Production of extracellular vesicles from equine embryo-derived mesenchymal stromal cells

in Reproduction
Authors:
Zoe Tasma Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand

Search for other papers by Zoe Tasma in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7652-6004
,
Weilin Hou Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand

Search for other papers by Weilin Hou in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4740-1509
,
Tanvi Damani Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand

Search for other papers by Tanvi Damani in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7624-3258
,
Kathleen Seddon Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand

Search for other papers by Kathleen Seddon in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6827-1056
,
Matthew Kang Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand

Search for other papers by Matthew Kang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7875-4468
,
Yi Ge Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand

Search for other papers by Yi Ge in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0893-1614
,
David Hanlon Animal Reproduction and Biotechnology Laboratory, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA

Search for other papers by David Hanlon in
Current site
Google Scholar
PubMed
Close
,
Fiona Hollinshead Animal Reproduction and Biotechnology Laboratory, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA

Search for other papers by Fiona Hollinshead in
Current site
Google Scholar
PubMed
Close
,
Colin L Hisey Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
Hub for Extracellular Vesicle Investigations, The University of Auckland, Auckland, New Zealand
Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA

Search for other papers by Colin L Hisey in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8732-3600
, and
Lawrence W Chamley Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
Hub for Extracellular Vesicle Investigations, The University of Auckland, Auckland, New Zealand

Search for other papers by Lawrence W Chamley in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7501-1340

Correspondence should be addressed to C L Hisey; Email: hisey.12@osu.edu
Restricted access
Rent on DeepDyve

Sign up for journal news

In brief

Mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) have shown promise as off-the-shelf therapeutics; however, producing them in sufficient quantities can be challenging. In this study, MSCs were isolated from preimplantation equine embryos and used to produce EVs in two commercially available bioreactor designs.

Abstract

Mesenchymal stromal cells (MSC) have recently been explored for their potential use as therapeutics in human and veterinary medicine applications, such as the treatment of endometrial inflammation and infertility. Allogeneic MSC-derived extracellular vesicles (EVs) may also provide therapeutic benefits with advantage of being an ‘off-the-shelf’ solution, provided they can be produced in large enough quantities, without contamination from bovine EVs contained in fetal bovine serum that is a common component of cell culture media. Toward this aim, we demonstrated the successful isolation and characterization of equine MSCs from preimplantation embryos. We also demonstrate that many of these lines can be propagated long-term in culture while retaining their differentiation potential and conducted a head-to-head comparison of two bioreactor systems for scalable EV production including in serum-free conditions. Based on our findings, the CELLine AD 1000 flasks enabled higher cell density cultures and significantly more EV production than the FiberCell system or conventional culture flasks. These findings will enable future isolation of equine MSCs and the scalable culture of their EVs for a wide range of applications in this rapidly growing field.

Supplementary Materials

 

  • Collapse
  • Expand
  • Al Naem M, Bourebaba L, Kucharczyk K, Rocken M & Marycz K 2020 Therapeutic mesenchymal stromal stem cells: isolation, characterization and role in equine regenerative medicine and metabolic disorders. Stem Cell Reviews and Reports 16 301322. (https://doi.org/10.1007/s12015-019-09932-0)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Almeria C, Kreß S, Weber V, Egger D & Kasper C 2022 Heterogeneity of mesenchymal stem cell-derived extracellular vesicles is highly impacted by the tissue/cell source and culture conditions. Cell and Bioscience 12 51. (https://doi.org/10.1186/s13578-022-00786-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arevalo-Turrubiarte M, Baratta M, Ponti G, Chiaradia E & Martignani E 2021 Extracellular vesicles from equine mesenchymal stem cells decrease inflammation markers in chondrocytes in vitro. Equine Veterinary Journal. (https://doi.org/10.1111/evj.13537)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Artuyants A, Chang V, Reshef G, Blenkiron C, Chamley LW, Leung E & Hisey CL 2021 Production of extracellular vesicles using a CELLine adherent bioreactor flask. Methods in Molecular Biology 2436 183192. (https://doi.org/10.1007/7651_2021_413)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barberini DJ, Freitas NPP, Magnoni MS, Maia L, Listoni AJ, Heckler MC, Sudano MJ, Golim MA, Da Cruz Landim-Alvarenga F & Amorim RM 2014 Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential. Stem Cell Research and Therapy 5 2525. (https://doi.org/10.1186/scrt414)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cao J, Wang B, Tang T, Lv L, Ding Z, Li Z, Hu R, Wei Q, Shen A & Fu Y et al.2020 Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury. Stem Cell Research and Therapy 11 206. (https://doi.org/10.1186/s13287-020-01719-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Capomaccio S, Cappelli K, Bazzucchi C, Coletti M, Gialletti R, Moriconi F, Passamonti F, Pepe M, Petrini S & Mecocci S et al.2019 Equine adipose-derived mesenchymal stromal cells release extracellular vesicles enclosing different subsets of small RNAs. Stem Cells International 2019 4957806. (https://doi.org/10.1155/2019/4957806)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carrade DD, Owens SD, Galuppo LD, Vidal MA, Ferraro GL, Librach F, Buerchler S, Friedman MS, Walker NJ & Borjesson DL 2011 Clinicopathologic findings following intra-articular injection of autologous and allogeneic placentally derived equine mesenchymal stem cells in horses. Cytotherapy 13 419430. (https://doi.org/10.3109/14653249.2010.536213)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Clos-Sansalvador M, Monguió-Tortajada M, Roura S, Franquesa M & Borràs FE 2022 Commonly used methods for extracellular vesicles’ enrichment: implications in downstream analyses and use. European Journal of Cell Biology 101 151227. (https://doi.org/10.1016/j.ejcb.2022.151227)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Courageux Y, Monguió-Tortajada M, Prat-Vidal C, Bayes-Genis A & Roura S 2022 Clinical translation of mesenchymal stromal cell extracellular vesicles: considerations on scientific rationale and production requisites. Journal of Cellular and Molecular Medicine 26 937939. (https://doi.org/10.1111/jcmm.17112)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • D’Arrigo D, Roffi A, Cucchiarini M, Moretti M, Candrian C & Filardo G 2019 Secretome and extracellular vesicles as new biological therapies for knee osteoarthritis: a systematic review. Journal of Clinical Medicine 8 1867. (https://doi.org/10.3390/jcm8111867)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dabrowska S, Andrzejewska A, Janowski M & Lukomska B 2021 Immunomodulatory and regenerative effects of mesenchymal stem cells and extracellular vesicles: therapeutic outlook for inflammatory and degenerative diseases. Frontiers in Immunology 11 3809. (https://doi.org/10.3389/fimmu.2020.591065)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Das R, Roosloot R, Van Pel M, Schepers K, Driessen M, Fibbe WE, De Bruijn JD & Roelofs H 2019 Preparing for cell culture scale-out: establishing parity of bioreactor- and flask-expanded mesenchymal stromal cell cultures. Journal of Translational Medicine 17 241. (https://doi.org/10.1186/s12967-019-1989-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • de Mestre AM, Hanlon D, Adams AP, Runcan E, Leadbeater JC, Erb HN, Costa CC, Miller D, Allen WR & Antczak DF 2011 Functions of ectopically transplanted invasive horse trophoblast. Reproduction 141 849856. (https://doi.org/10.1530/REP-10-0462)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Schauwer C, Meyer E, Van De Walle GR & Van Soom A 2011 Markers of stemness in equine mesenchymal stem cells: a plea for uniformity. Theriogenology 75 14311443. (https://doi.org/10.1016/j.theriogenology.2010.11.008)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Schauwer C, Piepers S, Van De Walle GR, Demeyere K, Hoogewijs MK, Govaere JL, Braeckmans K, Van Soom A & Meyer E 2012 In search for cross-reactivity to immunophenotype equine mesenchymal stromal cells by multicolor flow cytometry. Cytometry: Part A 81 312323. (https://doi.org/10.1002/cyto.a.22026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dewar V, Voet P, Denamur F & Smal J 2005 Industrial implementation of in vitro production of monoclonal antibodies. ILAR Journal 46 307313. (https://doi.org/10.1093/ilar.46.3.307)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj & Horwitz E 2006 Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8 315317. (https://doi.org/10.1080/14653240600855905)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Elahi KC, Klein G, Avci-Adali M, Sievert KD, Macneil S & Aicher WK 2016 Human mesenchymal stromal cells from different sources diverge in their expression of cell surface proteins and display distinct differentiation patterns. Stem Cells International 2016 5646384. (https://doi.org/10.1155/2016/5646384)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferris RA, Frisbie DD & Mccue PM 2014 Use of mesenchymal stem cells or autologous conditioned serum to modulate the inflammatory response to spermatozoa in mares. Theriogenology 82 3642. (https://doi.org/10.1016/j.theriogenology.2014.02.015)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gobin J, Muradia G, Mehic J, Westwood C, Couvrette L, Stalker A, Bigelow S, Luebbert CC, Bissonnette FS-D & Johnston MJW et al.2021 Hollow-fiber bioreactor production of extracellular vesicles from human bone marrow mesenchymal stromal cells yields nanovesicles that mirrors the immuno-modulatory antigenic signature of the producer cell. Stem Cell Research and Therapy 12 127. (https://doi.org/10.1186/s13287-021-02190-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guerreiro EM, Vestad B, Steffensen LA, Aass HCD, Saeed M, Ovstebo R, Costea DE, Galtung HK & Soland TM 2018 Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size-exclusion chromatography. PLoS ONE 13 e0204276. (https://doi.org/10.1371/journal.pone.0204276)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harman RM, Patel RS, Fan JC, Park JE, Rosenberg BR & Van De Walle GR 2020 Single-cell RNA sequencing of equine mesenchymal stromal cells from primary donor-matched tissue sources reveals functional heterogeneity in immune modulation and cell motility. Stem Cell Research and Therapy 11 524. (https://doi.org/10.1186/s13287-020-02043-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N & Volarevic V 2019 Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells 8 467. (https://doi.org/10.3390/cells8050467)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hisey CL, Tomek P, Nursalim YNS, Chamley LW & Leung E 2020 Towards establishing extracellular vesicle-associated RNAs as biomarkers for HER2+ breast cancer. F1000Research 9 1362. (https://doi.org/10.12688/f1000research.27393.3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hotham WE, Thompson C, Szu-Ting L & Henson FMD 2021 The anti-inflammatory effects of equine bone marrow stem cell-derived extracellular vesicles on autologous chondrocytes. Veterinary Record Open 8 e22e22. (https://doi.org/10.1002/vro2.22)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iso Y, Spees JL, Serrano C, Bakondi B, Pochampally R, Song YH, Sobel BE, Delafontaine P & Prockop DJ 2007 Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochemical and Biophysical Research Communications 354 700706. (https://doi.org/10.1016/j.bbrc.2007.01.045)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lange-Consiglio A, Perrini C, Tasquier R, Deregibus MC, Camussi G, Pascucci L, Marini MG, Corradetti B, Bizzaro D & De Vita B et al.2016 Equine amniotic microvesicles and their anti-inflammatory potential in a tenocyte model in vitro. Stem Cells and Development 25 610621. (https://doi.org/10.1089/scd.2015.0348)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lechanteur C, Briquet A, Giet O, Delloye O, Baudoux E & Beguin Y 2016 Clinical-scale expansion of mesenchymal stromal cells: a large banking experience. Journal of Translational Medicine 14 145. (https://doi.org/10.1186/s12967-016-0892-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lehrich BM, Liang Y & Fiandaca MS 2021 Foetal bovine serum influence on in vitro extracellular vesicle analyses. Journal of Extracellular Vesicles 10 e12061. (https://doi.org/10.1002/jev2.12061)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lv FJ, Tuan RS, Cheung KMC & Leung VYL 2014 Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32 14081419. (https://doi.org/10.1002/stem.1681)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • MacDonald ES & Barrett JG 2019 The potential of mesenchymal stem cells to treat systemic inflammation in horses. Frontiers in Veterinary Science 6 507. (https://doi.org/10.3389/fvets.2019.00507)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Malard PF, Peixer MAS, Grazia JG, Brunel HDSS, Feres LF, Villarroel CL, Siqueira LGB, Dode MAN, Pogue R & Viana JHM et al.2020 Intraovarian injection of mesenchymal stem cells improves oocyte yield and in vitro embryo production in a bovine model of fertility loss. Scientific Reports 10 8018. (https://doi.org/10.1038/s41598-020-64810-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin-Inaraja M & Eguizabal C 2022 Challenges of stem cell therapies for the treatment of infertility in reproductive medicine. In Stem Cells in Reproductive Tissues and Organs: From Fertility to Cancer. Ed Virant-Klun I Cham: Springer International Publishing.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mitchell JP, Court J, Mason MD, Tabi Z & Clayton A 2008 Increased exosome production from tumour cell cultures using the Integra CELLine Culture System. Journal of Immunological Methods 335 98105. (https://doi.org/10.1016/j.jim.2008.03.001)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mocchi M, Dotti S, Bue MD, Villa R, Bari E, Perteghella S, Torre ML & Grolli S 2020 Veterinary regenerative medicine for musculoskeletal disorders: can mesenchymal stem/stromal cells and their secretome be the new frontier? Cells 9 1453. (https://doi.org/10.3390/cells9061453)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mokarizadeh A, Delirezh N, Morshedi A, Mosayebi G, Farshid AA & Mardani K 2012 Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunology Letters 147 4754. (https://doi.org/10.1016/j.imlet.2012.06.001)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mutlu L, Hufnagel D & Taylor HS 2015 The endometrium as a source of mesenchymal stem cells for regenerative medicine. Biology of Reproduction 92 138138. (https://doi.org/10.1095/biolreprod.114.126771)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, Dzau VJ & Pratt RE 2006 Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Molecular Therapy 14 840850. (https://doi.org/10.1016/j.ymthe.2006.05.016)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Otsuru S, Desbourdes L, Guess AJ, Hofmann TJ, Relation T, Kaito T, Dominici M, Iwamoto M & Horwitz EM 2018 Extracellular vesicles released from mesenchymal stromal cells stimulate bone growth in osteogenesis imperfecta. Cytotherapy 20 6273. (https://doi.org/10.1016/j.jcyt.2017.09.012)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Palviainen M, Saari H, Kärkkäinen O, Pekkinen J, Auriola S, Yliperttula M, Puhka M, Hanhineva K & Siljander PRM 2019 Metabolic signature of extracellular vesicles depends on the cell culture conditions. Journal of Extracellular Vesicles 8 1596669. (https://doi.org/10.1080/20013078.2019.1596669)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pilz GA, Ulrich C, Ruh M, Abele H, Schäfer R, Kluba T, Bühring HJ, Rolauffs B & Aicher WK 2011 Human term placenta-derived mesenchymal stromal cells are less prone to osteogenic differentiation than bone marrow-derived mesenchymal stromal cells. Stem Cells and Development 20 635646. (https://doi.org/10.1089/scd.2010.0308)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rungsiwiwut R, Virutamasen P & Pruksananonda K 2021 Mesenchymal stem cells for restoring endometrial function: an infertility perspective. Reproductive Medicine and Biology 20 1319. (https://doi.org/10.1002/rmb2.12339)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smith RKW, Garvican ER & Fortier LA 2014 The current ‘state of play’ of regenerative medicine in horses: what the horse can tell the human. Regenerative Medicine 9 673685. (https://doi.org/10.2217/rme.14.42)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stanko P, Kaiserova K, Altanerova V & Altaner C 2014 Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 158 373377. (https://doi.org/10.5507/bp.2013.078)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sun X, Meng H, Wan W, Xie M & Wen C 2019 Application potential of stem/progenitor cell-derived extracellular vesicles in renal diseases. Stem Cell Research and Therapy 10 8. (https://doi.org/10.1186/s13287-018-1097-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F & Atkin-Smith GK et al.2018 Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for extracellular vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles 7 1535750. (https://doi.org/10.1080/20013078.2018.1535750)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ulrich C, Abruzzese T, Maerz JK, Ruh M, Amend B, Benz K, Rolauffs B, Abele H, Hart ML & Aicher WK 2015 Human placenta-derived CD146-positive mesenchymal stromal cells display a distinct osteogenic differentiation potential. Stem Cells and Development 24 15581569. (https://doi.org/10.1089/scd.2014.0465)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • van Niel G, D'Angelo G & Raposo G 2018 Shedding light on the cell biology of extracellular vesicles. Nature Reviews: Molecular Cell Biology 19 213228. (https://doi.org/10.1038/nrm.2017.125)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, Nolta J, Phinney DG & Sensebe L 2019 Mesenchymal stem versus stromal cells: International Society for Cell and Gene Therapy (ISCT(R)) Mesenchymal Stromal Cell Committee position statement on nomenclature. Cytotherapy 21 10191024. (https://doi.org/10.1016/j.jcyt.2019.08.002)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Watson DC, Bayik D, Srivatsan A, Bergamaschi C, Valentin A, Niu G, Bear J, Monninger M, Sun M & Morales-Kastresana A et al.2016 Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials 105 195205. (https://doi.org/10.1016/j.biomaterials.2016.07.003)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Watson DC, Yung BC, Bergamaschi C, Chowdhury B, Bear J, Stellas D, Morales-Kastresana A, Jones JC, Felber BK & Chen X et al.2018 Scalable, cGMP-compatible purification of extracellular vesicles carrying bioactive human heterodimeric IL-15/lactadherin complexes. Journal of Extracellular Vesicles 7 1442088. (https://doi.org/10.1080/20013078.2018.1442088)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yan L & Wu X 2020 Exosomes produced from 3D cultures of umbilical cord mesenchymal stem cells in a hollow-fiber bioreactor show improved osteochondral regeneration activity. Cell Biology and Toxicology 36 165178. (https://doi.org/10.1007/s10565-019-09504-5)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, Leboff MS & Glowacki J 2008 Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7 335343. (https://doi.org/10.1111/j.1474-9726.2008.00377.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation