Cellular responses and microRNA profiling in bovine spermatozoa under heat shock

in Reproduction
Authors:
Daniela F da Silva Institute of Biosciences, State University of Sao Paulo, Botucatu, Sao Paulo, Brazil

Search for other papers by Daniela F da Silva in
Current site
Google Scholar
PubMed
Close
,
Thaís A Rodrigues Laboratory of Cellular and Developmental Biology, Chemical Biology Graduate Program, Department of Biological Sciences, Federal University of São Paulo, Diadema, Sao Paulo, Brazil

Search for other papers by Thaís A Rodrigues in
Current site
Google Scholar
PubMed
Close
,
Juliano C da Silveira Laboratory of Molecular Morphophysiology and Development, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Sao Paulo, Brazil

Search for other papers by Juliano C da Silveira in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4796-6393
,
Angela M Gonella-Diaza Department of Animal Reproduction, University of São Paulo, Pirassununga, Sao Paulo, Brazil

Search for other papers by Angela M Gonella-Diaza in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7446-3831
,
Mario Binelli Department of Animal Reproduction, University of São Paulo, Pirassununga, Sao Paulo, Brazil

Search for other papers by Mario Binelli in
Current site
Google Scholar
PubMed
Close
,
Juliana V Lopes Laboratory of Cellular and Developmental Biology, Chemical Biology Graduate Program, Department of Biological Sciences, Federal University of São Paulo, Diadema, Sao Paulo, Brazil

Search for other papers by Juliana V Lopes in
Current site
Google Scholar
PubMed
Close
,
Marcelo T Moura Laboratory of Cellular and Developmental Biology, Chemical Biology Graduate Program, Department of Biological Sciences, Federal University of São Paulo, Diadema, Sao Paulo, Brazil

Search for other papers by Marcelo T Moura in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3808-6607
,
Weber B Feitosa Laboratory of Cellular and Developmental Biology, Chemical Biology Graduate Program, Department of Biological Sciences, Federal University of São Paulo, Diadema, Sao Paulo, Brazil

Search for other papers by Weber B Feitosa in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7020-694X
, and
Fabíola F Paula-Lopes Institute of Biosciences, State University of Sao Paulo, Botucatu, Sao Paulo, Brazil
Laboratory of Cellular and Developmental Biology, Chemical Biology Graduate Program, Department of Biological Sciences, Federal University of São Paulo, Diadema, Sao Paulo, Brazil

Search for other papers by Fabíola F Paula-Lopes in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5009-3450

Correspondence should be addressed to F F de Paula-Lopes; Email: paula.lopes29@unifesp.br

(A M Gonella-Diaza is now at North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Marianna, Florida, USA)

(M Binelli is now at Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA)

Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

Elevated temperatures disturbed sperm physiology. Bovine sperm cells exposed to heat shock led to diminished mitochondrial activity, fertilizing ability, increased oxidative stress and caspase activity concomitant with a delay in embryonic developmental kinetics and modulation of sperm-borne microRNAsmiRNAs.

Abstract

Sperm function is susceptible to adverse environmental conditions. It has been demonstrated that in vivo and in vitro exposure of bovine sperm to elevated temperature reduces sperm motility and fertilizing potential. However, the cascade of functional, cellular, and molecular events triggered by elevated temperature in the mature sperm cell remains not fully understood. Therefore, the aim of this study was to determine the effect of heat shock on mature sperm cells. Frozen-thawed Holstein sperm were evaluated immediately after Percoll purification (0 h non-incubation control) or after incubation at 35, 38.5, and 41°C for 4 h. Heat shock reduced sperm motility after 3–4 h at 41°C while mitochondrial activity was reduced by 38.5 and 41°C when compared to the control. Heat shock also increased sperm reactive oxygen species production and caspase activity. Heat-shocked sperm had lower fertilizing ability, which led to diminished cleavage and blastocyst rates. Preimplantation embryo developmental kinetics was also slowed and reduced by sperm heat shock. The microRNA (miR) profiling identified >300 miRs in bovine sperm. Among these, three and seven miRs were exclusively identified in sperm cells exposed to 35 and 41°C, respectively. Moreover, miR-181d was enriched in sperm cells exposed to higher temperatures. Hence, elevated temperature altered the physiology of mature sperm cells by perturbing cellular processes and the miR profile, which collectively led to lower fertilizing ability and preimplantation development.

 

  • Collapse
  • Expand
  • Aitken RJ, Gibb Z, Mitchell LA, Lambourne SR, Connaughton HS & De Iuliis GN 2012 Sperm motility is lost in vitro as a consequence of mitochondrial free radical production and the generation of electrophilic aldehydes but can be significantly rescued by the presence of nucleophilic thiols. Biology of Reproduction 87 110. (https://doi.org/10.1095/biolreprod.112.102020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aitken RJ, Gibb Z, Baker MA, Drevet J & Gharagozloo P 2016 Causes and consequences of oxidative stress in spermatozoa. Reproduction, Fertility, and Development 28 110. (https://doi.org/10.1071/RD15325)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alves MBR, de Arruda RP, Batissaco L, Garcia-Oliveros LN, Gonzaga VHG, Nogueira VJM, Almeida FDS, Pinto SCC, Andrade GM & Perecin F et al.2021 Changes in miR levels of sperm and small extracellular vesicles of seminal plasma are associated with transient scrotal heat stress in bulls. Theriogenology 161 2640. (https://doi.org/10.1016/j.theriogenology.2020.11.015)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Alyethodi RR, Sirohi AS, Karthik S, Tyagi S, Perumal P, Singh U, Sharma A & Kundu A 2021 Role of seminal MDA, ROS, and antioxidants in cryopreservation and their kinetics under the influence of ejaculatory abstinence in bovine semen. Cryobiology 98 187193. (https://doi.org/10.1016/j.cryobiol.2020.11.002)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ammar O, Houas Z & Mehdi M 2019 The association between iron, calcium, and oxidative stress in seminal plasma and sperm quality. Environmental Science and Pollution Research International 26 1409714105. (https://doi.org/10.1007/s11356-019-04575-7)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Anzar M, He L, Buhr MM, Kroetsch TG & Pauls KP 2002 Sperm apoptosis in fresh and cryopreserved bull semen detected by flow cytometry and its relationship with fertility. Biology of Reproduction 66 354360. (https://doi.org/10.1095/biolreprod66.2.354)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Biggers BG, Geisert RD, Wetteman RP & Buchanan DS 1987 Effect of heat stress on early embryonic development in the beef cow. Journal of Animal Science 64 15121518. (https://doi.org/10.2527/jas1987.6451512x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chandolia RK, Reinertsen EM & Hansen PJ 1999 Short communication: Lack of breed differences in responses of bovine spermatozoa to heat shock. Journal of Dairy Science 82 26172619. (https://doi.org/10.3168/jds.S0022-0302(9975517-7)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chang H, Qu J, Wang J, Liang X & Sun W 2019 Circular RNA circ_0026134 regulates non-small cell lung cancer cell proliferation and invasion via sponging miR-1256 and miR-1287. Biomedicine and Pharmacotherapy 112 108743. (https://doi.org/10.1016/j.biopha.2019.108743)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen KL, Fu YY, Shi MY & Li HX 2016 Down-regulation of miR-181a can reduce heat stress damage in PBMCs of Holstein cows. In Vitro Cellular and Developmental Biology: Animal 52 864871. (https://doi.org/10.1007/s11626-016-0045-x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • da Silveira JC, Andrade GM, Del Collado M, Sampaio RV, Sangalli JR, Silva LA, Pinaffi FVL, Jardim IB, Cesar MC & Nogueira MFG et al.2017 Supplementation with small-extracellular vesicles from ovarian follicular fluid during in vitro production modulates bovine embryo development. PLoS ONE 12 e0179451. (https://doi.org/10.1371/journal.pone.0179451)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dadoune JP 2003 Expression of mammalian spermatozoal nucleoproteins. Microscopy Research and Technique 61 5675. (https://doi.org/10.1002/jemt.10317)

  • Du C, Fang M, Li Y, Li L & Wang X 2000 Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102 3342. (https://doi.org/10.1016/S0092-8674(0000008-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Du Plessis SS, Cabler S, McAlister DA, Sabanegh E & Agarwal A 2010 The effect of obesity on sperm disorders and male infertility. Nature Reviews: Urology 7 153161. (https://doi.org/10.1038/nrurol.2010.6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ealy AD, Drost M & Hansen PJ 1993 Developmental changes in embryonic resistance to adverse effects of maternal heat stress in cows. Journal of Dairy Science 76 28992905. (https://doi.org/10.3168/jds.S0022-0302(9377629-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fernandes CE, Dode MAN, Pereira D & Silva AEDF 2008 Effects of scrotal insulation in Nellore bulls (Bos taurus indicus) on seminal quality and its relationship with in vitro fertilizing ability. Theriogenology 70 15601568. (https://doi.org/10.1016/j.theriogenology.2008.07.005)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferramosca A, Provenzano SP, Montagna DD, Coppola L & Zara V 2013 Oxidative stress negatively affects human sperm mitochondrial respiration. Urology 82 7883. (https://doi.org/10.1016/j.urology.2013.03.058)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gautam R, Singh KV, Nirala J, Murmu NN, Meena R & Rajamani P 2019 Oxidative stress-mediated alterations on sperm parameters in male Wistar rats exposed to 3G mobile phone radiation. Andrologia 51 e13201. (https://doi.org/10.1111/and.13201)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gawecka JE, Marh J, Ortega M, Yamauchi Y, Ward MA & Ward WS 2013 Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development. PLoS ONE 8 e56385. (https://doi.org/10.1371/journal.pone.0056385)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gonella-Diaza AM, Lopes E, Ribeiro da Silva K, Perecin Nociti R, Mamede Andrade G, Atuesta-Bustos JE, Coelho da Silveira J, Vieira Meirelles F & Binelli M 2021 Steroidal regulation of oviductal microRNAs is associated with microRNA-processing in beef cows. International Journal of Molecular Sciences 22 953. (https://doi.org/10.3390/ijms22020953)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • González-Marín C, Gosálvez J & Roy R 2012 Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells. International Journal of Molecular Sciences 13 1402614052. (https://doi.org/10.3390/ijms131114026)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gupta S, Finelli R, Agarwal A & Henkel R 2021 Total antioxidant capacity – relevance, methods and clinical implications. Andrologia 53 e13624. (https://doi.org/10.1111/and.13624)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gürler H, Calisici O & Bollwein H 2015 Inter- and intra-individual variability of total antioxidant capacity of bovine seminal plasma and relationships with sperm quality before and after cryopreservation. Animal Reproduction Science 155 99105. (https://doi.org/10.1016/j.anireprosci.2015.02.006)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han B, Huang J, Han Y, Hao J, Wu X, Song H, Chen X, Shen Q, Dong X & Pang H et al.2019 The microRNA miR-181c enhances chemosensitivity and reduces chemoresistance in breast cancer cells via down-regulating osteopontin. International Journal of Biological Macromolecules 125 544556. (https://doi.org/10.1016/j.ijbiomac.2018.12.075)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Henao-Mejia J, Williams A, Goff LA, Staron M, Licona-Limón P, Kaech SM, Nakayama M, Rinn JL & Flavell RA 2013 The microRNA miR-181 is a critical cellular metabolic rheostat essential for NKT cell ontogenesis and lymphocyte development and homeostasis. Immunity 38 984997. (https://doi.org/10.1016/j.immuni.2013.02.021)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hendricks KE & Hansen PJ 2009 Can programmed cell death be induced in post-ejaculatory bull and stallion spermatozoa? Theriogenology 71 11381146. (https://doi.org/10.1016/j.theriogenology.2008.12.006)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hendricks KE, Martins L & Hansen PJ 2009 Consequences for the bovine embryo of being derived from a spermatozoan subjected to post-ejaculatory aging and heat shock: development to the blastocyst stage and sex ratio. Journal of Reproduction and Development 55 6974. (https://doi.org/10.1262/jrd.20097)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, Della Penna S, Duyn JH, Glover GH & Gonzalez-Castillo J et al.2013 Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80 360378. (https://doi.org/10.1016/j.neuroimage.2013.05.079)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Indrieri A, Carrella S, Carotenuto P, Banfi S & Franco B 2020 The pervasive role of the miR-181 family in development, neurodegeneration, and cancer. International Journal of Molecular Sciences 21 2092. (https://doi.org/10.3390/ijms21062092)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Islam A, Deuster PA, Devaney JM, Ghimbovschi S & Chen Y 2013 An exploration of heat tolerance in mice utilizing mRNA and microRNA expression analysis. PLoS ONE 8 e72258. (https://doi.org/10.1371/journal.pone.0072258)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Johnson GD, Lalancette C, Linnemann AK, Leduc F, Boissonneault G & Krawetz SA 2011 The sperm nucleus: chromatin, RNA, and the nuclear matrix. Reproduction 141 2136. (https://doi.org/10.1530/REP-10-0322)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kaur S & Bansal MP 2015 Protective role of dietary-supplemented selenium and vitamin E in heat-induced apoptosis and oxidative stress in mice testes. Andrologia 47 11091119. (https://doi.org/10.1111/and.12390)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kogan T, Grossman Dahan D, Laor R, Argov-Argaman N, Zeron Y, Komsky-Elbaz A, Kalo D & Roth Z 2021 Association between fatty acid composition, cryotolerance and fertility competence of progressively motile bovine spermatozoa. Animals 11 2948. (https://doi.org/10.3390/ani11102948)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koppers AJ, Mitchell LA, Wang P, Lin M & Aitken RJ 2011 Phosphoinositide 3-kinase signalling pathway involvement in a truncated apoptotic cascade associated with motility loss and oxidative DNA damage in human spermatozoa. Biochemical Journal 436 687698. (https://doi.org/10.1042/BJ20110114)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leibfried L & First NL 1979 Characterization of bovine follicular oocytes and their ability to mature in vitro. Journal of Animal Science 48 7686. (https://doi.org/10.2527/jas1979.48176x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li Y, Hu J, Li L, Cai S, Zhang H, Zhu X, Guan G & Dong X 2018 Upregulated circular RNA circ_0016760 indicates unfavorable prognosis in NSCLC and promotes cell progression through miR-1287/GAGE1 axis. Biochemical and Biophysical Research Communications 503 20892094. (https://doi.org/10.1016/j.bbrc.2018.07.164)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lima RS, Risolia PHB, Ispada J, Assumpção MEOA, Visintin JA, Orlandi C & Paula-Lopes FF 2017 Role of insulin-like growth factor 1 on cross-bred Bos indicus cattle germinal vesicle oocytes exposed to heat shock. Reproduction, Fertility, and Development 29 14051414. (https://doi.org/10.1071/RD15514)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu X, Kim CN, Yang J, Jemmerson R & Wang X 1996 Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86 147157. (https://doi.org/10.1016/S0092-8674(0080085-9)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marchetti C, Jouy N, Leroy-Martin B, Defossez A, Formstecher P & Marchetti P 2004 Comparison of four fluorochromes for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with sperm motility. Human Reproduction 19 22672276. (https://doi.org/10.1093/humrep/deh416)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin G, Cagnon N, Sabido O, Sion B, Grizard G, Durand P & Levy R 2007 Kinetics of occurrence of some features of apoptosis during the cryopreservation process of bovine spermatozoa. Human Reproduction 22 380388. (https://doi.org/10.1093/humrep/del399)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mazur P, Katkov II, Katkova N & Critser JK 2000 The enhancement of the ability of mouse sperm to survive freezing and thawing by the use of high concentrations of glycerol and the presence of an Escherichia coli membrane preparation (oxyrase) to lower the oxygen concentration. Cryobiology 40 187209. (https://doi.org/10.1006/cryo.2000.2238)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meister G & Tuschl T 2004 Mechanisms of gene silencing by double-stranded RNA. Nature 431 343349. (https://doi.org/10.1038/nature02873)

  • Meistrich ML, Mohapatra B, Shirley CR & Zhao M 2003 Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111 483488. (https://doi.org/10.1007/s00412-002-0227-z)

  • Metzler-Guillemain C, Victorero G, Lepoivre C, Bergon A, Yammine M, Perrin J, Sari-Minodier I, Boulanger N, Rihet P & Nguyen C 2015 Sperm mRNAs and microRNAs as candidate markers for the impact of toxicants on human spermatogenesis: an application to tobacco smoking. Systems Biology in Reproductive Medicine 61 139149. (https://doi.org/10.3109/19396368.2015.1022835)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miller D, Brinkworth M & Iles D 2010 Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139 287301. (https://doi.org/10.1530/REP-09-0281)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Monterroso VH, Drury KC, Ealy AD, Edwards JL & Hansen PJ 1995 Effect of heat shock on function of frozen/thawed bull spermatozoa. Theriogenology 44 947961. (https://doi.org/10.1016/0093-691X(9500282-D)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oliveros JC 2007–2015 Venny. An interactive tool for comparing lists with Venn’s diagrams. (available at: http://bioinfogp.cnb.csic.es/tools/venny/index.html)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ortega-Ferrusola C, Sotillo-Galan Y, Varela-Fernandez E, Gallardo-Bolanos JM, Muriel A, Gonzalez-Fernandez L, Tapia JA & Peña FJ 2008 Detection of ‘apoptosis-like’ changes during the cryopreservation process in equine sperm. Journal of Andrology 29 213221. (https://doi.org/10.2164/jandrol.107.003640)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ostermeier GC, Miller D, Huntriss JD, Diamond MP & Krawetz SA 2004 Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature 429 154154. (https://doi.org/10.1038/429154a)

  • Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B & Bao JK 2012a Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Proliferation 45 487498. (https://doi.org/10.1111/j.1365-2184.2012.00845.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ouyang YB, Lu Y, Yue S & Giffard RG 2012b miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion 12 213219. (https://doi.org/10.1016/j.mito.2011.09.001)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Paasch U, Grunewald S, Agarwal A & Glandera HJ 2004 Activation pattern of caspases in human spermatozoa. Fertility and Sterility 81 (Supplement 1) 802809. (https://doi.org/10.1016/j.fertnstert.2003.09.030)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parks JE & Hammerstedt RH 1985 Developmental changes occurring in the lipids of ram epididymal spermatozoa plasma membrane. Biology of Reproduction 32 653668. (https://doi.org/10.1095/biolreprod32.3.653)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parrish JJ, Susko-Parrish J, Winer MA & First NL 1988 Capacitation of bovine sperm by heparin. Biology of Reproduction 38 11711180. (https://doi.org/10.1095/biolreprod38.5.1171)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pérez-Crespo M, Pintado B & Gutiérrez-Adán A 2008 Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Molecular Reproduction and Development 75 4047. (https://doi.org/10.1002/mrd.20759)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Petrunkina AM, Waberski D, Gunzel-Apel AR & Topfer-Petersen E 2007 Determinants of sperm quality and fertility in domestic species. Reproduction 134 317. (https://doi.org/10.1530/REP-07-0046)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Place RF & Noonan EJ 2014 Non-coding RNAs turn up the heat: an emerging layer of novel regulators in the mammalian heat shock response. Cell Stress and Chaperones 19 159172. (https://doi.org/10.1007/s12192-013-0456-5)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Putney DJ, Malayer JR, Gross TS, Thatcher WW, Hansen PJ & Drost M 1988 Heat stress-induced alterations in the synthesis and secretion of proteins and prostaglandins by cultured bovine conceptuses and uterine endometrium. Biology of Reproduction 39 717728. (https://doi.org/10.1095/biolreprod39.3.717)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Putney DJ, Mullins S, Thatcher WW, Drost M & Gross TS 1989 Embryonic development in superovulated dairy cattle exposed to elevated ambient temperatures between the onset of estrus and insemination. Animal Reproduction Science 19 3751. (https://doi.org/10.1016/0378-4320(8990045-6)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rahman MB, Vandaele L, Rijsselaere T, El-Deen MS, Maes D, Shamsuddin M & Van Soom A 2014 Bovine spermatozoa react to in vitro heat stress by activating the mitogen-activated protein kinase 14 signalling pathway. Reproduction, Fertility, and Development 26 245257. (https://doi.org/10.1071/RD12198)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rivera RM & Hansen PJ 2001 Development of cultured bovine embryos after exposure to high temperatures in the physiological range. Reproduction 121 107115. (https://doi.org/10.1530/rep.0.1210107)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rodrigues TA, Ispada J, Risolia PH, Rodrigues MT, Lima RS, Assumpção ME, Visintin JA & Paula-Lopes FF 2016 Thermoprotective effect of insulin-like growth factor 1 on in vitro matured bovine oocyte exposed to heat shock. Theriogenology 86 20282039. (https://doi.org/10.1016/j.theriogenology.2016.06.023)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rodriguez-Ortiz CJ, Baglietto-Vargas D, Martinez-Coria H, LaFerla FM & Kitazawa M 2014 Upregulation of miR-181 decreases c-Fos and SIRT-1 in the hippocampus of 3xTg-AD mice. Journal of Alzheimer’s Disease 42 12291238. (https://doi.org/10.3233/JAD-140204)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • SAS Institute Inc 1989 SAS User’s Guide. Cary , NC: SAS Institute Inc.

  • Setchell BP 1998 The parkes lecture heat and the testis. Journal of Reproduction and Fertility 114 179194. (https://doi.org/10.1530/jrf.0.1140179)

  • Shi S, Shi Q & Sun Y 2020 The effect of sperm miR-34c on human embryonic development kinetics and clinical outcomes. Life Sciences 256 117895. (https://doi.org/10.1016/j.lfs.2020.117895)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Simões R, Feitosa WB, Mendes CM, Marques MG, Nicacio AC, De Barros FRO, Visintin JA & Assumpção MEOA 2009 Use of chromomycin A3 staining in bovine sperm cells for detection of protamine deficiency. Biotechnic and Histochemistry 84 7983. (https://doi.org/10.1080/10520290902843595)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Strotbek M, Florin L, Koenitzer J, Tolstrup A, Kaufmann H, Hausser A & Olayioye MA 2013 Stable microRNA expression enhances therapeutic antibody productivity of Chinese hamster ovary cells. Metabolic Engineering 20 157166. (https://doi.org/10.1016/j.ymben.2013.10.005)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sutovsky P & Schatten G 2000 Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion. International Review of Cytology 195 165. (https://doi.org/10.1016/S0074-7696(0862703-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tang D, Gao W, Yang J, Liu J, Zhao J, Ge J, Chen Q & Liu B 2020 miR-181d promotes cell proliferation via the IGF1/PI3K/AKT axis in glioma. Molecular Medicine Reports 22 38043812. (https://doi.org/10.3892/mmr.2020.11464)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Voorhoeve PM, Le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J & Griekspoor A et al.2006 A genetic screen implicates miR-372 and miR-373 as oncogenes in testicular germ cell tumors. Cell 124 11691181. (https://doi.org/10.1016/j.cell.2006.02.037)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Walters JL, Anderson AL, Silva SM, Aitken RJ, De Iuliis GN, Sutherland JM, Nixon B & Bromfield EG 2021 Mechanistic insight into the regulation of lipoxygenase-driven lipid peroxidation events in human spermatozoa and their impact on male fertility. Antioxidants 10 43. (https://doi.org/10.3390/antiox10010043)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang XF, Shi ZM, Wang XR, Cao L, Wang YY, Zhang JX, Yin Y, Luo H, Kang CS & Liu N et al.2012 MiR-181d acts as a tumor suppressor in glioma by targeting K-ras and Bcl-2. Journal of Cancer Research and Clinical Oncology 138 573584. (https://doi.org/10.1007/s00432-011-1114-x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wells DN, Misica PM & Tervit HR 1999 Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biology of Reproduction 60 9961005. (https://doi.org/10.1095/biolreprod60.4.996)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Werry N, Russell SJ, Gillis DJ, Miller S, Hickey K, Larmer S, Lohuis M, Librach C & LaMarre J 2022 Characteristics of miRs present in bovine sperm and associations with differences in fertility. Frontiers in Endocrinology 13 874371. (https://doi.org/10.3389/fendo.2022.874371)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu B, Washington AM & Hinton BT 2014 PTEN signaling through RAF1 proto-oncogene serine/threonine kinase (RAF1)/ERK in the epididymis is essential for male fertility. PNAS 111 1864318648. (https://doi.org/10.1073/pnas.1413186112)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yuan S, Schuster A, Tang C, Yu T, Ortogero N, Bao J, Bao J, Zheng H & Yan W 2016 Sperm-borne miRs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development 143 635647. (https://doi.org/10.1242/dev.131755)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhu Y, Hoell P, Ahlemeyer B & Krieglstein J 2006 PTEN: a crucial mediator of mitochondria-dependent apoptosis. Apoptosis 11 197207. (https://doi.org/10.1007/s10495-006-3714-5)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation