Pregnancy preparation: redistribution of CCR7-positive cells in the rat uterus

in Reproduction
Authors:
Hannah Thomas Department of Biology, Pittsburg State University, Pittsburg, Kansas, USA

Search for other papers by Hannah Thomas in
Current site
Google Scholar
PubMed
Close
,
Erick McCloskey Department of Biology, Pittsburg State University, Pittsburg, Kansas, USA

Search for other papers by Erick McCloskey in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4918-1012
, and
Virginia Rider Department of Biology, Pittsburg State University, Pittsburg, Kansas, USA

Search for other papers by Virginia Rider in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9226-1253

Correspondence should be addressed to V Rider; Email: vrider@pittstate.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

Changes in the endometrium prior to implantation may be critical in predicting pregnancy outcomes. This study shows that the endocrine system directs positional changes in CCR7+ cells before implantation, which may be critical for developing maternal tolerance.

Abstract

Suppression of the maternal immune system is vital for the implantation of the semi-allogeneic embryo. Although progress in understanding the dialogue between mother and embryo has been made, key interactions between maternal immune cells, hormones, and chemokines remain elusive. Uterine expression of the C-C chemokine receptor type 7 (CCR7) could recruit T regulatory cells and facilitate localized immune suppression. To test this concept, Ccr7 mRNA and protein were assessed in uterine tissue. Ccr7 mRNA expression peaked at day 4 in pregnant rat uteri and then declined at days 5 and 6. CCR7 protein showed similar quantitative changes. To test if female sex steroids affected the spatial distribution of CCR7-expressing cells, uteri from ovariectomized rats, progesterone-pretreated rats (2 mg daily), and progesterone-pretreated rats injected with estradiol (0.2 µg) were analyzed. Progesterone increased CCR7-positive (+) cells in the antimesometrial stroma. Progesterone and estradiol increased CCR7+ cells in the mesometrial stroma. Estradiol increased the density of cluster of differentiation 4 (CD4) positive cells in the mesometrial stromal region over progesterone alone. The density of cells expressing the T regulatory cell marker, forkhead box protein 3 (FOXP3), increased in the antimesometrial stroma in response to progesterone alone. Progesterone and estradiol increased FOXP3+ cells in the antimesometrial region of the stroma. Co-localization of CCR7, CD4, and FOXP3 in the stroma suggests CCR7+ cells are T regulatory cells. Polarization of CCR7+ cells in the endometrial stroma was an intrinsic response regulated by sex steroids and did not require the presence of an embryo.

Supplementary Materials

 

  • Collapse
  • Expand
  • Alijotas-Reig J, Melnychuk T & Gris JM 2015 Regulatory T cells, maternal-foetal immune tolerance and recurrent miscarriage: new therapeutic challenging opportunities. Medicina Clinica 144 265268. (https://doi.org/10.1016/j.medcli.2014.01.033)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bae H, Lim W, Bazer FW, Whang KY & Song G 2019 Mitigation of ER-stress and inflammation by chemokine (C-C motif) ligand 21 during early pregnancy. Developmental and Comparative Immunology 94 7384. (https://doi.org/10.1016/j.dci.2019.01.016)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown JJ & Papaioannou VE 1992 Distribution of hyaluronan in the mouse endometrium during the periimplantation period of pregnancy. Differentiation: Research in Biological Diversity 52 6168. (https://doi.org/10.1111/j.1432-0436.1992.tb00500.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Care AS, Diener KR, Jasper MJ, Brown HM, Ingman WV & Robertson SA 2013 Macrophages regulate corpus luteum development during embryo implantation in mice. Journal of Clinical Investigation 123 34723487. (https://doi.org/10.1172/JCI60561)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clark NC, Pru CA & Pru JK 2017 Novel regulators of hemodynamics in the pregnant uterus. Progress in Molecular Biology and Translational Science 145 181216. (https://doi.org/10.1016/bs.pmbts.2016.12.007)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Comerford I, Harata-Lee Y, Bunting MD, Gregor C, Kara EE & McColl SR 2013 A myriad of functions and complex regulation of the CCR7/CCL19/CCL21 chemokine axis in the adaptive immune system. Cytokine and Growth Factor Reviews 24 269283. (https://doi.org/10.1016/j.cytogfr.2013.03.001)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Covarrubias AE, Barrence FC & Zorn TM 2015 The absence of the embryo in the pseudopregnant uterus alters the deposition of some ECM molecules during decidualization in mice. Connective Tissue Research 56 253263. (https://doi.org/10.3109/03008207.2015.1023432)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Croy BA, van den Heuvel MJ, Borzychowski AM & Tayade C 2006 Uterine natural killer cells: specialized differentiation regulated by ovarian hormones. Immunological Reviews 214 161185. (https://doi.org/10.1111/j.1600-065X.2006.00447.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dimitriadis E, White CA, Jones RL & Salamonsen LA 2005 Cytokines, chemokines and growth factors in endometrium related to implantation. Human Reproduction Update 11 613630. (https://doi.org/10.1093/humupd/dmi023)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dunk C, Smith S, Hazan A, Whittle W & Jones RL 2008 Promotion of angiogenesis by human endometrial lymphocytes. Immunological Investigations 37 583610. (https://doi.org/10.1080/08820130802191466)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dunk C, Kwan M, Hazan A, Walker S, Wright JK, Harris LK, Jones RL, Keating S, Kingdom JCP & Whittle W et al.2019 Failure of decidualization and maternal immune tolerance underlies uterovascular resistance in intra uterine growth restriction. Frontiers in Endocrinology 10 160. (https://doi.org/10.3389/fendo.2019.00160)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eckfeldt CE, Mendenhall EM, Flynn CM, Wang TF, Pickart MA, Grindle SM, Ekker SC & Verfaillie CM 2005 Functional analysis of human hematopoietic stem cell gene expression using zebrafish. PLoS Biology 3 e254. (https://doi.org/10.1371/journal.pbio.0030254)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Elbert A, Gibson M & Rider V 2019 SAT-196 maternal immunity: preimplantation preparation. Journal of the Endocrine Society 3 (Supplement 1) SAT-196. (https://doi.org/10:1210/js.2019-SAT-196)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Förster R, Schubel A, Breitfeld D, Kremmer E, Renner-Müller I, Wolf E & Lipp M 1999 CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99 2333. (https://doi.org/10.1016/S0092-8674(0080059-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Förster R, Davalos-Misslitz AC & Rot A 2008 CCR7 and its ligands: balancing immunity and tolerance. Nature Reviews: Immunology 8 362371. (https://doi.org/10.1038/nri2297)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fouladi-Nashta AA, Raheem KA, Marei WF, Ghafari F & Hartshorne GM 2017 Regulation and roles of the hyaluronan system in mammalian reproduction. Reproduction 153 R43R58. (https://doi.org/10.1530/REP-16-0240)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fox J & Weisberg S 2019 An {R} Companion to Applied Regression. Thousand Oaks, CA: Sage.

  • Greenwood JD, Minhas K, di Santo JP, Makita M, Kiso Y & Croy BA 2000 Ultrastructural studies of implantation sites from mice deficient in uterine natural killer cells. Placenta 21 693702. (https://doi.org/10.1053/plac.2000.0556)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guerin LR, Moldenhauer LM, Prins JR, Bromfield JJ, Hayball JD & Robertson SA 2011 Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in the preimplantation mouse uterus through expanding the FOXP3+ cell pool and CCL19-mediated recruitment. Biology of Reproduction 85 397408. (https://doi.org/10.1095/biolreprod.110.088591)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Handel TM, Johnson Z, Crown SE, Lau EK & Proudfoot AE 2005 Regulation of protein function by glycosaminoglycans – as exemplified by chemokines. Annual Review of Biochemistry 74 385410. (https://doi.org/10.1146/annurev.biochem.72.121801.161747)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hughes CE & Nibbs RJB 2018 A guide to chemokines and their receptors. FEBS Journal 285 29442971. (https://doi.org/10.1111/febs.14466)

  • Jeong JW, Lee KY, Kwak I, White LD, Hilsenbeck SG, Lydon JP & DeMayo FJ 2005 Identification of murine uterine genes regulated in a ligand-dependent manner by the progesterone receptor. Endocrinology 146 34903505. (https://doi.org/10.1210/en.2005-0016)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jones RL, Hannan NJ, Kaitu’u TJ, Zhang J & Salamonsen LA 2004 Identification of chemokines important for leukocyte recruitment to the human endometrium at the times of embryo implantation and menstruation. Journal of Clinical Endocrinology and Metabolism 89 61556167. (https://doi.org/10.1210/jc.2004-0507)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kachkache M, Acker GM, Chaouat G, Noun A & Garabédian M 1991 Hormonal and local factors control the immunohistochemical distribution of immunocytes in the rat uterus before conceptus implantation: effects of ovariectomy, fallopian tube section, and injection. Biology of Reproduction 45 860868. (doi:10.1095/biolreprod45.6.860.)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kassambara A 2019 Ggpubr: ‘ggplot2’ based publication ready plots. Available at https://CRAN.R-project.org/package=ggpubr

  • Lämmermann T & Kastenmüller W 2019 Concepts of GPCR-controlled navigation in the immune system. Immunological Reviews 289 205231. (https://doi.org/10.1111/imr.12752)

  • Lessey BA & Young SL 2019 What exactly is endometrial receptivity? Fertility and Sterility 111 611617. (https://doi.org/10.1016/j.fertnstert.2019.02.009)

  • Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR & Fazekas de St Groth B et al.2006 CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4 T reg cells. Journal of Experimental Medicine 203 17011711. (https://doi.org/10.1084/jem.20060772)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • López-Cotarelo P, Gómez-Moreira C, Criado-García O, Sánchez L & Rodríguez-Fernández JL 2017 Beyond chemoattraction: multifunctionality of chemokine receptors in leukocytes. Trends in Immunology 38 927941. (https://doi.org/10.1016/j.it.2017.08.004)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lydon JP, DeMayo FJ, Conneely OM & O’Malley BW 1996 Reproductive phenotypes of the progesterone receptor null mutant mouse. Journal of Steroid Biochemistry and Molecular Biology 56 6777. (https://doi.org/10.1016/0960-0760(9500254-5)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Magaña MJR, Puerta JM, Martínez-Aguilar R, Llorca T, Blanco O, Muñoz-Fernández R, Olivares EG & Ruiz-Ruiz C 2020 Endometrial and decidual stromal precursors show a different decidualization capacity. Reproduction 160 8391. (https://doi.org/10.1530/REP-19-0465)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mor G & Abrahams VM 2003 Potential role of macrophages as immuneregulators of pregnancy. Reproductive Biology and Endocrinology 1 119. (https://doi.org/10.1186/1477-7827-1-119)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moschovakis GL & Förster R 2012 Multifaceted activities of CCR7 regulate T-cell homeostasis in health and disease. European Journal of Immunology 42 19491955. (https://doi.org/10.1002/eji.201242614)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ng SW, Norwitz GA, Pavlicev M, Tilburgs T, Simon C & Norwitz ER 2020 Endometrial decidualization: the primary driver of pregnancy health. International Journal of Molecular Sciences 21 4092. (https://doi.org/10.3390/ijms21114092)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pawar S, Hantak AM, Bagchi IC & Bagchi MK 2014 Minireview: Steroid-regulated paracrine mechanisms controlling implantation. Molecular Endocrinology 28 14081422. (https://doi.org/10.1210/me.2014-1074)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Piva M, Flieger O & Rider V 1996 Growth factor control of cultured rat uterine stromal cell proliferation is progesterone dependent. Biology of Reproduction 55 13331342. (https://doi.org/10.1095/biolreprod55.6.1333)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Plaks V, Birnberg T, Berkutzki T, Sela S, BenYashar A, Kalchenko V, Mor G, Keshet E, Dekel N & Neeman M et al.2008 Uterine DCs are crucial for decidua formation during embryo implantation in mice. Journal of Clinical Investigation 118 39543965. (https://doi.org/10.1172/JCI36682)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • R Core Team 2018 R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Accessible at https://www.R-project.org

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rider V & Psychoyos A 1994 Inhibition of progesterone receptor function results in loss of basic fibroblast growth factor expression and stromal cell proliferation during uterine remodelling in the pregnant rat. Journal of Endocrinology 140 239249. (https://doi.org/10.1677/joe.0.1400239)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rider V, Isuzugawa K, Twarog M, Jones S, Cameron B, Imakawa K & Fang J 2006 Progesterone initiates Wnt-beta-catenin signaling but estradiol is required for nuclear activation and synchronous proliferation of rat uterine stromal cells. Journal of Endocrinology 191 537548. (https://doi.org/10.1677/joe.1.07030)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rider V, Talbott A, Bhusri A, Krumsick Z, Foster S, Wormington J & & Kimler BF 2016 WINGLESS (WNT) signaling is a progesterone target for rat uterine stromal cell proliferation. Journal of Endocrinology 229 197-207. (https://doi.org/10.1530/JOE-15-0523)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Robertson SA, Allanson M & Mau VJ 1998 Molecular regulation of uterine leukocyte recruitment during early pregnancy in the mouse. Placenta 19 101119. (https://doi.org/10.1016/S0143-4004(9880009-X)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saito S, Shima T, Nakashima A, Inada K & Yoshino O 2016 Role of paternal antigen-specific Treg cells in successful implantation. American Journal of Reproductive Immunology 75 310316. (https://doi.org/10.1111/aji.12469)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schindelin J, Arganda-Cerreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S & Schmid B et al.2012 Fiji: an open-source platform for biological image analysis. Nature Methods 9 676682. (https://doi.org/10.1038/nmeth.2019)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schjenken JE & Robertson SA 2020 The female response to seminal fluid. Physiological Reviews 100 1077–1117. (https://doi.org/10.1152/physrev.00013.2018)

  • Schneider MA, Meingassner JG, Lipp M, Moore HD & Rot A 2007 CCR7 is required for the in vivo function of CD4+ CD25+ regulatory T cells. Journal of Experimental Medicine 204 735745. (https://doi.org/10.1084/jem.20061405)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shima T, Sasaki Y, Itoh M, Nakashima A, Ishii N, Sugamura K & Saito S 2010 Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. Journal of Reproductive Immunology 85 121129. (https://doi.org/10.1016/j.jri.2010.02.006)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sisti G, Kanninen TT & Witkin SS 2016 Maternal immunity and pregnancy outcome: focus on preconception and autophagy. Genes and Immunity 17 17. (https://doi.org/10.1038/gene.2015.57)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Teles A & Zenclussen AC 2014 How cells of the immune system prepare the endometrium for implantation. Seminars in Reproductive Medicine 32 358364. (https://doi.org/10.1055/s-0034-1383735)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Teles A, Schumacher A, Kühnle MC, Linzke N, Thuere C, Reichardt P, Tadokoro CE, Hämmerling GJ & Zenclussen AC 2013a Control of uterine microenvironment by foxp3(+) cells facilitates embryo implantation. Frontiers in Immunology 4 158. (https://doi.org/10.3389/fimmu.2013.00158)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Teles A, Thuere C, Wafula PO, El-Mousleh T, Zenclussen ML & Zenclussen AC 2013b Origin of Foxp3+ cells during pregnancy. American Journal of Clinical and Experimental Immunology 2 222233.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thuere C, Zenclussen ML, Schumacher A, Langwisch S, Schulte-Wrede U, Teles A, Paeschke S, Volk HD & Zenclussen AC 2007 Kinetics of regulatory T cells during murine pregnancy. American Journal of Reproductive Immunology 58 514523. (https://doi.org/10.1111/j.1600-0897.2007.00538.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Toole BP 1997 Hyaluronan in morphogenesis. Journal of Internal Medicine 242 3540. (https://doi.org/10.1046/j.1365-2796.1997.00171.x)

  • Welsh AO & Enders AC 1991 Chorioallantoic placenta formation in the rat: I. Luminal epithelial cell death and extracellular matrix modifications in the mesometrial region of implantation chambers. American Journal of Anatomy 192 215231. (https://doi.org/10.1002/aja.1001920302)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wickham H, Francois R, Henry L & Muller K 2019 Dplyr: a grammar of data manipulation. Available at https://CRAN.R-project.org/package=dplry

  • Woidacki K, Jensen F & Zenclussen AC 2013 Mast cells as novel mediators of reproductive processes. Frontiers in Immunology 4 29. (https://doi.org/10.3389/fimmu.2013.00029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xue Y, Lv J, Zhang C, Wang L, Ma D & Liu F 2017 The vascular niche regulates hematopoietic stem and progenitor cell lodgment and expansion via klf6a-ccl25b. Developmental Cell 42 349 .e4362.e4. (https://doi.org/10.1016/j.devcel.2017.07.012)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zenclussen AC & Hämmerling GJ 2015 Cellular regulation of the uterine microenvironment that enables embryo implantation. Frontiers in Immunology 6 321. (https://doi.org/10.3389/fimmu.2015.00321)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zenclussen AC, Gerlof K, Zenclussen ML, Sollwedel A, Bertoja AZ, Ritter T, Kotsch K, Leber J & Volk HD 2005 Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. American Journal of Pathology 166 811822. (https://doi.org/10.1016/S0002-9440(1062302-4)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang J, Dunk C, Croy AB & Lye SJ 2016 To serve and to protect: the role of decidual innate immune cells on human pregnancy. Cell and Tissue Research 363 249265. (https://doi.org/10.1007/s00441-015-2315-4)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation