effects of heat stress and mastitis on ovarian function in lactating cows: basic and applied aspects. Domestic Animal Endocrinology 56 (Supplement) S218S227. (https://doi.org/10.1016/j.domaniend.2016.02.013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savion N, Laherty R, Lui GM & Gospodarowicz D 1981 Modulation of low density lipoprotein metabolism in bovine granulosa cells as a function of their steroidogenic activity. Journal of Biological Chemistry 256 1281712822. (https://doi.org/10.1016/S0021-9258(1842968-7).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savion N, Laherty R, Cohen D, Lui GM & Gospodarowicz D 1982 Role of lipoproteins and 3-hydroxy-3-methylglutaryl coenzyme A reductase in progesterone production by cultured bovine granulosa cells. Endocrinology 110 1322. (https://doi.org/10.1210/endo-110-1-13).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S & Schmid B et al.2012 Fiji: an open-source platform for biological-image analysis. Nature Methods 9 676682. (https://doi.org/10.1038/nmeth.2019).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheldon IM, Noakes DE, Rycroft AN, Pfeiffer DU & Dobson H 2002 Influence of uterine bacterial contamination after parturition on ovarian dominant follicle selection and follicle growth and function in cattle. Reproduction 123 837845. (https://doi.org/10.1530/rep.0.1230837).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheldon IM, Cronin JG & Bromfield JJ 2019 Tolerance and innate immunity shape the development of postpartum uterine disease and the impact of endometritis in dairy cattle. Annual Review of Animal Biosciences 7 361384. (https://doi.org/10.1146/annurev-animal-020518-115227).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimada M, Hernandez-Gonzalez I, Gonzalez-Robanya I & Richards JS 2006 Induced expression of pattern recognition receptors in cumulus oocyte complexes: novel evidence for innate immune-like functions during ovulation. Molecular Endocrinology 20 32283239. (https://doi.org/10.1210/me.2006-0194).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimizu T, Miyauchi K, Shirasuna K, Bollwein H, Magata F, Murayama C & Miyamoto A 2012 Effects of lipopolysaccharide (LPS) and peptidoglycan (PGN) on estradiol production in bovine granulosa cells from small and large follicles. Toxicology In Vitro 26 11341142. (https://doi.org/10.1016/j.tiv.2012.06.014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siu MKY & Cheng CY 2012 The blood-follicle barrier (BFB) in disease and in ovarian function. Advances in Experimental Medicine and Biology 763 186192. (https://doi.org/10.1007/978-1-4614-4711-5_9).

    • Search Google Scholar
    • Export Citation
  • Spicer LJ, Chamberlain CS & Maciel SM 2002 Influence of gonadotropins on insulin- and insulin-like growth factor-I (IGF-I)-induced steroid production by bovine granulosa cells. Domestic Animal Endocrinology 22 237254. (https://doi.org/10.1016/s0739-7240(0200125-x).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tall AR & Yvan-Charvet L 2015 Cholesterol, inflammation and innate immunity. Nature Reviews: Immunology 15 104116. (https://doi.org/10.1038/nri3793).

    • Search Google Scholar
    • Export Citation
  • Triantafilou M, Miyake K, Golenbock DT & Triantafilou K 2002 Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. Journal of Cell Science 115 26032611. (https://doi.org/10.1242/jcs.115.12.2603).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vasquez M, Simões I, Consuegra-Fernández M, Aranda F, Lozano F & Berraondo P 2017 Exploiting scavenger receptors in cancer immunotherapy: lessons from CD5 and SR-B1. European Journal of Immunology 47 11081118. (https://doi.org/10.1002/eji.201646903).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vishnyakova TG, Bocharov AV, Baranova IN, Chen Z, Remaley AT, Csako G, Eggerman TL & Patterson AP 2003 Binding and internalization of lipopolysaccharide by Cla-1, a human orthologue of rodent scavenger receptor B1. Journal of Biological Chemistry 278 2277122780. (https://doi.org/10.1074/jbc.M211032200).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu Z, Garverick HA, Smith GW, Smith MF, Hamilton SA & Youngquist RS 1995 Expression of follicle-stimulating hormone and luteinizing hormone receptor messenger ribonucleic acids in bovine follicles during the first follicular wave. Biology of Reproduction 53 951957. (https://doi.org/10.1095/biolreprod53.4.951).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamashita H, Murayama C, Takasugi R, Miyamoto A & Shimizu T 2011 BMP-4 suppresses progesterone production by inhibiting histone H3 acetylation of StAR in bovine granulosa cells in vitro. Molecular and Cellular Biochemistry 348 183190. (https://doi.org/10.1007/s11010-010-0653-9).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang JY, Wu Y, Zhao S, Liu ZX, Zeng SM & Zhang GX 2015 Lysosomes are involved in induction of steroidogenic acute regulatory protein (StAR) gene expression and progesterone synthesis through low-density lipoprotein in cultured bovine granulosa cells. Theriogenology 84 811817. (https://doi.org/10.1016/j.theriogenology.2015.05.016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zidovetzki R & Levitan I 2007 Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochimica et Biophysica Acta 1768 13111324. (https://doi.org/10.1016/j.bbamem.2007.03.026).

    • Crossref
    • Search Google Scholar
    • Export Citation