Optical coherence microscopy allows for quality assessment of immature mouse oocytes

in Reproduction
Authors:
Monika FluksDepartment of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland

Search for other papers by Monika Fluks in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0948-1045
,
Szymon TamborskiInstitute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Toruń, Poland

Search for other papers by Szymon Tamborski in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3636-5824
,
Maciej SzkulmowskiInstitute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Toruń, Poland

Search for other papers by Maciej Szkulmowski in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2006-0524
, and
Anna AjdukDepartment of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland

Search for other papers by Anna Ajduk in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7262-1370
View More View Less

Correspondence should be addressed to A Ajduk; Email: a.ajduk@uw.edu.pl
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $1.00
USD  $1.00

In brief

Optical coherence microscopy is a label-free and non-invasive imaging technique capable of 3D subcellular structure visualization. Here we show that this method allows for quality assessment of immature mouse oocytes based on their chromatin conformation and can be a valuable addition to the toolkit used in assisted reproduction procedures.

Abstract

The success of assisted reproductive technologies, and particularly in vitro maturation, is tightly linked to the quality of oocytes. Therefore, there is a need for robust, reliable, and easy-to-assess biomarkers of oocyte developmental competence. Microscopy techniques visualizing oocyte intracellular structure could provide such biomarkers. However, fluorescence imaging methods, applied frequently in biology and allowing for detailed structural and dynamic studies of single cells, require fluorescent tags to visualize cellular architecture and may cause short- and long-term photo-damage. On the other hand, traditional light microscopy, although relatively non-invasive, does not provide detailed structural information. Optical coherence microscopy (OCM) is a promising alternative, as it does not require sample pre-processing or labelling and can provide 3D images of intracellular structures. Here we applied OCM to assess the chromatin conformation of immature mouse oocytes, a feature that corresponds with their transcriptional status and developmental competence and cannot be examined by traditional light microscopy. We showed that OCM distinguished oocytes with so-called non-surrounded nucleoli (NSN) and surrounded nucleoli (SN) chromatin conformation with very high sensitivity and specificity and that OCM scanning did not decrease the quality of oocytes. Finally, we cross-referenced OCM data with the oocyte ability to undergo normal nuclear and cytoplasmic maturation and proven that indeed oocytes scored with OCM as NSN mature less effectively than oocytes scored as SN. Our results suggest that OCM may be a valuable addition to the imaging toolkit used in assisted reproduction procedures.

 

  • Collapse
  • Expand
  • Aguila L, Treulen F, Therrien J, Felmer R, Valdivia M & Smith LC 2020 Oocyte selection for in vitro embryo production in bovine species: noninvasive approaches for new challenges of oocyte competence. Animals 10 2196. (https://doi.org/10.3390/ani10122196)

    • Search Google Scholar
    • Export Citation
  • Ajduk A & Szkulmowski M 2019 Light microscopy of mammalian gametes and embryos: methods and applications. International Journal of Developmental Biology 63 235244. (https://doi.org/10.1387/ijdb.180300aa)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ajduk A & Zernicka-Goetz M 2013 Quality control of embryo development. Molecular Aspects of Medicine 34 903918. (https://doi.org/10.1016/j.mam.2013.03.001)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaban B & Urman B 2006 Effect of oocyte morphology on embryo development and implantation. Reproductive Biomedicine Online 12 608615. (https://doi.org/10.1016/s1472-6483(1061187-x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bertrand E, Van Den Bergh M & Englert Y 1995 Does zona pellucida thickness influence the fertilization rate? Human Reproduction 10 11891193. (https://doi.org/10.1093/oxfordjournals.humrep.a136116)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biebricher AS, Heller I, Roijmans RFH, Hoekstra TP, Peterman EJG & Wuite GJL 2015 The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics. Nature Communications 6 7304. (https://doi.org/10.1038/ncomms8304)

    • Search Google Scholar
    • Export Citation
  • Bouniol-Baly C, Hamraoui L, Guibert J, Beaujean N, Szöllösi MS & Debey P 1999 Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes. Biology of Reproduction 60 580587. (https://doi.org/10.1095/biolreprod60.3.580)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromer JG & Seli E 2008 Assessment of embryo viability in assisted reproductive technology: shortcomings of current approaches and the emerging role of metabolomics. Current Opinion in Obstetrics and Gynecology 20 234241. (https://doi.org/10.1097/GCO.0b013e3282fe723d)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrd SR, Flores-Foxworth G, Applewhite AA & Westhusin ME 1997 In vitro maturation of ovine oocytes in a portable incubator. Theriogenology 47 857864. (https://doi.org/10.1016/S0093-691X(9700041-1)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caamaño JN, Muñoz M, Diez C & Gómez E 2010 Polarized light microscopy in mammalian oocytes. Reproduction in Domestic Animals 45 (Supplement 2) 4956. (https://doi.org/10.1111/j.1439-0531.2010.01621.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell K & Swann K 2006 Ca2+ oscillations stimulate an ATP increase during fertilization of mouse eggs. Developmental Biology 298 225233. (https://doi.org/10.1016/j.ydbio.2006.06.032)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caujolle S, Cernat R, Silvestri G, Marques MJ, Bradu A, Feuchter T, Robinson G, Griffin DK & Podoleanu A 2017 Speckle variance OCT for depth resolved assessment of the viability of bovine embryos. Biomedical Optics Express 8 5139–5150. (https://doi.org/10.1364/BOE.8.005139)

    • Search Google Scholar
    • Export Citation
  • Chang EM, Song HS, Lee DR, Lee WS & Yoon TK 2014 In vitro maturation of human oocytes: its role in infertility treatment and new possibilities. Clinical and Experimental Reproductive Medicine 41 4146. (https://doi.org/10.5653/CERM.2014.41.2.41)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Vos M, Grynberg M, Ho TM, Yuan Y, Albertini DF & Gilchrist RB 2021 Perspectives on the development and future of oocyte IVM in clinical practice. Journal of Assisted Reproduction and Genetics 38 12651280. (https://doi.org/10.1007/s10815-021-02263-5)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Debey P, Szöllösi MS, Szöllösi D, Vautier D, Girousse A & Besombes D 1993 Competent mouse oocytes isolated from antral follicles exhibit different chromatin organization and follow different maturation dynamics. Molecular Reproduction and Development 36 5974. (https://doi.org/10.1002/mrd.1080360110)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducibella T, Kurasawa S, Rangarajan S, Kopf GS & Schultz RM 1990 Precocious loss of cortical granules during mouse oocyte meiotic maturation and correlation with an egg-induced modification of the zona pellucida. Developmental Biology 137 4655. (https://doi.org/10.1016/0012-1606(9090006-5)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducibella T, Huneau D, Angelichio E, Xu Z, Schultz RM, Kopf GS, Fissore R, Madoux S & Ozil JP 2002 Egg-to-embryo transition is driven by differential responses to Ca2+ oscillation number. Developmental Biology 250 280291. (https://doi.org/10.1006/dbio.2002.0788)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudani S & Gupta A 2014 Fertility preservation in young patients’ with cancer. Journal of Mid-Life Health 5 165167. (https://doi.org/10.4103/0976-7800.145148)

    • Search Google Scholar
    • Export Citation
  • Dumollard R, Marangos P, Fitzharris G, Swann K, Duchen M & Carroll J 2004 Sperm-triggered [Ca2+] oscillations and Ca2+homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production. Development 131 30573067. (https://doi.org/10.1242/DEV.01181)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dumollard R, Campbell K, Halet G, Carroll J & Swann K 2008 Regulation of cytosolic and mitochondrial ATP levels in mouse eggs and zygotes. Developmental Biology 316 431440. (https://doi.org/10.1016/j.ydbio.2008.02.004)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand RE & Olive PL 1982 Cytotoxicity, mutagenicity and DNA damage by Hoechst 33342. Journal of Histochemistry and Cytochemistry 30 111116. (https://doi.org/10.1177/30.2.7061816)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebner T, Moser M, Sommergruber M & Tews G 2003 Selection based on morphological assessment of oocytes and embryos at different stages of preimplantation development: a review. Human Reproduction Update 9 251262. (https://doi.org/10.1093/humupd/dmg021)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebner T, Shebl O, Moser M, Sommergruber M & Tews G 2008 Developmental fate of ovoid oocytes. Human Reproduction 23 6266. (https://doi.org/10.1093/humrep/dem280)

    • Search Google Scholar
    • Export Citation
  • Fatum M, Bergeron ME, Ross C, Ding A, Bhevan A, Turner K & Child T 2020 Rescue in vitro maturation in polycystic ovarian syndrome patients undergoing in vitro fertilization treatment who overrespond or underrespond to ovarian stimulation: is it a viable option? A case series study. International Journal of Fertility and Sterility 14 137142. (https://doi.org/10.22074/ijfs.2020.6025)

    • Search Google Scholar
    • Export Citation
  • Fluks M, Szczepanska K, Ishikawa T & Ajduk A 2019 Transcriptional status of mouse oocytes corresponds with their ability to generate Ca2+ release. Reproduction 157 465474. (https://doi.org/10.1530/REP-18-0625)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraser LR 1982 p-aminobenzamidine, an acrosin inhibitor, inhibits mouse sperm penetration of the zona pellucida but not the acrosome reaction. Journal of Reproduction and Fertility 65 185194. (https://doi.org/10.1530/JRF.0.0650185)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulton BP & Whittingham DG 1978 Activation of mammalian oocytes by intracellular injection of calcium. Nature 273 149151. (https://doi.org/10.1038/273149a0)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galli C, Duchi R, Colleoni S, Lagutina I & Lazzari G 2014 Ovum pick up, intracytoplasmic sperm injection and somatic cell nuclear transfer in cattle, buffalo and horses: from the research laboratory to clinical practice. Theriogenology 81 138151. (https://doi.org/10.1016/j.theriogenology.2013.09.008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gandolfi F & Brevini TAL 2010 RFD award lecture 2009. In vitro maturation of farm animal oocytes: a useful tool for investigating the mechanisms leading to full-term development. Reproduction, Fertility, and Development 22 495507. (https://doi.org/10.1071/RD09151)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilchrist RB, Lane M & Thompson JG 2008 Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Human Reproduction Update 14 159177. (https://doi.org/10.1093/humupd/dmm040)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinrichs K & Schmidt AL 2000 Meiotic competence in horse oocytes: interactions among chromatin configuration, follicle size, cumulus morphology, and season. Biology of Reproduction 62 14021408. (https://doi.org/10.1095/BIOLREPROD62.5.1402)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue A, Nakajima R, Nagata M & Aoki F 2008 Contribution of the oocyte nucleus and cytoplasm to the determination of meiotic and developmental competence in mice. Human Reproduction 23 13771384. (https://doi.org/10.1093/HUMREP/DEN096)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones KT, Carroll J & Whittingham DG 1995 Ionomycin, thapsigargin, ryanodine, and sperm induced Ca2+ release increase during meiotic maturation of mouse oocytes. Journal of Biological Chemistry 270 66716677. (https://doi.org/10.1074/jbc.270.12.6671)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahraman S, Yakin K, Dönmez E, Samli H, Bahçe M, Cengiz G, Sertyel S, Samli M & Imirzalioğlu N 2000 Relationship between granular cytoplasm of oocytes and pregnancy outcome following intracytoplasmic sperm injection. Human Reproduction 15 23902393. (https://doi.org/10.1093/humrep/15.11.2390)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnowski K, Ajduk A, Wieloch B, Tamborski S, Krawiec K, Wojtkowski M & Szkulmowski M 2017 Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos. Scientific Reports 7 4165. (https://doi.org/10.1038/s41598-017-04220-8)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kyvelidou C, Tserevelakis GJ, Filippidis G, Ranella A, Kleovoulou A, Fotakis C & Athanassakis I 2011 Following the course of pre-implantation embryo patterning by non-linear microscopy. Journal of Structural Biology 176 379386. (https://doi.org/10.1016/J.JSB.2011.09.007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larman MG, Saunders CM, Carroll J, Lai FA & Swann K 2004 Cell cycle-dependent Ca2+ oscillations in mouse embryos are regulated by nuclear targeting of PLCζ. Journal of Cell Science 117 25132521. (https://doi.org/10.1242/JCS.01109)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letourneau JM, Ebbel EE, Katz PP, Oktay KH, McCulloch CE, Ai WZ, Chien AJ, Melisko ME, Cedars MI & Rosen MP 2012 Acute ovarian failure underestimates age-specific reproductive impairment for young women undergoing chemotherapy for cancer. Cancer 118 19331939. (https://doi.org/10.1002/cncr.26403)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao JC, Roider J & Jay DG 1994 Chromophore-assisted laser inactivation of proteins is mediated by the photogeneration of free radicals. PNAS 91 2659–2663. (https://doi.org/10.1073/PNAS.91.7.2659)

    • Search Google Scholar
    • Export Citation
  • Lim J, Sanders RA, Yeager RL, Millsap DS, Watkins JB, Eells JT & Henshel DS 2008 Attenuation of TCDD-induced oxidative stress by 670 nm photobiomodulation in developmental chicken kidney. Journal of Biochemical and Molecular Toxicology 22 230239. (https://doi.org/10.1002/JBT.20233)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim WB, Kim JS, Ko YJ, Kwon H, Kim SW, Min HK, Kim O, Choi HR & Kim OJ 2011 Effects of 635nm light-emitting diode irradiation on angiogenesis in CoCl2-exposed HUVECs. Lasers in Surgery and Medicine 43 344352. (https://doi.org/10.1002/LSM.21038)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu H & Aoki F 2002 Transcriptional activity associated with meiotic competence in fully grown mouse GV oocytes. Zygote 10 327332. (https://doi.org/10.1017/s0967199402004069)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lodde V, Modina S, Galbusera C, Franciosi F & Luciano AM 2007 Large-scale chromatin remodeling in germinal vesicle bovine oocytes: interplay with gap junction functionality and developmental competence. Molecular Reproduction and Development 74 740749. (https://doi.org/10.1002/mrd.20639)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubart R, Lavi R, Friedmann H & Rochkind S 2006 Photochemistry and photobiology of light absorption by living cells. Photomedicine and Laser Surgery 24 179185. (https://doi.org/10.1089/PHO.2006.24.179)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masuda Y, Hasebe R, Kuromi Y, Kobayashi M, Iwamoto M, Hishinuma M, Ohbayashi T & Nishimura R 2021 Three-dimensional live imaging of bovine embryos by optical coherence tomography. Journal of Reproduction and Development 67 149–154. (https://doi.org/10.1262/JRD.2020-151)

    • Search Google Scholar
    • Export Citation
  • Mattson BA & Albertini DF 1990 Oogenesis: chromatin and microtubule dynamics during meiotic prophase. Molecular Reproduction and Development 25 374383. (https://doi.org/10.1002/mrd.1080250411)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyara F, Migne C, Dumont-Hassan M, Le Meur A, Cohen-Bacrie P, Aubriot FX, Glissant A, Nathan C, Douard S & Stanovici A et al.2003 Chromatin configuration and transcriptional control in human and mouse oocytes. Molecular Reproduction and Development 64 458470. (https://doi.org/10.1002/MRD.10233)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai T 2001 The improvement of in vitro maturation systems for bovine and porcine oocytes. Theriogenology 55 12911301. (https://doi.org/10.1016/S0093-691X(0100483-6)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozil JP, Markoulaki S, Toth S, Matson S, Banrezes B, Knott JG, Schultz RM, Huneau D & Ducibella T 2005 Egg activation events are regulated by the duration of a sustained [Ca2+]cyt signal in the mouse. Developmental Biology 282 3954. (https://doi.org/10.1016/j.ydbio.2005.02.035)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozil JP, Banrezes B, Tóth S, Pan H & Schultz RM 2006 Ca2+ oscillatory pattern in fertilized mouse eggs affects gene expression and development to term. Developmental Biology 300 534544. (https://doi.org/10.1016/J.YDBIO.2006.08.041)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan LZ, Zhu S, Zhang M, Sun MJ, Lin J, Chen F & Tan JH 2018 A new classification of the germinal vesicle chromatin configurations in pig oocytes. Biology of Reproduction 99 11491158. (https://doi.org/10.1093/BIOLRE/IOY139)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patrizio P, Fragouli E, Bianchi V, Borini A & Wells D 2007 Molecular methods for selection of the ideal oocyte. Reproductive Biomedicine Online 15 346353. (https://doi.org/10.1016/s1472-6483(1060349-5)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy KO & Reed ML 2012 The effect of light on embryos and embryo culture. Journal of Reproductive and Stem Cell Biotechnology 3 4654. (https://doi.org/10.1177/205891581200300203)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raghunathan R, Singh M, Dickinson ME & Larin KV 2016 Optical coherence tomography for embryonic imaging: a review. Journal of Biomedical Optics 21 50902. (https://doi.org/10.1117/1.JBO.21.5.050902)

    • Search Google Scholar
    • Export Citation
  • Rienzi L, Vajta G & Ubaldi F 2011 Predictive value of oocyte morphology in human IVF: a systematic review of the literature. Human Reproduction Update 17 3445. (https://doi.org/10.1093/humupd/dmq029)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigues P, Marques M, Pimentel S, Rato M, Carvalho P, Correia SC, Mendes N, Amaral H, Fernandes JP & Carvalho MJ et al.2020 Oncofertility case report: live birth 10 years after oocyte in vitro maturation and zygote cryopreservation. Journal of Assisted Reproduction and Genetics 37 30893094. (https://doi.org/10.1007/s10815-020-01984-3)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sauerbrun-Cutler MT, Vega M, Keltz M & McGovern PG 2015 In vitro maturation and its role in clinical assisted reproductive technology. Obstetrical and Gynecological Survey 70 4557. (https://doi.org/10.1097/OGX.0000000000000150)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S & Schmid B et al.2012 Fiji: an open-source platform for biological-image analysis. Nature Methods 9 676682. (https://doi.org/10.1038/nmeth.2019)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schramm RD, Tennier MT, Boatman DE & Bavister BD 1993 Chromatin configurations and meiotic competence of oocytes are related to follicular diameter in nonstimulated rhesus monkeys. Biology of Reproduction 48 349356. (https://doi.org/10.1095/BIOLREPROD48.2.349)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen O, Saurin AT & Higgins JMG 2018 The live cell DNA stain SiR-Hoechst induces DNA damage responses and impairs cell cycle progression. Scientific Reports 8 7898. (https://doi.org/10.1038/s41598-018-26307-6)

    • Search Google Scholar
    • Export Citation
  • Sjunnesson Y 2019 In vitro fertilisation in domestic mammals – a brief overview. Upsala Journal of Medical Sciences 1 19. (https://doi.org/10.1080/03009734.2019.1697911)

    • Search Google Scholar
    • Export Citation
  • Sohn H, Ko Y, Park M, Kim D, Moon YL, Jeong YJ, Lee H, Moon Y, Jeong BC & Kim O et al.2015 Effects of light-emitting diode irradiation on RANKL-induced osteoclastogenesis. Lasers in Surgery and Medicine 47 745755. (https://doi.org/10.1002/LSM.22413)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sommer AP 2019 Mitochondrial cytochrome c oxidase is not the primary acceptor for near infrared light – it is mitochondrial bound water: the principles of low-level light therapy. Annals of Translational Medicine 7 S13S13. (https://doi.org/10.21037/ATM.2019.01.43)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun CK, Hsieh CS, Chen SU, Lee YW & Yang YS 2008 Higher harmonic generation microscopy of in vitro cultured mammal oocytes and embryos. Optics Express 16 1157411588. (https://doi.org/10.1364/OE.16.011574)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szkulmowski M, Wojtkowski M, Bajraszewski T, Gorczynska I, Targowski P, Wasilewski W, Kowalczyk A & Radzewicz C 2005 Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source. Optics Communications 246 569578. (https://doi.org/10.1016/j.optcom.2004.11.024)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan JH, Wang HL, Sun XS, Liu Y, Sui HS & Zhang J 2009 Chromatin configurations in the germinal vesicle of mammalian oocytes. Molecular Human Reproduction 15 19. (https://doi.org/10.1093/molehr/gan069)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thayil A, Watanabe T, Jesacher A, Wilson T, Srinivas S & Booth M 2011 Long-term imaging of mouse embryos using adaptive harmonic generation microscopy. Journal of Biomedical Optics 16 046018. (https://doi.org/10.1117/1.3569614)

    • Search Google Scholar
    • Export Citation
  • Walls ML, Hunter T, Ryan JP, Keelan JA, Nathan E & Hart RJ 2015 In vitro maturation as an alternative to standard in vitro fertilization for patients diagnosed with polycystic ovaries: a comparative analysis of fresh, frozen and cumulative cycle outcomes. Human Reproduction 30 8896. (https://doi.org/10.1093/humrep/deu248)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang HL, Sui HS, Liu Y, Miao DQ, Lu JH, Liang B & Tan JH 2009 Dynamic changes of germinal vesicle chromatin configuration and transcriptional activity during maturation of rabbit follicles. Fertility and Sterility 91 (Supplement) 15891594. (https://doi.org/10.1016/J.FERTNSTERT.2008.10.071)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe T, Thayil A, Jesacher A, Grieve K, Debarre D, Wilson T, Booth M & Srinivas S 2010 Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy. BMC Cell Biology 11 38. (https://doi.org/10.1186/1471-2121-11-38)

    • Search Google Scholar
    • Export Citation
  • Wickramasinghe D, Ebert KM & Albertini DF 1991 Meiotic competence acquisition is associated with the appearance of M-phase characteristics in growing mouse oocytes. Developmental Biology 143 162172. (https://doi.org/10.1016/0012-1606(9190063-9)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia P 1997 Intracytoplasmic sperm injection: correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilization rate and embryo quality. Human Reproduction 12 17501755. (https://doi.org/10.1093/humrep/12.8.1750)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao J, Wang B, Lu G, Zhu Z & Huang Y 2012 Imaging of oocyte development using ultrahigh-resolution full-field optical coherence tomography. Applied Optics 51 36503654. (https://doi.org/10.1364/AO.51.003650)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarnescu L, Leung MC, Abeyta M, Sudkamp HM, Baer TM, Behr B & Ellerbee AK 2015 Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography. Journal of Biomedical Optics 20 096004. (https://doi.org/10.1117/1.JBO.20.9.096004)

    • Search Google Scholar
    • Export Citation
  • Zheng J, Chen T, Wang C, Tian N, Zhao F, Huo T, Zhang N, Chen D, Ma W & Sun J-L et al.2012 Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography. Journal of Biomedical Optics 17 1. (https://doi.org/10.1117/1.JBO.17.7.070503)

    • Search Google Scholar
    • Export Citation
  • Zheng JG, Huo T, Chen T, Wang C, Zhang N, Tian N, Zhao F, Lu D, Chen D & Ma W et al.2013a Understanding three-dimensional spatial relationship between the mouse second polar body and first cleavage plane with full-field optical coherence tomography. Journal of Biomedical Optics 18 10503. (https://doi.org/10.1117/1.JBO.18.1.010503)

    • Search Google Scholar
    • Export Citation
  • Zheng JG, Huo T, Tian N, Chen T, Wang C, Zhang N, Zhao F, Lu D, Chen D & Ma W et al.2013b Noninvasive three-dimensional live imaging methodology for the spindles at meiosis and mitosis. Journal of Biomedical Optics 18 50505. (https://doi.org/10.1117/1.JBO.18.5.050505)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuccotti M, Piccinelli A, Rossi PG, Garagna S & Redi CA 1995 Chromatin organization during mouse oocyte growth. Molecular Reproduction and Development 41 479485. (https://doi.org/10.1002/mrd.1080410410)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuccotti M, Ponce RH, Boiani M, Guizzardi S, Govoni P, Scandroglio R, Garagna S & Redi CA 2002 The analysis of chromatin organisation allows selection of mouse antral oocytes competent for development to blastocyst. Zygote 10 7378. (https://doi.org/10.1017/s0967199402002101)

    • Crossref
    • Search Google Scholar
    • Export Citation