Hyperpolarization induces cytosolic alkalization of mouse sperm flagellum probably through sperm Na+/H+ exchanger

in Reproduction
View More View Less
  • 1 Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México

Correspondence should be addressed to T Nishigaki; Email: takuya.nishigaki@ibt.unam.mx
Restricted access

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

In brief

Hyperpolarization of the membrane potential is a crucial step for mammalian sperm maturation. This work demonstrates that this membrane potential change likely activates a sperm-specific sodium/proton exchanger to induce alkalization in mouse sperm flagellum.

Abstract

The sperm-specific sodium/proton exchanger (sNHE) is an indispensable protein for male fertility in mammals. Nevertheless, it is still unknown how mammalian sNHE is regulated. Evidence obtained from sea urchin sNHE indicates that hyperpolarization of plasma membrane potential (Vm), which is a hallmark of mammalian capacitation, positively regulates the sNHE. Therefore, we explored the activity of sNHE in mouse and human sperm by fluorescence imaging of intracellular pH (pHi) with a ratiometric dye, SNARF-5F. A valinomycin-induced Vm hyperpolarization elevated sperm flagellar pHi of WT mouse but not in sNHE-KO mouse. Moreover, this pHi increase was inhibited in a high K+ (40 mM) medium. These results support the idea that mouse sNHE is activated by Vm hyperpolarization. Interestingly, we observed different types of kinetics derived from valinomycin-induced alkalization, including some (30%) without any pHi changes. Our quantitative pHi determinations revealed that unresponsive cells had a high resting pHi (>7.5), suggesting that the activity of mouse sNHE is regulated by the resting pHi. On the other hand, valinomycin did not increase the pHi of human sperm in the head or the flagellum, regardless of their resting pHi values. Our findings suggest that the regulatory mechanisms of mammalian sNHEs are probably distinct depending on the species.

Supplementary Materials

 

     An official journal of

    Society for Reproduction and Fertility

 

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 1354 1354 732
Full Text Views 65 65 42
PDF Downloads 72 72 37
  • Arnoult C, Kazam IG, Visconti PE, Kopf GS, Villaz M & Florman HM 1999 Control of the low voltage-activated calcium channel of mouse sperm by egg ZP3 and by membrane hyperpolarization during capacitation. PNAS 96 67576762. (https://doi.org/10.1073/pnas.96.12.6757)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin CR 1951 Observations on the penetration of the sperm into the mammalian egg. Australian Journal of Biological Sciences 4 581596. (https://doi.org/10.1071/bi9510581)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balbach M, Hamzeh H, Jikeli JF, Brenker C, Schiffer C, Hansen JN, Neugebauer P, Trötschel C, Jovine L & Han L et al.2020 Molecular mechanism underlying the action of zona-pellucida glycoproteins on mouse sperm. Frontiers in Cell and Developmental Biology 8 572735. (https://doi.org/10.3389/fcell.2020.572735)

    • Search Google Scholar
    • Export Citation
  • Balestrini PA, Sánchez-Cárdenas C, Luque GM, Baro GC, Sierra JM, Hernández-Cruz A, Visconti PE, Krapf D, Darszon A & Buffone MG 2020 Membrane hyperpolarization abolishes calcium oscillations that prevent induced acrosomal exocytosis in human sperm. FASEB Journal 35 114. (https://doi.org/10.1096/fj.202002333RR)

    • Search Google Scholar
    • Export Citation
  • Baro GC, Ritagliati C, Stival C, Balestrini PA, Buffone MG & Krapf D 2019 Determination of a robust assay for human sperm membrane potential analysis. Frontiers in Cell and Developmental Biology 7 19. (https://doi.org/10.3389/fcell.2019.00101)

    • Search Google Scholar
    • Export Citation
  • Berger TK, Fußhllöller DM, Goodwin N, Bönigk W, Müller A, Khesroshahi ND, Brenker C, Wachten D, Krause E & Kaupp UB et al.2017 Post-translational cleavage of Hv1 in human sperm tunes pH- and voltage-dependent gating. Journal of Physiology 595 114. (https://doi.org/10.1113/JP273189)

    • Search Google Scholar
    • Export Citation
  • Boitano S & Omoto CK 1991 Membrane hyperpolarization activates trout sperm without an increase in intracellular pH. Journal of Cell Science 98 343349. (https://doi.org/10.1242/jcs.98.3.343)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cardone RA, Casavola V & Reshkin SJ 2005 The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nature Reviews: Cancer 5 786795. (https://doi.org/10.1038/nrc1713)

    • Search Google Scholar
    • Export Citation
  • Cavarocchi E, Whitfield M, Chargui A, Stouvenel L, Lorés P, Coutton C, Arnoult C, Santulli P, Patrat C & Thierry-Mieg N et al.2021 The sodium/proton exchanger SLC9C1 (sNHE) is essential for human sperm motility and fertility. Clinical Genetics 99 684693. (https://doi.org/10.1111/cge.13927)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang MC 1951 Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168 697698. (https://doi.org/10.1038/168697b0)

  • Chávez JC, Darszon A, Treviño CL & Nishigaki T 2020 Quantitative intracellular pH determinations in single live mammalian spermatozoa using the ratiometric dye SNARF-5F. Frontiers in Cell and Developmental Biology 7 113. (https://doi.org/10.3389/fcell.2019.00366)

    • Search Google Scholar
    • Export Citation
  • Chen Y, Cann MJ, Litvin TN, Lourgenko V, Sinclair ML, Levin LR & Buck J 2000 Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289 625627. (https://doi.org/10.1126/science.289.5479.625)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chávez JC, De la Vega-Beltrán JL, Escoffier J, Visconti PE, Treviño CL, Darszon A, Salkoff L & Santi CM 2013 Ion permeabilities in mouse sperm reveal an external trigger for SLO3-dependent hyperpolarization. PLoS ONE 8 e60578. (https://doi.org/10.1371/journal.pone.0060578)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chávez JC, Ferreira JJ, Butler A, De La Vega Beltrán JL, Treviño CL, Darszon A, Salkoff L & Santi CM 2014 SLO3 K+ channels control calcium entry through CATSPER channels in sperm. Journal of Biological Chemistry 289 3226632275. (https://doi.org/10.1074/jbc.M114.607556)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen SR, Chen M, Deng SL, Hao XX, Wang XX & Liu YX 2016 Sodium-hydrogen exchanger NHA1 and NHA2 control sperm motility and male fertility. Cell Death and Disease 7 e2152. (https://doi.org/10.1038/cddis.2016.65)

    • Search Google Scholar
    • Export Citation
  • Darszon A, Nishigaki T, López-González I, Visconti PE & Treviño CL 2020 Differences and similarities: the richness of comparative sperm physiology. Physiology 35 196208. (https://doi.org/10.1152/physiol.00033.2019)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De La Vega-Beltran JL, Sánchez-Cárdenas C, Krapf D, Hernández-González EO, Wertheimer E, Treviño CL, Visconti PE & Darszon A 2012 Mouse sperm membrane potential hyperpolarization is necessary and sufficient to prepare sperm for the acrosome reaction. Journal of Biological Chemistry 287 4438444393. (https://doi.org/10.1074/jbc.M112.393488)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esposito G, Jaiswal BS, Xie F, Krajnc-Franken MAM, Robben TJA, Strik AM, Kuil C, Philipsen RLA, Van Duin M & Conti M et al.2004 Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm motility defect. PNAS 101 29932998. (https://doi.org/10.1073/pnas.0400050101)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraire-Zamora JJ & González-Martínez MT 2004 Effect of intracellular pH on depolarization-evoked calcium influx in human sperm. American Journal of Physiology: Cell Physiology 287 C1688C1696. (https://doi.org/10.1152/ajpcell.00141.2004)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan Y, Dong J, Tackett L, Meyer JW, Shull GE & Montrose MH 2006 NHE2 is the main apical NHE in mouse colonic crypts but an alternative Na+ dependent acid extrusion mechanism is upregulated in NHE2-null mice. American Journal of Physiology: Gastrointestinal and Liver Physiology 291 G689G699. (https://doi.org/10.1152/ajpgi.00342.2005)

    • Search Google Scholar
    • Export Citation
  • Harumi T, Hoshino K & Suzuki N 1992 Effects of sperm-activating peptide I on Hemicentrotuspufcberrirnus spermatozoa in high potassium sea water. Development, Growth and Differentiation 34 163172. (https://doi.org/10.1111/j.1440-169X.1992.tb00005.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hess KC, Jones BH, Marquez B, Chen Y, Ord TS, Kamenetsky M, Miyamoto C, Zippin JH, Kopf GS & Suárez SS et al.2005 The ‘soluble’ adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Developmental Cell 9 249259. (https://doi.org/10.1016/j.devcel.2005.06.007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoda T & Morisawa M 1987 Effect of osmolarity on the initiation of sperm motility in Xenopus laevis. Comparative Biochemistry and Physiology A: Comparative Physiology 88 539542. (https://doi.org/10.1016/0300-9629(8790077-6)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumi H, Márián T, Inaba K, Oka Y & Morisawa M 1999 Membrane hyperpolarization by sperm-activating and attracting factor increases cAMP level and activates sperm motility in the ascidian Ciona intestinalis. Developmental Biology 213 246256. (https://doi.org/10.1006/dbio.1999.9367)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeschke JK, Biagioni C, Schierling T, Wagner IV, Börgel F, Schepmann D, Schüring A, Kulle AE, Holterhus PM & von Wolff M et al.2021 The action of reproductive fluids and contained steroids, prostaglandins, and Zn2+ on CatSper Ca2+ channels in human sperm. Frontiers in Cell and Developmental Biology 9 116. (https://doi.org/10.3389/fcell.2021.699554)

    • Search Google Scholar
    • Export Citation
  • Kang H, Liu M, Zhang W, Huang RZ, Zhao N, Chen C & Zeng XH 2021 Na+/H+ exchangers involve in regulating the pH-sensitive ion channels in mouse sperm. International Journal of Molecular Sciences 22 1612. (https://doi.org/10.3390/ijms22041612)

    • Search Google Scholar
    • Export Citation
  • Kirichok Y, Navarro B & Clapham DE 2006 Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature 439 737740. (https://doi.org/10.1038/nature04417)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee HC 1984 A membrane potential-sensitive Na+-H+ exchange system in flagella isolated from sea urchin spermatozoa. Journal of Biological Chemistry 259 1531515319. (https://doi.org/10.1016/S0021-9258(1742551-8)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee HC 1985 The voltage-sensitive Na+/H+ exchange in sea urchin spermatozoa flagellar membrane vesicles studied with an entrapped pH probe. Journal of Biological Chemistry 260 1079410799. (https://doi.org/10.1016/S0021-9258(1985152-9)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lishko PV, Botchkina IL, Fedorenko A & Kirichok Y 2010 Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell 140 327337. (https://doi.org/10.1016/j.cell.2009.12.053)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lishko PV, Botchkina IL & Kirichok Y 2011 Progesterone activates the principal Ca2+ channel of human sperm. Nature 471 387391. (https://doi.org/10.1038/nature09767)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu T, Huang JC, Zuo WL, Lu CL, Chen M, Zhang XS, Li YC, Cai H, Zhou WL & Hu ZY et al.2010 A novel testis-specific Na+/H+ exchanger is involved in sperm motility and fertility. Frontiers in Bioscience 2 566581. (https://doi.org/10.2741/e115)

    • Search Google Scholar
    • Export Citation
  • López-González I, Torres-Rodríguez P, Sánchez-Carranza O, Solís-López A, Santi CM, Darszon A & Treviño CL 2014 Membrane hyperpolarization during human sperm capacitation. Molecular Human Reproduction 20 619629. (https://doi.org/10.1093/molehr/gau029)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahnensmith RL & Aronson PS 1985 The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathophysiological processes. Circulation Research 56 773788. (https://doi.org/10.1161/01.RES.56.6.773)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martins AD, Bernardino RL, Neuhaus-Oliveira A, Sousa M, R, Alves MG & Oliveira PF 2014 Physiology of Na+/H+ exchangers in the male reproductive tract: relevance for male fertility. Biology of Reproduction 91 11. (https://doi.org/10.1095/biolreprod.114.118331)

    • Search Google Scholar
    • Export Citation
  • Mata-Martínez E, José O, Torres-Rodríguez P, Solís-López S-TA, Sánchez-Guevara Y & Treviño CL 2013 Measuring intracellular Ca2+ changes in human sperm using four techniques: fluorometry, stopped flow fluorometry, flow cytometry and single cell imaging. Journal of Visualized Experiments 75 50344. (https://doi.org/10.3791/50344)

    • Search Google Scholar
    • Export Citation
  • Matamoros-Volante A & Trevino CL 2020 Capacitation-associated alkalization in human sperm is differentially controlled at the subcellular level. Journal of Cell Science 133 113. (https://doi.org/10.1242/jcs.238816)

    • Search Google Scholar
    • Export Citation
  • Miller MR, Kenny SJ, Mannowetz N, Mansell SA, Wojcik M, Mendoza S, Zucker RS, Xu K & Lishko PV 2018 Asymmetrically positioned flagellar control units regulate human sperm rotation. Cell Reports 24 26062613. (https://doi.org/10.1016/j.celrep.2018.08.016)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra AK, Kumar A, Swain DK, Yadav S & Nigam R 2018 Insights into pH regulatory mechanisms in mediating spermatozoa functions. Veterinary World 11 852858. (https://doi.org/10.14202/vetworld.2018.852-858)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina LCP, Gunderson S, Riley J, Lybaert P, Borrego-Alvárez A, Jungheim ES & Santi CM 2020 Membrane potential determined by flow cytometry predicts fertilizing ability of human sperm. Frontiers in Cell and Developmental Biology 7 112. (https://doi.org/10.3389/fcell.2019.00387)

    • Search Google Scholar
    • Export Citation
  • Muzzachi S, Guerra L, Martino NA, Favia M, Punzi G, Silvestre F, Guaricci AC, Roscino MT, Pierri CL & Dell’Aquila ME et al.2018 Effect of cariporide on ram sperm pH regulation and motility: possible role of NHE1. Reproduction 155 433445. (https://doi.org/10.1530/REP-17-0456)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Navarro B, Kirichok Y & Clapham DE 2007 KSper, a pH-sensitive K+ current that controls sperm membrane potential. PNAS 104 76887692. (https://doi.org/10.1073/pnas.0702018104)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishigaki T, José O, González-Cota AL, Romero F, Treviño CL & Darszon A 2014 Intracellular pH in sperm physiology. Biochemical and Biophysical Research Communications 450 11491158. (https://doi.org/10.1016/j.bbrc.2014.05.100)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan MA, Babcock DF, Wennemuth G, Brown W, Burton KA & McKnight GS 2004 Sperm-specific protein kinase A catalytic subunit Cα2 orchestrates cAMP signaling for male fertility. PNAS 101 1348313488. (https://doi.org/10.1073/pnas.0405580101)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oberheide K, Puchkov D & Jentsch TJ 2017 Loss of the Na+/H+ exchanger NHE8 causes male infertility in mice by disrupting acrosome formation. Journal of Biological Chemistry 292 1084510854. (https://doi.org/10.1074/jbc.M117.784108)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okamura N, Tajima Y, Soejima A, Masuda H & Sugita Y 1985 Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. Journal of Biological Chemistry 260 96999705. (https://doi.org/10.1016/S0021-9258(1739295-5)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedersen SF & Counillon L 2019 The slc9a-c mammalian Na+/H+ exchanger family: molecules, mechanisms, and physiology. Physiological Reviews 99 20152113. (https://doi.org/10.1152/physrev.00028.2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quill TA, Wang D & Garbers DL 2006 Insights into sperm cell motility signaling through sNHE and the CatSpers. Molecular and Cellular Endocrinology 250 8492. (https://doi.org/10.1016/j.mce.2005.12.031)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL & Clapham DE 2001 A sperm ion channel required for sperm motility and male fertility. Nature 413 603609. (https://doi.org/10.1038/35098027)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reshkin SJ, Bellizzi A, Caldeira S, Albarani V, Malanchi I, Poignee M, Alunni‐Fabbroni M, Casavola V & Tommasino M 2000 Na+/H+ exchanger‐dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation‐associated phenotypes. FASEB Journal 14 21852197. (https://doi.org/10.1096/fj.00-0029com)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero F & Nishigaki T 2019 Comparative genomic analysis suggests that the sperm-specific sodium/proton exchanger and soluble adenylyl cyclase are key regulators of CatSper among the Metazoa. Zoological Letters 5 25. (https://doi.org/10.1186/s40851-019-0141-3)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santi CM, Martínez-López P, de la Vega-Beltrán JL, Butler A, Alisio A, Darszon A & Salkoff L 2010 The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Letters 584 10411046. (https://doi.org/10.1016/j.febslet.2010.02.005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suárez SS 2008 Control of hyperactivation in sperm. Human Reproduction Update 4 647657. (https://doi.org/10.1093/humupd/dmn029)

  • Takai H & Masaaki M 1995 Change in intracellular K+ concentration caused by external osmolality change regulates sperm motility of marine and freshwater teleosts. Journal of Cell Science 108 11751181. (https://doi.org/10.1242/jcs.108.3.1175)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang D, King SM, Quill TA, Doolittle LK & Garbers DL 2003 A new sperm-specific Na+/H+ exchanger required for sperm motility and fertility. Nature Cell Biology 5 11171122. (https://doi.org/10.1038/ncb1072)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang D, Hu J, Bobulescu IA, Quill TA, McLeroy P, Moe OW & Garbers DL 2007 A sperm-specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC). PNAS 104 93259330. (https://doi.org/10.1073/pnas.0611296104)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wickham H 2009 Elegant Graphics for Data Analysis, 2nd ed., p. Ggplot2. New York: Springer. (https://doi.org/10.1007/978-0-387-98141-3)

  • Windler F, Bönigk W, Körschen HG, Grahn E, Strünker T, Seifert R & Kaupp UB 2018 The solute carrier SLC9C1 is a Na+/H+-exchanger gated by an S4-type voltage-sensor and cyclic-nucleotide binding. Nature Communications 9 2809. (https://doi.org/10.1038/s41467-018-05253-x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woo AL, James PF & Lingrel JB 2002 Roles of the Na, K-ATPase alpha4 isoform and the Na+/H+ exchanger in sperm motility. Molecular Reproduction and Development 62 348356. (https://doi.org/10.1002/mrd.90002)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Health Organization 2021 WHO Laboratory Manual for the Examination and Processing of Human Semen, sixth ed., p. 276. WHO Press.

  • Yeste M, Recuero S, Maside C, Salas-Huetos A, Bonet S & Pinart E 2021 Blocking NHE channels reduces the ability of in vitro capacitated mammalian sperm to respond to progesterone stimulus. International Journal of Molecular Sciences 22 120. (https://doi.org/10.3390/ijms222312646)

    • Search Google Scholar
    • Export Citation
  • Zeng Y, Clark EN & Florman HM 1995 Sperm membrane potential: hyperpolarization during capacitation regulates zona pellucida-dependent acrosomal secretion. Developmental Biology 171 554563. (https://doi.org/10.1006/dbio.1995.1304)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng XH, Navarro B, Xia XM, Clapham DE, Lingle CJ & Lingle CJ 2013 Simultaneous knockout of Slo3 and CatSper1 abolishes all alkalization- and voltage-activated current in mouse spermatozoa. Journal of General Physiology 142 305313. (https://doi.org/10.1085/jgp.201311011)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang Z, Yang Y, Wu H, Zhang H, Zhang H, Mao J, Liu D, Zhao L, Lin H & Tang W et al.2017 Sodium-hydrogen-exchanger expression in human sperm and its relationship with semen parameters. Journal of Assisted Reproduction and Genetics 34 795801. (https://doi.org/10.1007/s10815-017-0898-2)

    • Crossref
    • Search Google Scholar
    • Export Citation